В чем измеряется лямбда ноль
Начнём мы с традиционного (но краткого) экскурса в историю. В 30-х годах прошлого века перед математиками встала так называемая проблема разрешения (Entscheidungsproblem), сформулированная Давидом Гильбертом. Суть её в том, что вот есть у нас некий формальный язык, на котором можно написать какое-либо утверждение. Существует ли алгоритм, за конечное число шагов определяющий его истинность или ложность? Ответ был найден двумя великими учёными того времени Алонзо Чёрчем и Аланом Тьюрингом. Они показали (первый — с помощью изобретённого им λ-исчисления, а второй — теории машины Тьюринга), что для арифметики такого алгоритма не существует в принципе, т.е. Entscheidungsproblem в общем случае неразрешима.
Так лямбда-исчисление впервые громко заявило о себе, но ещё пару десятков лет продолжало быть достоянием математической логики. Пока в середине 60-х Питер Ландин не отметил, что сложный язык программирования проще изучать, сформулировав его ядро в виде небольшого базового исчисления, выражающего самые существенные механизмы языка и дополненного набором удобных производных форм, поведение которых можно выразить путем перевода на язык базового исчисления. В качестве такой основы Ландин использовал лямбда-исчисление Чёрча. И всё заверте…
λ-исчисление: основные понятия
Синтаксис
В основе лямбда-исчисления лежит понятие, известное ныне каждому программисту, — анонимная функция. В нём нет встроенных констант, элементарных операторов, чисел, арифметических операций, условных выражений, циклов и т. п. — только функции, только хардкор. Потому что лямбда-исчисление — это не язык программирования, а формальный аппарат, способный определить в своих терминах любую языковую конструкцию или алгоритм. В этом смысле оно созвучно машине Тьюринга, только соответствует функциональной парадигме, а не императивной.
Мы с вами рассмотрим его наиболее простую форму: чистое нетипизированное лямбда-исчисление, и вот что конкретно будет в нашем распоряжении.
Термы:
переменная: | x |
лямбда-абстракция (анонимная функция): | λx.t , где x — аргумент функции, t — её тело. |
применение функции (аппликация): | f x , где f — функция, x — подставляемое в неё значение аргумента |
- Применение функции левоассоциативно. Т.е. s t u — это тоже самое, что (s t) u
- Аппликация (применение или вызов функции по отношению к заданному значению) забирает себе всё, до чего дотянется. Т.е. λx. λy. x y x означает то же самое, что λx. (λy. ((x y) x))
- Скобки явно указывают группировку действий.
Процесс вычисления
Рассмотрим следующий терм-применение:
Существует несколько стратегий выбора редекса для очередного шага вычисления. Рассматривать их мы будем на примере следующего терма:
который для простоты можно переписать как
(напомним, что id — это функция тождества вида λx.x )
В этом терме содержится три редекса:
Недостатком стратегии вызова по значению является то, что она может зациклиться и не найти существующее нормальное значение терма. Рассмотрим для примера выражение
(λx.λy. x) z ((λx.x x)(λx.x x))
Ещё одна тонкость связана с именованием переменных. Например, терм (λx.λy.x)y после подстановки вычислится в λy.y . Т.е. из-за совпадения имён переменных мы получим функцию тождества там, где её изначально не предполагалось. Действительно, назови мы локальную переменную не y , а z — первоначальный терм имел бы вид (λx.λz.x)y и после редукции выглядел бы как λz.y . Для исключения неоднозначностей такого рода надо чётко отслеживать, чтобы все свободные переменные из начального терма после подстановки оставались свободными. С этой целью используют α-конверсию — переименование переменной в абстракции с целью исключения конфликтов имён.
Так же бывает, что у нас есть абстракция λx.t x , причём x свободных вхождений в тело t не имеет. В этом случае данное выражение будет эквивалентно просто t . Такое преобразование называется η-конверсией.
На этом закончим вводную в лямбда-исчисление. В следующей статье мы займёмся тем, ради чего всё и затевалось: программированием на λ-исчислении.
Многие задаются вопросом зачем он вообще нужен, и зачастую наслушавшись безграмотных советов доморощенных *чиптюнеров* стремятся его разными способами удалить из системы. Не буду долго лить всякую теоретическую воду напишу кратко:
-для владельца авто он позволяет экономить бензин как гласит запись из каталога бош (см. рис.) при исправном двигателе, системе управления ну и собственно лямбда зонде (далее ЛЗ) это реальная экономия до 15% топлива, нетрудно посчитать это 1,5 л на 10 л!
Рисунок 3. Датчик кислорода в выхлопной трубе
1. Керамическое покрытие
2. Электроды
3. Контакты
4. контакты корпуса
5. Выхлопная труба
6. Керамическая поддерживающая оболочка (пористая)
7. Отработавшие газы
8. Наружный воздух.
Датчик кислорода представляет собой гальваническую ячейку (ячейку Нернста) с твёрдым электролитом. В качестве электролита используется газонепроницаемая керамика из диоксида циркония (ZrO2), стабилизированного оксидом иттрия (YO). C одной стороны (снаружи) он сообщается с выхлопными газами, а с другой (изнутри) — с атмосферой. На внешнюю и внутреннюю сторону керамики нанесены газопроницаемые электроды из тонкого слоя платины.
Платиновый электрод на наружной стороне работает как миниатюрный катализатор, поддерживающий в прилегающем слое поступающих выхлопных газов химические реакции, этот слой в состояние стехиометрического равновесия. Сторона чувствительной керамики, обращенная к отработавшим газам, во избежание ее загрязнения покрыта слоем пористой шпинелевой керамики (Шпинель — минералогическое название тетраоксида диалюминия-магния). Металлическая трубка со щелями предохраняет керамику от ударов и чрезмерных тепловых воздействий. Внутренняя полость сообщается с атмосферой и служит в качестве референсной (опорной) стороны датчика.
Работа датчика основана на принципе ячейки Нернста (гальванической ячейки). Керамический материал пропускает ионы кислорода при температурах от 350oC и выше. Разница в количестве кислорода с разных сторон чувствительной зоны датчика приводит к образованию электрического потенциала (напряжения) между этими двумя поверхностями (внутренней и внешней). Величина напряжения служит показателем того, на сколько количество кислорода на этих двух поверхностях различается. А количество остаточного кислорода в выхлопных газах точно соответствует пропорции между топливом и воздухом, поступающими в двигатель.
Широкополосный λ-датчик кислорода
Рисунок . Конструкция широкополосного датчика кислорода непрерывного действия, установленного в выхлопной трубе.
1. Ячейка Нернста
2. Референсная ячейка
3. Подогреватель
4. Диффузионная щель
5. Насосная ячейка
6. Выхлопная труба
Эта конфигурация отличается от обычного датчика с двумя состояниями постоянным поддержанием стехиометрического соотношением воздух/топливо в диффузионной камере. Электронная схема модуляции напряжения питания поддерживает в измерительной камере состав газов, соответствующий λ=1. Для этого насосная ячейка при работе двигателя на бедной смеси и избытке кислорода в выхлопных газах удаляет кислород из диффузионной щели во внешнюю среду; а при богатой смеси и недостатке кислорода в выхлопных газах перекачивает ионы кислорода из окружающей среды в диффузионную щель. Направление тока для перекачивания кислорода в разные стороны тоже отличается.
Так как насосный ток пропорционален концентрации кислорода — он и является показателем величины λ-фактора отработавших газов.
Рисунок . Схема замкнутой петли λ-регулирования качества смеси.
1. Датчик массового расхода воздуха
2. Двигатель
3a. Датчик кислорода 1
3b. Датчик кислорода 2
4. Катализатор
5. Форсунки инжектора
6. Электронный Блок Управления
Vv напряжение управления форсунками
Vs напряжение с датчика
Qe Количество впрыскиваемого топлива
Датчик кислорода передает сигнал (напряжение) электронному блоку управления (ЭБУ) двигателем. Этот сигнал используется системой для обогащения или обеднения смеси в соответствии с величиной напряжения с датчика (см. Рис. 8). Таким образом система обогащает бедную смесь, увеличивая количество впрыскиваемого топлива, и обедняет богатую, уменьшая количество топлива.
Диагностика
Лямбда-зонд сравнивает уровень содержания кислорода в выхлопных газах и в окружающем воздухе и представляет результат этого сравнения в форме аналогового сигнала. Применяются двухуровневые зонды, чувствительный элемент которых выполнен из оксида циркония либо из оксида титана, но на их смену приходят широкополосные лямбда-зонды. При условии сгорания стехиометрической топливо-воздушной смеси, напряжение выходного сигнала лямбда-зонда равно 445…450mV.
Но расстояние от выпускных клапанов газораспределительного механизма двигателя до места расположения датчика и значительное время реакции чувствительного элемента датчика приводят к некоторой инерционности системы, что не позволяет непрерывно поддерживать стехиометрический состав топливо-воздушной смеси. Практически, при работе двигателя на установившемся режиме, состав смеси постоянно отклоняется от стехиометрического в диапазоне ±2…3% с частотой 1…2раза в секунду. Этот процесс чётко прослеживается по осциллограмме напряжения выходного сигнала лямбда-зонда.
осциллограмма напряжения выходного сигнала исправного лямбда-зонда BOSCH.
Двигатель работает на холостом ходу. Частота переключения сигнала составляет ~1,2Hz.
Осциллограмма напряжения выходного сигнала неисправного лямбда-зонда BOSCH.
Осциллограмма напряжения выходного сигнала неисправного лямбда-зонда BOSCH. Двигатель работает на холостом ходу. Переключения выходного сигнала отсутствуют. Напряжение выходного сигнала стареющего лямбда-зонда при работе двигателя на холостом ходу становится почти стабильным, его значение становится близким опорному напряжению 300…600mV.
Уровень содержания кислорода в камере с атмосферным воздухом при этом оказывается значительно выше уровня содержания кислорода в выхлопных газах, вследствие чего зонд генерирует напряжение 1V положительной полярности. В случае разгерметизации лямбда-зонда, в камеру с атмосферным воздухом проникают отработавшие газы с низким содержанием кислорода. На режиме торможения двигателем (закрытая дроссельная заслонка при вращении двигателя с высокой частотой, подача топлива при этом отключена), в выхлопную систему двигателем выбрасывается почти чистый атмосферный воздух. В таком случае, уровень содержания кислорода в выхлопной системе резко возрастает и уровень содержания кислорода в атмосферной камере зонда оказывается значительно ниже уровня содержания кислорода в отработавших газах, вследствие чего зонд генерирует напряжение 1V отрицательной полярности. Блок управления двигателем в таком случае считает лямбда-зонд исправным, так как вскоре после пуска двигателя и прогрева, датчик отклонил опорное напряжение и снизил его до ~0V.
Выходное напряжение зонда напряжением ~0V свидетельствует о близком уровне содержания кислорода в отработавших газах и в разгерметизированой атмосферной камере зонда. На блок управления двигателем поступает сигнал зонда низкого уровня, что является для него свидетельством обеднённой топливовоздушной смеси. Вследствие этого, блок управления двигателем обогащает топливовоздушную смесь. Таким образом, разгерметизация лямбда-зонда приводит к значительному обогащению топливовоздушной смеси. При этом многие системы самодиагностики выявить данную неисправность зонда не способны.
Широкополосный лямбда-зонд Выходной сигнал широкополосного лямбда-зонда в отличие от двухуровневых зондов несёт сведения не только о направлении отклонения состава рабочей смеси от стехиометрического, но и о его численном значении. Анализируя уровень выходного сигнала широкополосного лямбда-зонда, блок управления двигателем рассчитывает численное значение коэффициента отклонения состава рабочей смеси от стехиометрического состава, что, по сути, является коэффициентом лямбда.
Для широкополосных зондов производства BOSCH Выходное напряжение чувствительного элемента зонда (чёрный провод относительно жёлтого провода) изменяется в зависимости от уровня содержания кислорода в отработавших газах и от величины и полярности электрического тока, протекающего по кислородному насосу зонда (красный провод относительно жёлтого). Блок управления двигателем генерирует и подаёт на кислородный насос зонда электрический ток, величина и полярность которого обеспечивает поддержание выходного напряжения чувствительного элемента зонда на заданном уровне (450 mV). Если бы двигатель работал на топливовоздушной смеси стехиометрического состава, то блок управления двигателем установил бы на красном проводе напряжение равное напряжению на жёлтом проводе, и ток протекающий через красный провод и кислородный насос зонда был бы равен нулю.
При работе двигателя на обеднённой смеси, блок управления двигателем на красный провод подаёт положительное напряжение относительно жёлтого провода, и через кислородный насос начинает течь ток положительной полярности. При работе двигателя на обогащенной смеси, блок управления изменяет полярность напряжения на красном проводе относительно жёлтого провода, и направление тока кислородного насоса так же изменяется на отрицательное. Величина тока кислородного насоса устанавливаемая блоком управления двигателем зависит от величины отклонения состава топливовоздушной смеси от стехиометрического состава. В электрическую цепь кислородного насоса включен измерительный резистор, падение напряжения на котором и является мерой уровня содержания кислорода в отработавших газах.
Проблемы
Проблема заключается в следующем, цена на новый ЛЗ сейчас очень высока. На рынках в магазинах сейчас очень часто попадаются бракованные, поддельные ЛЗ, в случае установки его в выпуск, обратно вернуть его уже весьма проблематично.
Из того что испытывалось, нагрев строительным феном ЛЗ до 350 С с подачей опорного напряжения 0,45 в никакой реакции (способ найден в инете!) на ламповом оссцилоскопе с высоким входным сопротивлением.
Но порадовало одно у чуствительного элемента ЛЗ есть емкость где то в районе 50-80 Пикофарад.
Другой более надежный способ рожденный опытом это берем газовый паяльник и нагреваем чуствительный элемент при этом разьем лямды подключен к эбу и смотрим на отклонение напряжения от опорного, в небольших пределах мы увидим отклонение что косвенно потверждает его исправность.
Меня интересуют варианты безустановочной диагностики ЛЗ. Буду рад любым идеям, даже самым бредовым на первый взгляд.
Основные положения и функции Кислородного датчика :
Теория.
Жесткие экологические нормы во многих странах мира, стали диктовать количество выбросов вредных веществ, тем самым узаконили применение на автомобилях каталитических нейтрализаторов (в обиходе – катализаторы) – устройств, способствующих снижению содержания вредных веществ в выхлопных газах автомобилей с двигателем внутреннего сгорания. Катализатор — нужный и ответственный узел автомобиля, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси катализатор умрёт ( потеряет свои основные свойства и функции) очень быстро – для того чтобы, как можно дольше продлить его жизнь и приходит на помощь датчик кислорода, он же О2-датчик, он же лямбда-зонд (ЛЗ).
График 1. Зависимость мощности двигателя (P) и расхода топлива (Q) от коэффициента избытка воздуха (L)
Избыток воздуха в смеси измеряется весьма оригинальным способом ( причем этот способ не является обходным путем, а дает уверенно точные показания ) – определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда-зонд и стоит в выпускном коллекторе перед катализатором. Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива. Таким образом, происходит регулировка не воздуха, а именно топлива, относительно воздуха, тем самым достигается максимальный процент сгорания топлива в цилиндрах, максимально эффективная работа катализатора, и как следствие максимальный крутящий момент двигателя автомобиля. Причем на большинстве современных моделях автомобилей имеется еще один лямбда-зонд, так же возможна установка дополнительных датчиков работающих в связке (например датчик температуры катализатора, расположен он на выходе катализатора). Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора (рис. 1).
Рис. 1. Схема L-коррекции с одним и двумя датчиками кислорода двигателя 1 – впускной коллектор; 2 – двигатель; 3 – блок управления двигателем; 4 – топливная форсунка; 5 – основной лямбда-зонд; 6 – дополнительный лямбда-зонд; 7 – каталитический нейтрализатор.
При пуске и прогреве холодного двигателя управление впрыском топлива осуществляется блоком управления автомобилем ( ЭБУ ) без участия этого датчика, а коррекция состава топливо-воздушной смеси осуществляется по сигналам других датчиков (положения дроссельной заслонки, температуры охлаждающей жидкости, числа оборотов коленвала и др.). Особенностью циркониевого лямбда-зонда является то, что при малых отклонениях состава смеси от идеального (0,97 < L < 1,03) напряжение на его выходе изменяется скачком в интервале 0,1 — 0,9 В (график 2). Таким образом этот материал обеспечивает идеальные показания сильно различные друг от друга даже при минимальном изменении измеряемой среды.
Рис. 3. Конструкция датчика кислорода с подогревателем 1 – керамическое основание; 2, 8 – контакты НЭ; 3 – нагревательный элемент (НЭ); 4 – твердый электролит ZrO2 с напыленными платиновыми электродами; 5 – защитный кожух с прорезями; 6 – металлический корпус с резьбой крепления; 7 – уплотнительное кольцо; 9 – выводы датчика.
Принцип работы кислородного датчика на языке автомобилистов ( основные моменты):
Кислород содержит отрицательно заряженные ионы, которые собираются на платиновых электродах, и когда датчик достигает температуры около 400°C, любая разность потенциалов образует электрическое напряжение. В случае если смесь бедная, содержание кислорода в отработавших газах высокое. При сравнении с содержанием кислорода в атмосфере существует только очень маленькая разность потенциалов, и, как следствие, возникает небольшое напряжение (около 0,2–0,3 В). В случае если смесь богатая, то содержание кислорода в отработавших газах низкое. Создается большая разность потенциалов, поэтому возникает относительно более высокое напряжение (0,7–0,9 В). Система управления двигателем будет непрерывно подстраивать длительность импульсного сигнала под форсунки с целью выйти на среднее напряжение, составляющее около 0,4–0,6 В при значении лямбда около 1.0. Поскольку в процессе движения режимы работы двигателя постоянно изменяются, значение напряжения колеблется в обе стороны от среднего значения. Поэтому данный датчик в силу своей неспособности определить небольшие изменения в содержании кислорода известен как узкополосный. Датчик, установленный после каталитического нейтрализатора отработавших газов, действует по тому же способу, что и датчик перед ним, но с одним очень большим отличием. После того, как газы были обработаны каталитическим нейтрализатором, содержание кислорода в них остается на неизменном уровне. Это обеспечивает постоянное напряжение около 0,4–0,6 В. Теперь система управления двигателем может эффективно отслеживать работу каталитического нейтрализатора отработавших газов.
Рис. 4. Контактные выводы наиболее распространенных циркониевых лямбда-зондов а – без подогревателя; б, с – с подогревателем. * цвет вывода может отличаться от указанного.
Виды кислородных датчиков.
Существует несколько классификаций автомобильных кислородных датчиков: 1. По количеству проводов: 1-, 2-, 3-, 4-, 5-, 6-контактные датчики. 2. По дизайну сенсорного элемента: “пальчиковые” и пластинчатые 3. По способу крепления в выхлопную трубу: резьбовые и фланцевые. 4. По ширине измерений лямбды: узкополосные (детектируют лямбду при величине >1) и широкополосные (детектируют лямбду от 0,7 до 1.6).
Расположение Кислородного датчика Ниссан :
Кислородный датчик расположен на выпускном тракте двигателя. Если это рядный двигатель — то кислородный датчик расположен непосредственно на чугунном выпускном коллекторе, если же это V — образный двигатель или иной двигатель не с единым выпускным коллектором, то кислородный датчик располагается в месте схождения основных отводов выпускных коллекторов.
Почему следует заменить неисправный кислородный датчик?
Замена неисправного кислородного датчика на новый датчик позволяет экономить топливо, улучшить динамику автомобиля, уменьшить токсичность выхлопных газов, является профилактикой преждевременного выхода из строя дорогостоящего катализатора.
Инструкция по замене, универсальная: Чтобы снять старый и установить новый кислородный датчик нужно убедиться в том, что зажигание выключено, а провода датчика отсоединены. Перед установкой нового зонда проверяют его маркировку на соответствие указанной в инструкции по эксплуатации, осматривают автомобиль на отсутствие механических повреждений, наличие кольца уплотнения, противопригарной смазки на резьбовой части. Затем датчик кислорода затягивают до полностью герметичного соединения, соединяя электроразъем, после чего можно проверять работоспособность нового датчика. Иногда датчик кислорода присоединяется к трубопроводу специальной пластиной, в пространстве между ней и трубопроводом находится прокладка с функцией герметика. Проверка работоспособности датчика производится только при его нагреве до температуры 350 градусов специальным оборудованием: газоанализатором, осциллографом, вольтметром, омметром. Поэтому сделать правильную замену кислородного датчика на Nissan и других автомобилях можно лишь в специализированном автосервисе.
Инструкция 2:
1. Выворачивание l-зонда на холодном двигателе может оказаться крайне затруднительным ввиду теплового сжатия металла выпускного коллектора/трубы системы выпуска. Во избежание риска повреждения компонентов, прежде чем приступать к снятию датчика, прогрейте двигатель в течение пары минут, — постарайтесь не обжечься о разогретые поверхности в процессе выполнения процедуры:
a) Кислородные датчики оборудованы вмонтированным жгутом электропроводки с контактным разъемом. Повреждение данного жгута приводит к необратимому выходу датчика из строя, — соблюдайте осторожность; b) Старайтесь не допускать попадания на контактный разъем и жалюзи датчика масла, смазки, грязи, влаги и т.п.;
c) НИ в коем случае не применяйте для чистки датчика никакие растворители;
d) Старайтесь не ронять и резко не стряхивать датчик. 2. Поддомкратьте автомобиль и установите его на подпорки. 3. Аккуратно отсоедините разъем электропроводки кислородного датчика. 4. При помощи специального ключа осторожно выверните зонд из соответствующей секции системы выпуска отработавших газов. 5. Перед вворачиванием датчика смажьте его резьбовую часть антиприхватывающим герметиком. 6. Вверните датчик на свое штатное место и прочно затяните его. 7. Опустите автомобиль на землю и подсоедините к датчику электропроводку. 8. Произведите автомобиля ходовые испытания. Проверьте память модуля управления на наличие кодов неисправностей.
И теперь несколько слов о брендах современных датчиков кислорода.
Основные производители и отзывы о них можно посмотреть здесь по ссылкам:
Bosch avto.pro/makers/bosch/
Denso avto.pro/makers/denso/
NGK avto.pro/makers/ngk/
PROFIT avto.pro/makers/profit/
Материал о том КАК выбрать лямбда зонд -можно посмотреть здесь : avto.pro/autonews/kak_vib…at_lyambda_zond-20170315/
Лямбда-зонд является элементом системы питания инжекторных автомобилей. В процессе использования могут встречаться соответствующие проблемы. Что необходимо сделать, чтобы проблемные ситуации не встречались? Данная статья расскажет о назначении датчика лямбда-зонд, эксплуатации, методах его диагностики, также о том, какие известны чаще всего встречающиеся признаки неисправного лямбда зонда.
Коэффициент перерасхода воздуха в топливовоздушной смеси показывает греческая лямбда в автомобилестроении. Именно поэтому и появилось название устройства, которое измеряет этот коэффициент, а точнее — остаточный кислород в отработавших газах.
Гарантировать такое определенное управление состава топливо-воздушной смеси можно только благодаря системе питания с электронным впрыском топлива. Лямбда-зонд в таких системах способен выполнять функцию контролера в выпускном тракте.
Признаки и проблемы, связанные с повреждениями.
Аварии в работе, или отторжение лямбда-зонда способно произойти в следующих случаях:
отделение электроцепей подключения;
замыкание;
засорение продуктами сгорания бензина;
термические перегрузки в результате перебоев зажигания;
механические поломки (например, во время езды по бездорожью).
Значительно уменьшают срок службы зонда:
некачественное состояние масло-съемных колец,
проникание антифриза в цилиндры и выпускные трубопроводы,
концентрированная топливо-воздушная смесь.
В случае поломанного лямбда-зонда содержание СО в выхлопе увеличивается с 0,1-0,3% до 3-7%. Сократить его значение чаще всего в старых моторах без подмены устройства очень трудно, потому что резерв хода регулятора качества смеси потенциометра может оказаться недостаточным.
В случае если в автомобиле находится два лямбда-зонда, и отказало второе устройство, то ожидать правильную работу двигателя без серьезного вторжения в электронику не следует.
Симптомы поломок лямбда-зонда:
ухудшение приемистости (разгонной динамики);
изменяющийся холостой ход;
рост затрат топлива;
увеличение токсичности выхлопа.
Промежуток замены устройств:
для не подогреваемых – каждые 50000-80000 км;
для подогреваемых – каждые 100000 км;
для планарных – каждые 160000 км.
Устранение неполадок.
Технологии ремонта поломанных лямбда-зондов нет. В случае неисправности их необходимо заменять.
В большинстве случаев лямбда-зонд прекращает свою работу из-за отложений нагара, который находится на чувствительном элементе под защитным колпачком.
Таким образом, если убрать налет, работоспособность восстанавливается.
Вычистить чувствительный элемент устройства можно, его необходимо промыть в ортофосфорной кислоте, которая, в свою очередь, на протяжении 10-20 минут разъедает загрязнения, тем самым не разрушает электроды с редкоземельными металлами.
Лучше всего чистить лямбда-зонд после удаления защитного колпачка на токарном станке, и мойки с применением тонкой кисточки. Для того чтобы все сделать правильно необходимо закрепить колпачок с помощью аргоновой сварки. После того, как устройство промыли, нужно его ополоснуть водой и высушить. В случае если промывка не принесла положительного результата, датчик необходимо заменить. Стоимость мойки намного меньше, чем стоимость нового лямбда-зонда.
Можно осуществить замену не подогреваемого устройства на подогреваемый тип, но, ни в коем случае, не наоборот. При не сочетаемости разъемов, недостающую электроцепь подогрева протяните сами, а вместо разъема применяйте современные автомобильные контакты.
Зачем своевременно производить замену лямбда-зонда? Потому что новый лямбда-зонд позволит вам сэкономить до 15% топлива, сократит токсичность отработавших газов, при этом не уменьшается резерв катализатора, динамические особенности двигателя неизменны.
Рекомендуется проверять лямбда-зонд и систему управления топливной смеси через каждые 30 тыс. км пробега.
Результат измерения остаточного кислорода в отработавших газах лямбда-зонда гарантирует только после того, как он разогрелся до температуры 300-4000С. Именно в таких условиях циркониевый электролит получает проводимость, а различие в объеме атмосферного кислорода в выхлопной трубе способствует образованию на электродах лямбда-зонда выходного напряжения. Вовремя включенного и разогретого двигателя проверяются сигнал лямбда-зонда. Осциллограф в данном случае лучше подходит, чем мультиметр для проверки, т.к. благодаря ему как следует оценивается форма и частота сигнала.
После чего проверяют сопротивление нагревателя устройства при комнатной температуре составляющий от 2 до 14 Ом. Затем измеряется напряжение, дотянутое до нагревателя: в случае включенного зажигания и присоединенном разъеме зонда, оно обязано равняться показателю не меньше, чем 10,5 В. В случае, если полученное значение меньше, то надо добросовестно обследовать напряжение батареи, кабели и соединения.
Датчики необходимо помещать и демонтировать только при использовании специальных инструментов.
В случае повторного использования лямбда-зонда, резьбу нужно обработать соответствующей монтажной пастой. Необходимо избегать проникновения пасты на защитную трубку, потому что это в результате может привести к неполадкам в работе устройства. Новые лямбда-зонды предварительно обработаны пастой.
Придерживайтесь совета производителя по поводу момента затяжки, чаще всего он составляет от 40 до 60 Нм.
Будьте внимательны в использовании лямбда-зонда, для того чтобы избежать механических неполадок.Так как датчики всасывают наружный воздух через соединяющий разъем, его, ни в коем случае, нельзя обрабатывать спреем или смазкой. Во время промывки двигателя и днища разъем лямбда-зонда необходимо отсоединить.
В очередном опусе Итана Сигеля резанула фраза
Пронаблюдав за удалёнными сверхновыми и измерив, как Вселенная расширялась миллиарды лет, астрономы обнаружили нечто удивительное, загадочное и неожиданное.
By observing distant supernovae and measuring how the Universe had expanded over billions of years, astronomers discovered something remarkable, puzzling and entirely unexpected
О какой неожиданности может идти речь? Там ведь совершенно шикарная история длиной в 80 лет с яркими открытиями и закрытиями. История про то, как на самом деле делается настоящая наука. История скорее про физиков, чем про физику.
О чём вообще весь сыр-бор?
Первую версию Общей Теории Относительности (ОТО) Альберт Эйнштейн представил публике 25 ноября 1915 года. В оригинале уравнения ОТО Эйнштейна выглядели вот так:
или, в современной записи, вот так:
Для неумеющего в тензоры читателя понятнее уравнение (1) в оригинальной записи Эйнштейна. Там написано, что энергия-импульс материи G равен кривизне пространства R плюс тензор Риччи S. (Этот самый тензор Риччи тоже есть кривизна, только в более другой форме).
Сейчас, решая уравнение ОТО, энергию-импульс обычно считают известным, а ищут как раз кривизну. Поэтому в современной записи стороны уравнения поменяли местами. Заодно поменяли буковки: G → T, S → Rμν.
Откуда есть пошла лямбда
Но физика — это вам не математика. Здесь нельзя взять формулу и напихать в неё добавочных слагаемых просто так. Нужно иметь очень веские основания, и теоретические, и экспериментальные.
Хотя ниже вы увидите, насколько мало Эйнштейн знал о Вселенной в те годы, но тогда, в 1916, такие основания у него были. Альберт Германович точно знал, что звёзды не попадали друг на друга и совершенно не собираются этого делать в обозримом будущем. Однако, в ОТО-1915 было только притяжение, которое нужно было чем-то сбалансировать.
Первое физическое толкование смысла лямбды
В такой трактовке ненулевое значение Λ означает, что наша Вселенная искривлена сама по себе, в том числе и при отсутствии какой-либо гравитации. Ну, вот такой нам достался мир. Однако, большинство физиков в это не верят, и считают, что у наблюдаемого искривления должна быть какая-то внутренняя причина. Какая-то неведомая доселе фигня, которую можно открыть.
На сегодняшний день измеренная кривизна пространства Вселенной таки равна нулю, но с очень паршивой точностью, порядка 0.4%. И не очень-то видно способов эту точность улучшить.
С измерениями кривизны есть две концептуальные проблемы.
Первая в том, что мы не можем измерить совсем пустое пространство, потому что просто ничего там не видим. А если там есть что-то, что мы таки видим, то пространство уже не пустое и, значит, уже дополнительно искривлено гравитацией.
Допустим, у нас есть как-то измеренные координаты объектов, плюс пачка фотографий этих объектов в разных ракурсах (снятых из разных точек). Тогда мы можем вычислить кривизну пространства. Например, гравитация Солнца отклоняет пролетающий мимо свет далёких звёзд. Во время солнечных затмений это отклонение можно измерить экспериментально и сравнить с предсказаниями ОТО.
Теперь наоборот: допустим, мы знаем кривизну пространства, и у нас есть пачка фотографий. Тогда, если кривизна достаточно хорошая, без чёрных дыр и т.п. — мы можем вычислить координаты объектов на фото. Именно так работают наши глаза, точнее мозги, когда вычисляют расстояние до объектов по двум фоткам с разных точек.
Поэтому измерить кривизну наблюдаемой Вселенной в целом мы можем только из очень окольных соображений.
Вселенная Фридмана
Meanwhile in Russia, не смотря на войны и революции, над теорией ОТО бился прапорщик (и по совместительству профессор) Александр Александрович Фридман. Он рассмотрел все варианты лямбд и выяснил следующее:
При Λ < 0 имеют место лишь силы притяжения, как гравитационные, так и вызванные кривизной впуклоговогнутого пространства. Рано или поздно звёзды и галактики в таком мире таки попадают друг на друга. Причём конец будет неожиданно быстрым и очень горячим.
Но самое интересное происходит при Λ = 0. Здесь всё зависит от начальных условий — т.е. координат и скоростей конкретных галактик. Возможны три варианта: большое сжатие, большой разлёт и стационарный вариант, когда галактики разлетаются, но с относительно небольшими скоростями и без ускорения.
Сегодня вышеописанные ситуации называются космологическими решениями Фридмана.
Статьи Фридмана 1922 и 1924 годов отменяли необходимость в лямбда-члене, из-за чего поначалу были приняты Эйнштейном в штыки.
За свою работу Фридман вполне мог претендовать на Нобелевку.
Летом 1925 он женился, поехал в свадебное путешествие в Крым, съел там немытую грушу, заразился тифом и в сентябре — умер.
И да, статья Итана про примерно такой график (конкретно на этом учтены данные на 2010 год):
Здесь по горизонтали отложено z — это красное смещение, по вертикали наблюдаемая яркость сверхновых особого типа Ia, которые всегда выделяют одно и то же количество энергии. Вообще, это два способа измерения одного и того же расстояния, но, так сказать, в разные моменты времени.
Серые палки — наблюдавшиеся события с их погрешностью измерений. Синим пунктиром отложено предсказание при Λ = 0, красной линией — аппроксимация фактически наблюдаемых значений. Отклонение красной линии от прямой означает, что Вселенная расширяется ускоренно. Но Эйнштейн об этом так и не узнал.
Вселенная Каптейна
Перейдём к экспериментальной части.
Голландский астроном Якобус Корнелиус Каптейн открыл звезду Каптейна в 1897, после чего приступил к opus magnum всей своей жизни. Объединяя огромное количество наблюдений разных обсерваторий, он попытался создать первую карту Вселенной. По его карте выходило, что вселенная имеет форму вращающегося (sic!) диска крышесносящего по тем временам размера 40000 световых лет, причём Солнце находится отнюдь не в центре, а вполне себе на задворках. Закончена и опубликована эта работа была только в 1922.
Для понимания уровня тогдашних знаний: то, что Каптейн считал невероятно огромной Вселенной, сегодня считается совершенно рядовой, ничем не примечательной среди миллиардов таких же… галактикой Млечный Путь. Тем не менее, заслуга Каптейна в том, что он открыл её вращение и приблизительно вычислил её центр.
Наблюдения Хаббла (астронома, а не телескопа)
Статью со своими открытиями, из которой следовало, что Вселенная значительно больше, чем наш Млечный путь, Хаббл представил американскому астрономическому обществу первого января 1925. За что и был освистан страдающими от похмелья коллегами, едва свыкшимися с расстояниями Каптейна.
Хаббл не унимался и прикрутил к телескопу ещё и спектрометр. Анализируя красное смещение галактик, он выяснил, что галактики разбегаются, а Вселенная, соответственно, расширяется. Заодно он открыл закон имени себя с константой имени себя (впрочем, закон был предсказан Леметром), и описал всё это в статьях к концу 20-ых годов. Согласно его наблюдениям, оказалась верна модель Фридмана для Λ = 0.
Это выбило из-под лямбды теперь уже и экспериментальные основания её существования.
Здесь ещё нужно упомянуть, что первоначальные оценки Хаббла были очень уж неточными и показывали возраст Вселенной порядка 2 миллиардов лет. Позднее это войдёт в противоречие с данными геофизиков, которые при помощи радиоизотопного анализа оценят возраст Земли в несколько миллиардов лет, и десятилетиями будет сильнейшей головной болью для физиков-космологов.
Стационарная Вселенная Хойла
С начала 30-ых годов вопрос с лямбдой считался решённым, и из мейнстримных физиков ей никто толком не занимался. Одним из редких исключений, рискнувших попереть супротив самого Эйнштейна, стал британец Фред Хойл.
Речь пойдёт о гелии. Этот элемент феноменально инертен и не хочет ни с чем реагировать. Причём не только химически, но и физически тоже, если мы говорим про гелий-4. Его ядро — альфа частица — имеет пиковую энергию связи на нуклон в своей области. см. рис из какого-то реферата:
Это значит, что альфа-частица не может присоединить дополнительные протоны или другую альфа-частицу иначе как случайно: это просто-напросто энергетически невыгодно. А в ядрах звёзд ничего кроме протонов и альфа-частиц и нет.
Возникал резонный вопрос: а откуда, собственно, взялись химические элементы тяжелее гелия?
Ближайшее ядро, в которое может превращаться гелий-4, это углерод-12. Но для этого нужно объединить три альфа-частицы.
Проблема в том, что вероятность столкновения трёх альфа-частиц одновременно слишком мала. А двухшаговый процесс (сначала сталкиваются две частицы, потом очень быстро, пока они не разлетелись обратно на две альфа-частицы, в них врезается ещё одна), в принципе, возможен, но расчёты Эдвина Солпитера показывали, что такой процесс идёт слишком вяло, чтобы производить существенные количества углерода.
Однако, по расчётам Хойла выходило, что при наличии такого уровня в три-альфа процессе наступает резонанс, и звёзды — красные гиганты производят достаточно много углерода для нашего существования.
Удивительно, но американцы решили провести небольшой эксперимент на своём ускорителе. И да — триумфально нашли нужный энергетический уровень на 7.65 МэВ, который физики-ядерщики всего мира почему-то проглядели во всех предыдущих экспериментах.
Сегодня такое возбуждённое состояние углерода-12, когда три альфа-частицы фактически выстраиваются по линии, называется хойловским. Соответствующая статья Хойла, Фаулера и супругов-астрономов Джефри и Маргерит Бёрбиджей является краеугольным камнем современных теорий звёздного нуклеосинтеза и настолько часто цитируется, что обозначается просто B²FH, без ссылок и расшифровок.
И — да, на сегодня это чуть ли не единственное известное успешное предсказание на основе антропного принципа.
Однако, из квантовых флуктуаций постоянно рождается новое вещество, причём так, что средняя плотность материи остаётся одинаковой. Расчёты показывают, что в одном кубическом километре пространства должен рождаться всего-навсего один протон раз в 300000 лет (а так же один электрон или что-то типа того для сохранения электрического заряда). Прекрасное число, чтобы исключить любую возможность какой-либо экспериментальной проверки!
Теория стационарной Вселенной серьёзно рассматривалась как альтернатива теории Большого Взрыва в 50-х и начале 60-х. Но экспериментальное открытие в 1964 году предсказанного ТББ реликтового излучения поставило на ней крест.
За статью B²FH дали Нобелевку. Но только Фаулеру, который распорядился провести десятидневный эксперимент. Ни супругам Бёрбиджам, проводившим длительные астрономические наблюдения и собственно написавшим статью, ни автору идеи Хойлу нобелевку не дали — за упорствование в космологической ереси.
Квантовая лямбда
Вернёмся к уравнению ОТО.
Слева (в современной записи) стоит кривизна пространства, сиречь гравитация по ОТО. Справа — тензор энергии-импульса. Под этим тензором стоит жутко сложный матан, но суть в следующем: там учтена вся-вся-вся материя Вселенной во всех видах и состояниях. И обычное вещество, и всякие хитрые частицы, и все виды излучений (кроме гравитации, которая слева).
Теперь мысленно перенесём лямбду вправо. В такой записи это будет не дополнительная кривизна, а какая-то неучтённая энергия (замечу, отрицательная, раз уж мы считаем лямбду положительной). И здесь просматриваются две возможности.
Первая гипотеза состоит в том, что лямбда — это энергия собственно вакуума. Звучит диковато, но на самом деле вполне согласуется с квантовой механикой. Возьмём кусок пространства и уберём из него всё, что хотя бы в принципе можно убрать. Уберём всё вещество, все частицы и все волны, независимо от их природы. Останутся только физические поля в невозмущённом состоянии. Полный штиль.
Так вот, у некоторых полей (например, Хиггсовских) в пустоте ненулевое значение. И теоретически у них есть некоторая энергия. Кроме того, в силу принципа неопределённости у любых полей есть квантовые флуктуации — и они тоже имеют некоторую энергию.
Вместо заключения
Читайте также: