Обозначение стартера на схеме
Единая система конструкторской документации
ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В ЭЛЕКТРИЧЕСКИХ СХЕМАХ. УСТРОЙСТВА КОММУТАЦИОННЫЕ И КОНТАКТНЫЕ СОЕДИНЕНИЯ
Unified system for design documentation. Graphic designations in electric diagrams. Commutational devices and contact connections
МКС 01.080.40
31.180
1. РАЗРАБОТАН И ВНЕСЕН Государственным комитетом СССР по стандартам
П.А.Шалаев, С.С.Борушек, С.Л.Таллер, Ю.Н.Ачкасов
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 27.10.87 N 4033
3. Стандарт полностью соответствует СТ СЭВ 5720-86
5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД, на который дана ссылка
6. ПЕРЕИЗДАНИЕ. Ноябрь 2004 г.
Настоящий стандарт распространяется на схемы, выполняемые вручную или автоматизированным способом, изделий всех отраслей промышленности и строительства и устанавливает условные графические обозначения коммутационных устройств, контактов и их элементов.
Настоящий стандарт не устанавливает условные графические обозначения на схемах железнодорожной сигнализации, централизации и блокировки.
Условные графические обозначения механических связей, приводов и приспособлений - по ГОСТ 2.721.
Условные графические обозначения воспринимающих частей электромеханических устройств - по ГОСТ 2.756.
Размеры отдельных условных графических обозначений и соотношение их элементов приведены в приложении.
1. Общие правила построения обозначений контактов
1.1. Коммутационные устройства на схемах должны быть изображены в положении, принятом за начальное, при котором пусковая система контактов обесточена.
1.2. Контакты коммутационных устройств состоят из подвижных и неподвижных контакт-деталей.
1.3. Для изображения основных (базовых) функциональных признаков коммутационных устройств применяют условные графические обозначения контактов, которые допускается выполнять в зеркальном изображении:
Конструкция ламп газоразрядного типа обеспечивает стабильное свечение, а срок эксплуатации по сравнению со стандартными лампочками накаливания значительно выше. Вся работа этих устройств осуществляется с помощью специальной аппаратуры, в состав которой входит и стартер для люминесцентных ламп. Совместно с дросселем он принимает участие в запуске, защищает источник света от перенапряжения из-за высоких токов. Без стартера лампа не будет работать, поэтому нужно регулярно контролировать, осуществлять своевременный ремонт или замену.
Функции стартера в лампах газоразрядного типа
Независимо от модификации ламп дневного света, основной функцией стартера является их запуск. Он входит в общую структуру пускорегулирующего устройства, питается от сетевого переменного тока с рабочей частотой 50 Гц.
Активация осветительного прибора заключается в подаче на его контактные клеммы повышенного напряжения. Стандартное пусковое устройство внешне выглядит в виде небольшой стеклянной колбы, заполненную изнутри смесью инертных газов. Сама колба защищена от возможных повреждений пластиковым или металлическим корпусом. Снизу к подведены два электрода, которые и обеспечивают контакт с проводами лампы. Некоторые корпуса оборудуются смотровым окошком.
По мнению специалистов, стартеры для люминесцентных ламп обладает повышенной чувствительностью и чаще чем другие компоненты выходит из строя. В таких случаях лампу становится невозможно запустить, и она не будет работать. В случае необходимости этот компонент легко заменить своими руками.
Основными функциями стартера в системе ПРА являются следующие:
- Немедленное включение в работу при подаче питающего напряжения.
- Прогревает электроды.
- Замыкает и размыкает биметаллическую пластину.
- Передает повышенный ток к местам образования дуги.
- Через него ток поступает к дросселю.
Следует помнить, что прямое включение лампы без стартера приводит к снижению срока службы и преждевременному выходу из строя. Эти компоненты бывают электромагнитными или электронными и выбираются в зависимости от конструкции источника света.
Устройство стартера
Различные виды и модификации стартеров в целом имеют одни и те же конструктивные элементы. Они отличаются лишь параметрами, поскольку используются во многих типах ламп. Зная общее устройство стартера, можно легко проверить его работоспособность, выявить неисправности и принять решение о возможности дальнейшего использования.
Итак, любое пусковое устройство состоит из следующих деталей и компонентов:
- Корпус, изготовленный из металла или пластика, в котором размещаются все составляющие. Он защищает стеклянные детали от повреждений. В верхней части имеется отверстие, снизу выведены наружу ножки контактов.
- Колба. Сделана из стекла и наполнена газом. Обычно используется неон или смесь водорода и гелия.
- Электроды – анод и катод. Могут быть исполнены в двух вариантах: симметричные с двумя подвижными контактами или несимметричные, с одной движущейся частью. Каждый из них выведен наружу через цоколь. В практической деятельности чаще всего применяется первый вариант – с симметричной электродной системой.
- Конденсатор. Играет важную роль в сглаживании высоких токов. Одновременно участвует в размыкании электродов и гасит дугу, возникающую между токоведущими частями. Отсутствие конденсатора может вызвать спайку контактов при появлении дуги, вызывая тем самым преждевременный износ стартера.
Надежная работа стартера обеспечивается биметаллическими электродами, нагрев которых связан с напряжением конкретной электрической сети. Если ток понизился до 80% от номинала, то стартер может не сработать и лампа не загорится. Современный электронный стартер для люминесцентной лампы, применяемый в ЭПРА, практически не подвержен перепадам напряжения и всегда находится в готовности к работе. Поэтому они устанавливаются во всех современных светильниках, а старые пускатели постепенно заменяются приборами нового образца.
При замене следует учесть, что каждой марке люминесцентной лампы требуется соответствующее ей пусковое устройство.
Принцип действия
Действие стартера неразрывно связано с работой всей люминесцентной лампы и происходит в следующем порядке:
- Перед началом работы электроды разомкнуты.
- После подачи напряжения из сети, внутри колбы возникает тлеющий разряд с параметрами тока 20-50 мА.
- Разряд начинает воздействовать на биметаллические электроды, постепенно выполняя их разогрев.
- Под действием нагрева электроды изгибаются, после чего тлеющий разряд прекращается и далее происходит замыкание электрической цепи внутри лампы.
- По замкнутой цепи начинается движение электрического тока, разогревающего дроссель и катоды самой лампы.
- После прекращения тлеющего разряда начинается постепенное остывание биметаллических электродов. В результате, они размыкаются, разгибаются и цепь разрывается.
- Все предыдущие действия привели к появлению высокого импульсного напряжения, воздействующего на дроссель. Сам дроссель обладает индуктивностью, под влиянием котором лампа начинает зажигаться.
- Постепенно свечение лампы возрастает и достигает нормы. Поскольку стартер подключен параллельно с лампой, ему уже недостаточно напряжения для создания нового тлеющего разряда, поскольку весь ток уходит на поддержку свечения. Поэтому электроды остаются разомкнутыми, а лампа все равно продолжает работать.
Схема подключения
Независимо от конструкции лампы, каждая схема подключения использует стартер. Обычно используются источники света на 36-40 Вт с соответствующим пусковым устройством.
Порядок действий будет одинаковым для всех люминесцентных ламп:
- Каждый осветительный прибор оборудуется выходными контактами, установленными с торцов и соединенными с нитями накаливания. Снаружи они выглядят в виде небольших штырьков, к которым параллельно подключается стартер.
- Для подключения пускового устройства используется один из контактов, расположенных на обеих сторонах лампы.
- К контактам, оставшимся свободными, параллельно с электрической сетью подключается дроссель.
- Конденсатор подключается в последнюю очередь параллельно с питающими контактами. Он защищает от сетевых помех и компенсирует реактивную мощность.
Различия в подключении становятся заметными при использовании разного количества источников света, для которых используется отдельная схема. Их особенности проявляются в следующем:
- При использовании одной лампы стартер подключается параллельно, а дроссель – последовательно между лампой и источником питания. На входных контактах может быть установлен конденсатор, улучшающий параметры электрического тока.
- В случае использования нескольких лампочек, они последовательно подключаются к питанию вместе с дросселем. Далее, к каждой лампе параллельно подключается стартер. Важным условием является равенство суммарной мощности всех подключенных компонентов, мощности используемого дросселя.
Параметры и маркировка
Выбирая пусковое устройство, необходимо обратить особое внимание на его параметры и технические характеристики:
- Сроки эксплуатации, установленные производителями. По этому показателю лидируют компании Osram и Phillips, чья продукция способна выдерживать не менее 6 тысяч циклов включения и выключения. Однако, на практике этот параметр не всегда соблюдается по объективным причинам, например, из-за скачков сетевого напряжения.
- Температурный диапазон рабочего режима. Обычно устанавливается в пределах 5-55 С. Если требуется использовать светильники за пределами установленных норм, то для этих случаев понадобятся специальные стартеры с гораздо более высокой стоимостью.
- Временной промежуток, при котором катоды полноценно прогреваются. Этим фактором определяется период нахождения биметаллических электродов в замкнутом положении. У разных производителей данный показатель может существенно отличаться.
- Разновидности и модификации конденсаторов, задействованных в том или ином устройстве. От его конструкции во многом зависит срок эксплуатации прибора.
- Номинальное рабочее напряжение. Данная характеристика должна обязательно проверяться, поскольку прибор, рассчитанный на 127 В и подключенный к светильнику на 220 В, сразу же выйдет из строя.
Все параметры отображаются в маркировке устройства. У отечественных приборов она выглядит следующим образом:
Таким образом, маркировка 60С-220, приведенная в качестве примера, указывает на устройство, которое является стартером для люминесцентной лампы мощностью 60 Вт, работающей от сети 220 В.
Проверка технического состояния стартера
В случае каких-либо неисправностей осветительного прибора с лампами дневного света, очень часто требуется отдельно проверить работоспособность стартера. В общей конструкции он определяется как довольно простая деталь с небольшими размерами. Поломка пускателя приносит массу проблем, в первую очередь связанных с прекращением работы всей лампы.
Частой причиной неисправности служит изношенная лампа тлеющего разряда или биметаллическая контактная пластина. Внешне это проявляется отказом при запуске или миганием во время работы. Устройство не запускается ни со второй попытки, ни с последующих, поскольку для пуска всей лампы недостаточно напряжения.
Наиболее простым способом проверки является полная замена стартера другим устройством такого же типа. Если после этого лампа нормально включится и заработает, значит причина была именно в пускателе. В данной ситуации измерительные приборы не требуются, однако при отсутствии запасной детали придется создавать простейшую проверочную схему с последовательным соединением стартера и лампы накаливания. После этого через розетку подключить питание 220 В.
Для подобной схемы лучше всего подойдут маломощные лампочки на 40 или 60 ватт. После включения они загораются, а затем со щелчком периодически отключаются на короткое время. Это указывает на исправность стартера и нормальную работу его контактов. Если же лампочка горит постоянно и не моргает или она не зажглась вовсе, следовательно пускатель нерабочий и его необходимо заменить.
В большинстве случаев можно обойтись одной лишь заменой, и лампа вновь заработает. Однако, если стартер точно исправен, а светильник все равно не работает, необходимо последовательно проверять дроссель и другие компоненты схемы.
При проведении электротехнических работ каждый человек, так или иначе, сталкивается с условными обозначениями, которые есть в любой электрической схеме. Эти схемы очень разнообразны, с различными функциями, однако, все графические условные обозначения приведены к единым формам и во всех схемах соответствуют одним и тем же элементам.
Основные условные обозначения в электрических схемах ГОСТ, отображены в таблицах
В настоящее время в электротехнике и радиоэлектронике применяются не только отечественные элементы, но и продукция, производимая иностранными фирмами. Импортные электрорадиоэлементы составляют огромный ассортимент. Они, в обязательном порядке, отображаются на всех чертежах в виде условных обозначений. На них определяются не только значения основных электрических параметров, но и полный их перечень, входящих в то или иное устройство, а также, взаимосвязь между ними.
Чтобы прочитать и понять содержание электрической схемы
Нужно хорошо изучить все элементы, входящие в ее состав и принцип действия устройства в целом. Обычно, вся информация находится либо в справочниках, либо в прилагаемой к схеме спецификации. Позиционные обозначения характеризуют взаимосвязь элементов, входящих в комплект устройства, с их обозначениями на схеме. Для того, чтобы обозначить графически тот или иной электрорадиоэлемент, применяют стандартную геометрическую символику, где каждое изделие изображается отдельно, или в совокупности с другими. От сочетания символов между собой во многом зависит значение каждого отдельного образа.
На каждой схеме отображаются
Соединения между отдельными элементами и проводниками. В таких случаях немаловажное значение имеет стандартное обозначение одинаковых комплектующих деталей и элементов. Для этого и существуют позиционные обозначения, где типы элементов, особенности их конструкции и цифровые значения отображаются в буквенном выражении. Элементы, применяемые в общем порядке, обозначаются на чертежах, как квалификационные, характеризующие ток и напряжение, способы регулирования, виды соединений, формы импульсов, электронную связь и другие.
Электрические системы автомобилей содержат большое количество электрических и электронных устройств для управления двигателем и для систем обеспечения безопасности и комфорта. Обзор сложных цепей автомобильных электрических систем возможен только при наличии понятных символов и электрических схем. Вот о том, какими бывают символы электрических схем автомобилей, мы и поговорим в этой статье.
Электрические схемы — принципиальные схемы и схемы контактов — помогают при диагностике, упрощают монтаж дополнительных устройств и обеспечивают надежное подключение при модификации автомобильного электрооборудования.
Символы электрических схем автомобилей
Символы электрических схем автомобилей, показанные в табл. «Схематические символы по EN 60617«, представляют собой подборку стандартизированных символов, подходящих для автомобильной электрики. Но, за редким исключением, они соответствуют стандартам Международной электротехнической комиссии (IEC).
Таблица схематических символов электрических схем автомобилей по EN 60617
- Общие области применения часть 2;
- Проводники и соединительные устройства часть 3;
- Пассивные компоненты часть 4;
- Полупроводники и электронные лампы часть 5;
- Производство и преобразование электроэнергии часть 6;
- Коммутационная и контрольная аппаратура и защитные устройства часть 7;
- Измерительные приборы, лампы и сигнальные устройства часть 8;
- Телекоммуникационное передающее, коммутационное и периферийное оборудование часть 9;
- Телекоммуникации, передающее оборудование часть 10;
- Архитектурные и топографические монтажные схемы часть 11;
- Двоичные элементы часть 12;
- Аналоговые элементы часть 13.
Требования к символам электрических схем
Символы электрических схем-это мельчайшие элементы для упрощенного графического представления электрического устройства или его части. Символы электрических схем показывают принцип работы устройства и функциональные связи технического порядка. Символы электрических схем не учитывают форму и размеры устройства, и положение соединений на нем. Обособленное представление на принципиальной схеме возможно лишь абстрактно.
Символы электрических схем должны обладать следующими свойствами: они должны легко запоминаться, быть легко понятными, несложными в графическом отображении и логично вписываться в классификационную группу.
Символы электрических схем состоят из элементов и указательных символов. Вот несколько примеров указательных символов: буквы, цифры, символы, математические знаки и символы, символы единиц измерения и характеристические кривые.
В случае интегральных схем, обеспечивающих высокую степень экономии пространства (это синонимично высокому уровню интеграции функций в компоненте) предпочтительно упрощенное изображение схемы.
Изображение символов электрических схем
Символы схем и соединительные линии (электрические провода и механические соединения) имеют одинаковую ширину линии.
Соединения могут изображаться и с точкой, и без точки. Если в месте пересечения нет точки, значит нет электрического соединения. Точки соединения на устройствах большей частью не отображаются специфически. Точка соединения, штекер, гнездо или резьбовые соединения обозначаются символами схем лишь в точках, необходимых для монтажа и снятия. Другие места соединения стандартно обозначаются точками.
Электрические схемы
- Она должна соответствовать требованиям стандартов, а какие-либо отклонения должны объясняться;
- Пути прохождения тока должны располагаться таким образом, чтобы поток проходящих сигналов или механическое действие имели место слева направо и сверху вниз.
В автомобильной электрике блок-схемы без отдельных входов/выходов и внутренних схем позволяют оперативно понять принцип работы системы или устройства. Схематическое отображение различными способами (расположение символов схем) является подробным представлением для определения функции и выполнения ремонта. Схема контактов (с указанием мест расположения контактов устройств) используется службами послепродажного обслуживания при замене или модификации устройств.
В зависимости от способа отображения различают:
- Отображение с одной или несколькими линиями и по расположению символов схемы;
- Отображение в смонтированном, полусмонтированном виде, обособленное и топографическое отображения, которые могут сочетаться в одной и той же электрической схеме.
Блок-схема
Устройства отображаются в виде квадратов, прямоугольников и кругов с отмеченными на них указательными символами, аналогично EN 60617, часть 2. Линии в большинстве случаев чертятся в виде одиночных линий.
Принципиальная схема
Принципиальная схема должна содержать:
- Электрическую цепь;
- Идентификацию устройств (EN 61346, часть 2);
- Обозначение штырьков и контактов (DIN 72552).
Принципиальная схема может содержать:
- Полное отображение с внутренней схемой для упрощения проверки, диагностики, обслуживания и замены (модификации);
- Контрольные обозначения для упрощения поиска символов схем, особенно при обособленном представлении.
Отображение электрической цепи
В принципиальных схемах в основном используется многолинейное представление. Для символов схем стандарт EN 61346 часть 1 предусматривает следующие способы отображения, которые могут сочетаться в одной и той же схеме.
Монтажная схема
Связь отдельных деталей должна определяться с помощью системы идентификации, согласно EN 61346, часть 2. Идентификатор устройства располагается на каждом отдельно отображаемом символе схемы для этого устройства. Устройства, отображаемые обособленно, после сборки должны быть обозначены в какой-либо точке на электрической схеме, если это необходимо для понимания электрической схемы.
Топографическое представление В этом представлении положение символов схемы полностью или частично соответствует пространственному расположению в устройстве или детали.
Обозначение массы
Для большинства автомобилей в силу своей простоты предпочитается однопроводная система, в которой масса (металлические детали автомобиля) служит возвратным проводником. Если идеально проводящее соединение отдельных деталей заземления не гарантируется или если имеет место напряжение более 42 В, то возвратный проводник также прокладывается изолированно от массы.
Все отображаемые на электрической схеме символы массы электрически соединяются между собой через массу устройства или автомобиля.
Все устройства, содержащие символ массы, должны подключаться к массе автомобиля и быть электрически проводимыми.
Пути протекания тока и провода
Электрические схемы изображаются таким образом, чтобы они читались как можно проще. Отдельные пути протекания тока, предпочтительно в направлении слева направо или сверху вниз, должны проходить параллельно краю электрической схемы, как можно более линейно, по возможности без пересечений и изменения направления.
При наличии нескольких параллельных линий они группируются в пучки по три линии, с промежутками между пучками.
Разделительные и рамочные линии
Разделительные и рамочные линии из точек и тире ограничивают детали электрических схем, чтобы отобразить функциональную или конструктивную связь устройств или деталей.
Линия из точек и тире в автомобильной электрике обозначает непроводящее ограничение устройств или деталей. Она не всегда соответствует корпусу и не используется в качестве массы. В силовых системах эта ограничительная линия часто соединяется с линией, также из точек и тире, обозначающей провод защитного заземления.
Точки разрыва, идентификатор, обозначение пунктов назначения
Соединительные линии (провода и механические связи), занимающие большую длину на принципиальной схеме, для большей ясности можно прерывать. Отображаются только начало и конец соединительной линии. Связь этих точек разрыва должна легко определяться. Для этого используются идентификатор и обозначение пунктов назначения.
Код раздела (путь тока)
Маркировка устройств, деталей и символов
Устройства, детали и символы схем идентифицируются на электрических схемах буквой и числом в соответствии с EN 61346, часть 2. Эта маркировка размещается слева от символа схемы или под ним.
Указательный символ, стандартно указываемый для типа устройств, можно опустить, если это не вызовет путаницы.
В случае со встроенными устройствами, одно устройство является составной частью другого, например, стартер со встроенным сцепляющим реле Кб. В этом случае обозначение устройства будет таким: — М1 — Кб.
Обозначение связанных символов схем при обособленном отображении: каждому отдельно отображаемому символу схемы для того или иного устройства дается обозначение, привычное для этого устройства.
Обозначения штырьковых контактов (например, по DIN 72552) должны наноситься снаружи символа схемы, а при наличии ограничительной рамочной линии — предпочтительно с выносом за эту линию.
Там, где пути тока проходят горизонтально: спецификации, относящиеся к отдельным символам схемы, наносятся под ними. Обозначение контактов располагается непосредственно за символами схемы, над соединительной линией.
Там, где пути тока проходят вертикально: спецификации, относящиеся к отдельным символам схемы, наносятся слева от них. Обозначение контактов располагается непосредственно за символом схемы, справа, если формат горизонтальный, и слева рядом с соединительной линией, если формат вертикальный.
Схема выводов
Схема выводов показывает расположение выводов электрических устройств и подключенные внешние и при необходимости внутренние проводные соединения (линии).
Отображение выводов
Отдельные устройства показываются в виде квадратов, прямоугольников, кругов или символов и даже в виде схем с монтажным изображением деталей и могут быть расположены топографически. Для изображения точек вывода используются круг, точка, штекерное соединение или просто линия вывода.
В автомобильной электрике обычно используются следующие способы отображения:
Маркировка выводов
В - с поворотной статорной обмоткой.
Например, сельсин-датчик угла поворота
40. Сельсин-датчик, сельсин-приемник контактные (с контактными кольцами) однофазные:
а) с обмоткой возбуждения на статоре и обмоткой синхронизации на роторе, соединенной в звезду
б) с обмоткой возбуждения на явнополюсном роторе и обмоткой синхронизации на статоре, соединенной в звезду
в) с распределенной обмоткой возбуждения на роторе и обмоткой синхронизации на статоре, соединенной в звезду
41. Сельсин дифференциальный контактный (с контактными кольцами) с обмотками статора и ротора, соединенными в звезду
42. Сельсин-датчик, сельсин-приемник бесконтактные (без контактных колец) с обмоткой статора, соединенной в звезду
43. Преобразователь электромашинный постоянного тока с двумя независимыми обмотками на роторе
44. Преобразователь вращающийся постоянного тока в постоянный с общим постоянным магнитным полем (вращающийся трансформатор постоянного тока)
45. Преобразователь вращающийся постоянного тока в постоянный, с общей обмоткой магнитного поля
46. Преобразователь одноякорный постоянно-переменного тока трехфазный
47. Преобразователь синхронный трехфазный с параллельным возбуждением, с указанием зажимов, щеток и числовых данных, например, 600 В, 1000 кВ, 50 Гц
48. Трансформатор вращающийся, фазовращатель (обозначение соединения обмоток статора и ротора между собой производится в зависимости от назначения машины)
49. Автотрансформатор трехфазный поворотный (потенциал-регулятор)
50. Трансформатор трехфазный поворотный (фазорегулятор)
51. Усилитель электромашинный с поперечным потоком и несколькими обмотками управления (например, простейший с тремя обмотками)
52. Усилитель электромашинный с продольным потоком и несколькими обмотками управления (например, простейший с тремя обмотками)
53. Агрегат, состоящий из асинхронного трехфазного двигателя с короткозамкнутым ротором и преобразователя частоты (например, 50/200 Гц); обмотки статора двигателя и ротора преобразователя соединены в звезду, обмотка статора преобразователя - в треугольник
54. Агрегат, состоящий из асинхронного трехфазного двигателя с короткозамкнутым ротором и генератора постоянного тока с параллельным возбуждением; обмотка статора двигателя соединена в треугольник
Читайте также: