Система линейных уравнений имеет единственное решение если лямбда не равно
Системой m линейных уравнений с n неизвестными называется система вида
где aij и bi (i=1,…,m; b=1,…,n) – некоторые известные числа, а x1,…,xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.
Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы.
Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами.
Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn.
Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:
- Система может иметь единственное решение.
- Система может иметь бесконечное множество решений. Например, . Решением этой системы является любая пара чисел, отличающихся знаком.
- И третий случай, когда система вообще не имеет решения. Например, , если бы решение существовало, то x1 + x2 равнялось бы одновременно нулю и единице.
Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.
Рассмотрим способы нахождения решений системы.
МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ
Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:
Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов
т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде
Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.
Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных. Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A -1 B.
Примеры. Решить системы уравнений.
Найдем матрицу обратную матрице A.
Таким образом, x = 3, y = – 1.
Выразим искомую матрицу X из заданного уравнения.
Найдем матрицу А -1 .
Из уравнения получаем .
ПРАВИЛО КРАМЕРА
Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:
Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,
называется определителем системы.
Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов
Тогда можно доказать следующий результат.
Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:
Сложим эти уравнения:
Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца
Далее рассмотрим коэффициенты при x2:
Аналогично можно показать, что и .
Наконец несложно заметить, что
Таким образом, получаем равенство: .
Аналогично выводятся равенства и , откуда и следует утверждение теоремы.
Примеры. Решить систему уравнений
Итак, х=1, у=2, z=3.
МЕТОД ГАУССА
Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.
Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:
Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x1. Для этого второе уравнение разделим на а21 и умножим на –а11, а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а31 и умножим на –а11, а затем сложим с первым. В результате исходная система примет вид:
Теперь из последнего уравнения исключим слагаемое, содержащее x2. Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:
Отсюда из последнего уравнения легко найти x3, затем из 2-го уравнения x2 и, наконец, из 1-го – x1.
При использовании метода Гаусса уравнения при необходимости можно менять местами.
Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:
и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.
К элементарным преобразованиям матрицы относятся следующие преобразования:
- перестановка строк или столбцов;
- умножение строки на число, отличное от нуля;
- прибавление к одной строке другие строки.
Примеры: Решить системы уравнений методом Гаусса.
Вернувшись к системе уравнений, будем иметь
Выпишем расширенную матрицу системы и сведем ее к треугольному виду.
Вернувшись к системе уравнений, несложно заметить, что третье уравнения системы будет ложным, а значит, система решений не имеет.
Разделим вторую строку матрицы на 2 и поменяем местами первый и третий столбики. Тогда первый столбец будет соответствовать коэффициентам при неизвестной z, а третий – при x.
Вернемся к системе уравнений.
Из третьего уравнения выразим одну неизвестную через другую и подставим в первое.
С помощью данной математической программы вы можете решить и исследовать систему линейных алгебраических уравнений (СЛАУ).
Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
- в виде десятичных дробей,
- в виде обыкновенных дробей,
- в виде периодических десятичных дробей.
Ввод дробного числа в виде десятичной дроби.
При вводе десятичной дроби, целую часть от дробной части можно отделять точкой или запятой :
Ввод: -2.34
Результат: \( -2<,>34 \)
Ввод: -1,15
Результат: \( -1<,>15 \)
Ввод дробного числа в виде обыкновенной дроби.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: $$ -\frac<2> <3>$$
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 5&8/3
Результат: $$ 5\frac<8> <3>$$
Помните, что на ноль делить нельзя!
RND CFracNum Fill RND int Fill Start MathJax
Сюда ввести строку с GET параметрами :
Системы линейных алгебраических уравнений
Основные определения
Уравнения системы называют алгебраическими потому, что левая часть каждого из них есть многочлен от \(n\) переменных \( x_1 , \ldots x_n \), а линейными потому, что эти многочлены имеют первую степень.
Числа \(a_
СЛАУ называют однородной, если \( b_1 = b_2 = \ldots = b_m = 0 \). Иначе её называют неоднородной.
Решением СЛАУ, да и вообще всякой системы уравнений, называют такой набор значений неизвестных \( x_1^\circ, \ldots , x_n^\circ \), при подстановке которых каждое уравнение системы превращается в тождество. Любое конкретное решение СЛАУ также называют её частным решением.
Решить СЛАУ — значит решить две задачи:
— выяснить, имеет ли СЛАУ решения;
— найти все решения, если они существуют.
СЛАУ называют совместной, если она имеет какие-либо решения. В противном случае её называют несовместной. Однородная СЛАУ всегда совместна, поскольку нулевой набор значений её неизвестных всегда является решением.
Если СЛАУ (1) имеет решение, и притом единственное, то её называют определенной, а если решение неединственное — то неопределенной. При \(m=n\), т.е. когда количество уравнений совпадает с количеством неизвестных, СЛАУ называют квадратной.
Формы записи СЛАУ
Кроме координатной формы (1) записи СЛАУ часто используют и другие её представления.
Рассматривая коэффициенты \(a_
\( \begin
или, обозначая столбцы соответственно \( a_1 , \ldots , a_n , b \),
\( x_1 a_1 + x_2 a_2 + \ldots + x_n a_n = b \tag <2>\)
Таким образом, решение СЛАУ (1) можно трактовать как представление столбца \(b\) в виде линейной комбинации столбцов \( a_1, \ldots, a_n \). Соотношение (2) называют векторной записью СЛАУ.
Поскольку \(A \;,\; X\) и \(B\) являются матрицами, то запись СЛАУ (1) в виде \(AX=B\) называют матричной. Если \(B=0\), то СЛАУ является однородной и в матричной записи имеет вид \(AX=0\).
Приведенные рассуждения показывают, что задачи :
а) решения СЛАУ (1)
б) представления столбца в виде линейной комбинации данных столбцов
в) решения матричных уравнений вида \(AX=B\)
являются просто различной формой записи одной и той же задачи.
Критерий совместности СЛАУ
"Триединство" форм записи СЛАУ позволяет легко получить критерий совместности СЛАУ. Напомним, что содержательный смысл это понятие имеет для неоднородных СЛАУ (однородные СЛАУ всегда совместны).
Теорема Кронекера-Капелли. Для совместности СЛАУ \(AX=B\) необходимо и достаточно, чтобы ранг её матрицы \(A\) был равен рангу её расширенной матрицы \( (A|B) \).
Формулы Крамера
Теорема. СЛАУ с квадратной невырожденной матрицей имеет решение, и притом единственное, которое определяется по формулам Крамера :
$$ x_i = \frac<\Delta_i> <|A|>\;,\quad i=\overline <1,n>\tag <3>$$
где \(\Delta_i\) — определитель матрицы, получающейся из матрицы \(A\) заменой \(i\)-го столбца на столбец свободных членов.
Следствие. Однородная СЛАУ с квадратной невырожденной матрицей имеет единственное решение — нулевое.
Если матрица СЛАУ не является квадратной невырожденной, то формулы Крамера не работают и приходится использовать другие методы нахождения решений.
Однородные системы
Теорема. Если столбцы \( X^<(1)>, X^<(2)>, \ldots , X^ <(s)>\) — решения однородной СЛАУ \(AX=0\), то любая их линейная комбинация также является решением этой системы.
Следствие. Если однородная СЛАУ имеет ненулевое решение, то она имеет бесконечно много решений.
Естественно попытаться найти такие решения \( X^<(1)>, \ldots , X^ <(s)>\) системы \(AX=0\), чтобы любое другое решение этой системы представлялось в виде их линейной комбинации и притом единственным образом. Оказывается, что это всегда возможно и приводит к следующему определению.
Определение. Любой набор из \(k=n-r\) линейно независимых столбцов, являющихся решениями однородной СЛАУ \(AX=0\), где \(n\) — количество неизвестных в системе, а \(r\) — ранг её матрицы \(A\), называют фундаментальной системой решений этой однородной СЛАУ.
При исследовании и решении однородных систем линейных алгебраических уравнений будем использовать следующую терминологию. Если в матрице \(A\) однородной СЛАУ \(AX=0\) фиксировать базисный минор, то ему соответствуют базисные столбцы и, следовательно, набор неизвестных, отвечающих этим столбцам. Указанные неизвестные называют базисными, или зависимыми, а остальные неизвестные — свободными, или независимыми.
Теорема. Пусть дана однородная СЛАУ \(AX=0\) с \(n\) неизвестными и \( \text
Если в фундаментальной системе решений все значения независимых неизвестных равны нулю, кроме одного, которое равно единице, то такую систему решений называют фундаментальной нормальной системой решений.
Следствие. С помощью нормальной фундаментальной системы решений однородной СЛАУ множество всех решений можно описать формулой :
$$ X = c_1X^ <(1)>+ \ldots + c_kX^ <(k)>$$
где постоянные \( c_i \;, \quad i=\overline <1,k>\), принимают произвольные значения.
Следствие. Для существования ненулевого решения у однородной квадратной СЛАУ необходимо и достаточно, чтобы её матрица была вырождена.
Неоднородные системы
Рассмотрим произвольную СЛАУ \(AX=B\). Заменив столбец \(B\) свободных членов нулевым, получим однородную СЛАУ \(AX=0\), соответствующую неоднородной СЛАУ \(AX=B\). Справедливо следующее утверждение о структуре произвольного решения неоднородной СЛАУ.
Теорема. Пусть столбец \(X^\circ\) — некоторое решение СЛАУ \(AX=B\). Произвольный столбец \(X\) является решением этой СЛАУ тогда и только тогда, когда он имеет представление \(X = X^\circ + Y \), где \(Y\) — решение соответствующей однородной СЛАУ \(AY=0\).
Следствие. Пусть \(X'\) и \(X''\) — решения неоднородной системы \(AX=B\). Тогда их разность \( Y = X' - X'' \) является решением соответствующей однородной системы \(AY=0\).
Эта теорема сводит проблему решения СЛАУ к случаю однородной системы: чтобы описать все решения неоднородной СЛАУ, достаточно энать одно её решение (частное решение) и все решения соответствующей однородной СЛАУ.
Чтобы решить неоднородную систему, надо, во-первых, убедиться, что она совместна (например, по теореме Кронекера-Капелли), а во-вторых, найти частное решение \(X^\circ\) этой системы, чтобы свести её к однородной системе.
Теорема о структуре общего решения СЛАУ. Пусть \(X^\circ\) — частное решение СЛАУ \(AX=B\) и известна фундаментальная система решений \( X^<(1)>, \ldots , X^ <(k)>\) соответствующей однородной системы \(AX=0\). Тогда любое решение СЛАУ \(AX=B\) можно представить в виде $$ X = X^\circ + c_1 X^ <(1)>+ c_2 X^ <(2)>+ \ldots + c_k X^ <(k)>$$
где \( c_i \in \mathbb
Эту формулу называют общим решением СЛАУ.
Программированию нельзя научить, можно только научится
Главная » Уроки по Численным методам » Урок 14. Решение систем линейных уравнений (СЛУ). Теорема Кронекера-Капелли. Решение СЛУ с помощью матричных уравнений
Система линейных уравнений:
(1)
Здесь и (i =1..m, j=1..n) - заданные, а - неизвестные действительные числа.
Матричной записью системы линейных уравнений называется выражение вида:
= , или кратко: = (2),
где:
=
=
столбец свободных членов
Упорядоченная совокупность n вещественных чисел (c1, c2. cn) называется решением системы(1), если в результате подстановки этих чисел вместо соответствующих переменных x1, x2. xn каждое уравнение системы обратится в арифметическое тождество; другими словами, если существует вектор C= (c1, c2. cn)T такой, что AC = B.
СЛУ называется совместной, или разрешимой, если она имеет, по крайней мере, одно решение. Система называется несовместной, или неразрешимой, если она не имеет решений.
Матрица
,
образованная путем приписывания справа к матрице A столбца свободных членов, называется расширенной матрицей системы.
Вопрос о совместности системы (1) решается следующей теоремой.
Теорема Кронекера-Капелли
Теорема Кронекера-Капелли. Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы.
Система имеет единственное решение, если ранг равен числу неизвестных, и бесконечное множество решений, если ранг меньше числа неизвестных.
Решить систему — это значит выяснить, совместна она или несовместна. Если система совместна, найти ее общее решение.
Пример. Исследовать систему линейных уравнений
Решение. Составим расширенную матрицу системы и с помощью элементарных преобразований вычислим одновременно ранги обеих матриц.
Далее умножим вторую строку на -2 и сложим с третьей, а затем сложим третью строку с последней. Имеем
.
Ранг матрицы системы =3, так как матрица имеет три ненулевых строки,
а ранг расширенной матрицы =4.
Тогда согласно теореме Кронекера-Капелли система не имеет решений.
Для решения произвольной системы линейных уравнений нужно уметь решать системы, в которых число уравнений равно числу неизвестных, - так называемые системы крамеровского типа:
a11 x1 + a12 x2 +. + a1n xn = b1,
a21 x1 + a22 x2 +. + a2n xn = b2, (3)
. . . . . .
an1 x1 + an1 x2 +. + ann xn = bn.
Системы (3) решаются одним из следующих способов:
1) методом Гаусса, или методом исключения неизвестных;
2) по формулам Крамера;
3) матричным методом.
Матричный метод
Если матрица А системы линейных уравнений невырожденная, т.е. det A=0, то матрица А имеет обратную, и решение системы (3) совпадает с вектором . Иначе говоря, данная система имеет единственное решение. Отыскание решения системы по формуле X=C, C=A-1B называют матричным способом решения системы, или решением по методу обратной матрицы.
Задание 1: Решить систему уравнений матричным способом в Excel
Ход решения:
- Сначала надо записать систему в матричном виде и ввести ее на лист Excel:
, здесь ,
- Затем надо с помощью Excel найти обратную матрицу для матрицы А.
- Далее полученную матрицу нужно умножить на матрицу В.
- В результате получим ответ:
Системы линейных уравнений имеют следующий общий вид:
$ \begin
Если все свободные члены равны 0, то система однородна.
Матрица системы - квадратная (m=n)
Надо вычислить определитель матрицы системы.
Определитель матрицы системы не равен 0
Система называется невырожденной системой с единственным решением. Чтобы найти решение системы, используем метод Крамера.
Вычислим $ \Delta_
$\Delta_
Вычислим $ \Delta_
$\Delta_
Вычислим $ \Delta_
$\Delta_
Продолжаем делать это с остальными переменными, и в конце-концов записываем решение системы.
$x_
Пример 53
$\begin
Вычисляем определитель матрицы и получаем $\Delta = 8 -15 + 12 +40 +2 + 18 = 65$
Вычисляем $ \Delta_
Вычисляем $ \Delta_
Вычисляем $ \Delta_
Пример 54
$\begin
Матрица системы: $ \begin
Вычисляем определитель матрицы и получаем $\Delta = 36 -8 + 5 -6 -8 + 30 = 49$
Вычисляем $ \Delta_
Вычисляем $ \Delta_
Вычисляем $ \Delta_
Если система однородна, то ее решение есть <0;0;0>, потому что в матрицах, определителями которых являются $\Delta_
Пример 55
$\begin
Вычисляем определитель матрицы и получаем $\Delta = 8 -15 + 12 +40 +2 + 18 = 65 $
Определитель матрицы системы равен 0.
Вычисляем ранг матрицы системы и ранг расширенной матрицы (исходной матрицы, к которой добавлен столбец свободных членов).
- Если ранги этих матриц различны, то система не имеет решения. Это несовместная система.
- Если ранги равны, то система совместна и имеет бесконечное множество решений.
- Минор соответствующего ранга становится базисным минором.
- Переменные, коэффициенты при которых входят в базисный минор, становятся базисными (основными) переменными. Остальные переменные становятся свободными (неосновными), обозначаются другими буквами и переносятся в правую часть уравнений.
- Уравнения, содержащие базисный минор, становятся базисными уравнениями.
- Решаем систему, состоящую только из базисных уравнений, и находим решение системы, которое будет зависеть от неосновных переменных.
- Записываем решение.
Пример 56
$\begin
Вычисляем ранг матрицы:
$ 2\neq 0$
$\begin
Вычисляем ранг расширенной матрицы:
$ 2\neq 0$
$\begin
$\begin
Поскольку ранги равны, система совместна и имеет бесконечное множество решений. Минор соответствующего ранга становится базисным минором.
$ \Delta_
= \begin
Переменные x и y, коэффициенты при которых входят в базисный минор, становятся базисными переменными, а z становится неосновной переменной. Пусть $z=\alpha$. Первые два уравнения, в которых находится базисный минор, становятся базисными уравнениями. Решаем систему, состоящую из базисных уравнений.
$\begin
Умножаем первое уравнение на 3, а второе на 2.
$\begin
Складываем два полученные уравнения и получаем:
$ 13\cdot y = 13 \Rightarrow y = \dfrac<13> <13>= 1$
Умножаем первое уравнение на -2, а второе на 3.
$ \begin
Складываем два полученные уравнения и получаем:
$ -13\cdot x = 13 \Rightarrow y = \dfrac<13\cdot\alpha -13> <13>= \alpha -1$
Решение системы: $\<\alpha-1;1;\alpha \>$
Пример 57
$\begin
Вычисляем ранг матрицы:
$ 2\neq 0$
$\begin
$\begin
Вычисляем ранг расширенной матрицы:
$ 2\neq 0$
$\begin
Ранг расширенной матрицы равен 3.
Поскольку ранги этих матриц различны, система не имеет решения. Это несовместная система. Однородная система всегда совместна и имеет бесконечное множество решений, поскольку ранг расширенной матрицы, содержащей столбец из одних нулей, всегда совпадает с рангом матрицы системы.
Пример 58
$\begin
Вычисляем ранг матрицы:
$ 2\neq 0$
$\begin
$ \begin
Вычисляем ранг расширенной матрицы:
$ 2\neq 0$
$\begin
$ \begin
Поскольку ранги равны, система совместна и имеет бесконечное множество решений. Минор соответствующего ранга становится базисным минором.
$\Delta_
= \begin
Переменные x и y, коэффициенты при которых входят в базисный минор, становятся базисными переменными, а z становится неосновной переменной. Пусть $z=\alpha$. Первые два уравнения, в которых находится базисный минор, становятся базисными уравнениями. Решаем систему, состоящую из базисных уравнений.
$\begin
Умножаем первое уравнение на 3, а второе на 2.
$\begin
Складываем два полученные уравнения и получаем:
$13\cdot y = 0 \Rightarrow y = \dfrac<0> <13>= 0$
Делаем то же самое, чтобы найти x. Умножаем первое уравнение на -2, а второе на 3.
$ \begin
Складываем два полученные уравнения и получаем:
$ -13\cdot x = 13 \Rightarrow y = \dfrac<13\cdot\alpha> <-13>= -\alpha$
Решение системы: $ \<-\alpha;0;\alpha \>$
Матрица системы не квадратная $(m\neq n)$
Вычисляем ранг матрицы системы и ранг расширенной матрицы (исходной матрицы, к которой добавлен столбец свободных членов).
- Если ранг этих матриц различен, то система не имеет решения. Это несовместная система.
- Если ранги равны, то система совместна и имеет бесконечное множество решений.
Решение системы находится следующим образом:- Минор соответствующего ранга становится базисным минором.
- Переменные, коэффициенты при которых входят в базисный минор, становятся базисными (основными) переменными. Остальные переменные становятся свободными (неосновными), обозначаются другими буквами и переносятся в правую часть уравнений.
- Уравнения, содержащие базисный минор, становятся базисными уравнениями.
- Решаем систему, состоящую только из базисных уравнений, и находим решение системы, которое будет зависеть от неосновных переменных.
- Записываем решение.
Пример 59
$\begin2\cdot x + 3\cdot y +2\cdot z = \color <5>\\ -3 \cdot x + 2\cdot y -3 \cdot z = \color <-1>\\ \end $ Вычисляем ранг матрицы:
$ 2\neq 0$
$\begin2 & 3\\ -3 & 2 \end = 4 + 9 =13 \neq0$ (ранг равен 2) Вычисляем ранг расширенной матрицы:
$ 2\neq 0$
$\begin2 & 3\\ -3 & 2 \end = 4 + 9 =13 \neq0$ (ранг также равен 2) Поскольку ранги равны, система совместна и имеет бесконечное множество решений. Минор соответствующего ранга становится базисным минором.
Переменные x и y, коэффициенты при которых входят в базисный минор, становятся базисными переменными, а z становится неосновной переменной. Пусть $z=\alpha$. Первые два уравнения, в которых находится базисный минор, становятся базисными уравнениями. Решаем систему, состоящую из базисных уравнений.
$\begin
2\cdot x + 3\cdot y +2\cdot \alpha = 5\\ -3 \cdot x + 2\cdot y -3 \cdot\alpha = -1\\ \end =$ $\begin 2\cdot x + 3\cdot y = 5 - 2\cdot \alpha\\ -3 \cdot x + 2\cdot y = -1 + 3\cdot\alpha\\ \end $ Умножаем первое уравнение на 3, а второе на 2.
$\begin6\cdot x + 9\cdot y = 15 - 6\cdot \alpha\\ -6 \cdot x + 4\cdot y = -2 + 6 \cdot \alpha \\ \end $ Складываем два полученные уравнения и получаем:
$ 13\cdot y = 13 \Rightarrow y = \dfrac<13> <13>= 1$
Делаем то же самое, чтобы найти x. Умножаем первое уравнение на -2, а второе на 3.
$ \begin-4\cdot x - 6\cdot y = -10 + 4\cdot \alpha\\ -9 \cdot x + 6\cdot y = -3 + 9 \cdot \alpha \\ \end $ Складываем два полученные уравнения и получаем:
$-13\cdot x = 13 \Rightarrow y = \dfrac<13\cdot\alpha -13> <13>= \alpha -1$
Решение системы: $\<\alpha-1;1;\alpha \>$Пример 60
$\begin2\cdot x + 3\cdot y = \color <5>\\ -3 \cdot x + 2\cdot y = \color <-1>\\ 4\cdot x - y = \color <3>\end $ Матрица системы:
$\begin2 & 3 \\ -3 & 2 \\ 4 & -1 \end $ Вычисляем ранг матрицы:
$2\neq 0$
$\begin2 & 3\\ -3 & 2 \end = 4 + 9 =13 \neq0$ (ранг равен 2) Вычисляем ранг расширенной матрицы:
$2\neq 0$
$\begin2 & 3\\ -3 & 2 \end = 4 + 9 =13 \neq0$
$\begin2 & 3 & \color <5>\\ -3 & 2 & \color <-1>\\ 4 & -1 & \color <3>\end =0 $ (матрица имеет два равных столбца, следовательно, ее ранг равен 2) Поскольку ранги равны, система совместна и имеет бесконечное множество решений. Минор соответствующего ранга становится базисным минором.
$\Delta_= \begin
2 & 3\\ -3 & 2 \end $ Переменные x и y, коэффициенты при которых входят в базисный минор, становятся базисными переменными, а z становится неосновной переменной. Система не имеет неосновных переменных. Первые два уравнения, в которых находится базисный минор, становятся базисными уравнениями. Решаем систему, состоящую из базисных уравнений.
$\begin2\cdot x + 3\cdot y = 5\\ -3 \cdot x + 2\cdot y = -1\\ \end $ Умножаем первое уравнение на 3, а второе на 2.
$\begin6\cdot x + 9\cdot y = 15\\ -6 \cdot x + 4\cdot y = -2 \\ \end $ Складываем два полученные уравнения и получаем:
$13\cdot y = 13 \Rightarrow y = \dfrac<13> <13>= 1$
Делаем то же самое, чтобы найти x. Умножаем первое уравнение на -2, а второе на 3.
$ \begin-4\cdot x - 6\cdot y = -10\\ -9 \cdot x + 6\cdot y = -3\\ \end $ Складываем два полученные уравнения и получаем:
$ -13\cdot x = -13 \Rightarrow y = \dfrac<-13> <-13>= 1$
Убедимся, что результаты удовлетворяют неосновному уравнению.
$4\cdot1 -1\cdot1 = 3$
Решение системы: $\<1;1 \>$В первой части мы рассматривали системы линейных алгебраических уравнений (СЛАУ), все коэффициенты которых были известны. В этой же части разберём СЛАУ, среди коэффициентов которых есть некий параметр. Для исследования СЛАУ на совместность станем использовать теорему Кронекера-Капелли. В процессе решения примеров на данной странице будем применять метод Гаусса или же метод Крамера. Сформулируем теорему и следствие из неё ещё раз:
Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы, т.е. $\rang A=\rang\widetilde$.
Следствие из теоремы Кронекера-Капелли
-
Если $\rang A\neq\rang\widetilde$, то СЛАУ несовместна (не имеет решений). Если $\rang A=\rang\widetilde < n$, то СЛАУ является неопределённой (имеет бесконечное количество решений). Если $\rang A=\rang\widetilde = n$, то СЛАУ является определённой (имеет ровно одно решение).
Параметр $n$, использованный выше, равен количеству переменных рассматриваемой СЛАУ.
Чтобы исследовать заданную систему на совместность, нам нужно найти ранг матрицы системы $A$ и ранг расширенной матрицы системы $\widetilde$. Сделать это можно несколькими путями. Стоит учесть, что в данном примере нам требуется не только исследовать систему на совместность, но и указать её решения. Мне кажется наиболее удобным в таких задачах применять метод Гаусса, однако это вовсе не является обязательным. Для разнообразия данный пример решим методом Гаусса, а следующий – методом Крамера. Итак, запишем и начнём преобразовывать расширенную матрицу системы. При записи расширенной матрицы системы поменяем местами первую и вторую строки. Это нужно для того, чтобы первым элементом первой строки стало число -1.
Каким бы ни было значение параметра $k$, полученная нами после преобразований матрица будет содержать не менее двух ненулевых строк (первая и вторая строки точно останутся ненулевыми). Вопрос о количестве решений зависит лишь от третьей строки.
В следствии из теоремы Кронекера-Капелли указаны три случая, и в данном примере легко рассмотреть каждый из них. Начнём с варианта $\rang A\neq\rang\widetilde$, при котором система не имеет решений, т.е. несовместна.
$\rang A\neq\rang\widetilde$
Ранги будут не равны друг другу лишь в одном случае: когда $1-k^2=0$, при этом $2k-2\neq<0>$. В этом случае преобразованная матрица системы будет содержать две ненулевых строки (т.е. $\rang A=2$), а преобразованная расширенная матрица системы будет содержать три ненулевых строки (т.е. $\rang \widetilde=3$). Иными словами, нам требуется решить систему уравнений:
Из первого уравнения имеем: $k=1$ или $k=-1$, однако $k\neq<1>$, поэтому остаётся лишь один случай: $k=-1$. Следовательно, при $k=-1$ система не имеет решений.
$\rang A=\rang\widetilde<3$
Рассмотрим второй пункт следствия из теоремы Кронекера-Капелли – ранги равны между собой, но меньше, чем количество переменных (т.е. меньше 3). Это возможно лишь в том случае, если последняя строка преобразованной расширенной матрицы системы полностью станет нулевой, т.е.
Из данной системы имеем: $k=1$. Именно при $k=1$ третья строка преобразованной расширенной матрицы системы станет нулевой, поэтому $\rang=\rang\widetilde=2$. При этом, повторюсь, у нас всего три переменных, т.е. имеем случай $\rang A=\rang\widetilde=2<3$.
Система имеет бесконечное количество решений. Найдём эти решения. Подставим $k=1$ в преобразованную матрицу и продолжим операции метода Гаусса. Третью строку (она станет нулевой) просто вычеркнем:
$\rang A=\rang\widetilde=3$
Рассмотрим третий пункт следствия из теоремы Кронекера-Капелли – ранги равны между собой и равны количеству переменных. Это возможно лишь в том случае, если $1-k^2\neq<0>$, т.е. $k\neq<-1>$ и $k\neq<1>$. Продолжаем решение методом Гаусса:
Вновь, как и в предыдущем примере, для того, чтобы исследовать заданную систему на совместность, нам нужно найти ранг матрицы системы $A$ и ранг расширенной матрицы системы $\widetilde$. Чтобы исследовать систему на совместность и указать количество решений применим метод Крамера. Можно было бы решить и методом Гаусса, однако в предыдущем примере мы его уже использовали, поэтому для разнообразия решим задачу с помощью метода Крамера. Начнём с вычисления определителя матрицы системы. Этот определитель мы получим с помощью готовой формулы.
Значения переменных $x_1$, $x_2$, $x_3$ будут такими:
Нам остаётся исследовать совместность системы при условии $\Delta=0$. Это равенство возможно при $k=0$ или $k=1$.
Случай $k=0$
Нам остаётся рассмотреть последний случай: $k=1$.
Случай $k=1$
Для наглядности я запишу здесь матрицу системы $A$ и расширенную матрицу системы $\widetilde$, подставив $k=1$:
Задача решена, осталось лишь записать ответ.
Разберём ещё один пример, в котором рассмотрим СЛАУ с четырьмя уравнениями.
Применим метод Гаусса. При записи расширенной матрицы системы поместим первую строку вниз, на место четвёртой строки. А дальше начнём стандартные операции метода Гаусса.
Здесь можно было бы остановиться и рассмотреть случаи $k=1$ и $k\neq<1>$ отдельно. Цель таких действий: разделить вторую, третью и четвёртую строки на $k-1$ при условии $k-1\neq<0>$. Однако пока что полученная нами матрица содержит не столь уж громоздкие элементы, поэтому сейчас отвлекаться на частности я не вижу смысла. Продолжим преобразования в общем виде:
Мы привели расширенную матрицу системы к ступенчатому виду. До черты расположена преобразованная матрица системы. Ранги матриц $A$ и $\widetilde$ зависят от значения параметра $k$. Рассмотрим три случая: $k=1$, $k=-3$ и случай $k\neq<1>$, $k\neq<-3>$.
Случай $k=-3$
Случай $k=1$
$$x_1+x_2+x_3+x_4=1\; \Rightarrow \; x_1=-x_2-x_3-x_4+1.$$
Случай $k\neq<1>$ и $\neq<-3>$
Продолжим решение методом Гаусса. Так как $k\neq<1>$ и $\neq<-3>$, то $(1-k)(k+3)\neq<0>$. Следовательно, мы можем разделить вторую и третью строки на $1-k$, четвёртую строку – на выражение $(1-k)(k+3)$. С полученной после этого матрицей продолжим операции обратного хода метода Гаусса:
Читайте также: