Obd разъем что это такое
m.habr.com/ru/post/444726/
Статья не моя, но коротко и ясно дана почти вся информация по обд. Советую к прочтению и сохраню для истории.
При создании приложения мы столкнулись с множеством выборов, проблем и так далее, с которыми попробуем ознакомить вас в этой статье. Как оказалось с автомобилем можно вести диалог, причем довольно таки продуктивный. Естественно для того чтобы организовать общение с автомобилем необходимо «установить контакт», «задать правильный вопрос» и правильно понять «ответ», полученный от автомобиля. Соответственно статья и будет нацелена на то, чтобы доступным языком объяснить организацию диалога, а также рассказать вам какие ошибки могут встретиться вам на пути и как с ними бороться.
Изначально необходимо пояснить что для подключения к авто будет использоваться ELM327 адаптер. ELM327 – это микросхема, которая позволяет преобразовать протоколы, используемые в диагностических шинах автомобилей в протокол RS232, которым мы и будем передавать данные. За счет того что передача данных по протоколу RS232 происходит последовательно возникает первая проблема – скорости передачи данных, которую мы постараемся обойти в одном из следующих пунктов.
Существует несколько вариаций адаптера ELM327, которые классифицируются по способу передачи данных – Bluetooth, WIFI, USB. Исходя из того что целью разработки является мобильное устройство под операционной системой Android можно подобрать две наиболее подходящие версии ELM327, такие как Bluetooth и WIFI. Так как способ получения и обработки данных один, а отличаются они всего лишь вариантами подключения к адаптеру, то можно выбрать всего один, организовать при помощи него диалог, а после добавить остальные варианты подключения.
ELM327 1.5 vs ELM327 2.1
Одной из первых проблем, с которыми можно столкнуться стала проблема выбора непосредственно адаптера, в нашем случае Bluetooth. Оказывается если вам необходимо поддерживать все (по крайней мере большинство) автомобилей необходимо выбирать версию v1.5 вместо v2.1, что на самом то деле необходимо несколько раз уточнить при покупке адаптера, потому как продавцы пытаются выдать версию адаптера не за ту, которая есть на самом деле, т.к. они особо ничем не отличаются. На деле же в версии v2.1 отсутствует поддержка протоколов J1850 PWM и J1850 VPW, что говорит о том, что у вас не получится подключиться к автомобилям, которые используют эти протоколы.
Подключение к адаптеру происходит в несколько этапов:
Подключение к адаптеру (Bluetooth, WIFI)
Отправка инициализационных команд (инициализационной строки)
Если с организацией подключения все понятно. Принцип работы такой же как и у любого Bluetooth/WIFI чата. То для того чтоб понять как отправлять инициализационную строку, необходимо изучить какие команды существуют, а также какие функции они выполняют.
AT Z [reset all]
Сброс настроек адаптера до заводского состояния.
AT L1-0
Включить/Отключить символы перевода строки.
AT E1-0
Echo on – off
AT H1-0
Headers on – off
AT AT0-1-2
Adaptive Timing Off — adaptive Timing Auto1 — adaptive Timing Auto2
AT ST FF
Установить таймаут на максимум.
AT D [set all to Default]
Сброс настроек в исходное, настроенное пользователем состояние.
AT DP [Describe the current Protocol]
Сканер способен самостоятельно определять протокол автомобиля, к которому он подключен.
AT IB10 [set the ISO Baud rate to 10400]
Команда устанавливает скорость обмена данных для ISO 9141-2 и
ISO 14230-4 10400
AT IB96 [ set the ISO Baud rate to 9600]
Команда устанавливает скорость обмена данных для ISO 9141-2 и
ISO 14230-4 9600 для протоколов 3,4,5.
AT SP h [ Set Protocol h]
Команда выбора протокола h, где h:
0 – Automatic;
1 — SAE J1850 PWM (41.6 Kbaud);
2 — SAE J1850 VPW (10.4 Kbaud);
3 — ISO 9141-2 (5 baud init, 10.4 Kbaud);
4 — ISO 14230-4 KWP (5 baud init, 10.4 Kbaud);
5 — ISO 14230-4 KWP (fast init, 10.4 Kbaud);
6 — ISO 15765-4 CAN (11 bit ID, 500 Kbaud);
7 — ISO 15765-4 CAN (29 bit ID, 500 Kbaud);
8 — ISO 15765-4 CAN (11 bit ID, 250 Kbaud);
9 — ISO 15765-4 CAN (29 bit ID, 250 Kbaud);
AT SP Ah [Set Protocol h with Auto]
Команда устанавливает по умолчанию протокол h, если подключение по протоколу h не удалось, тогда адаптер начинает автоматический подбор протокола.
Исходя из описанных выше команд, формируем инициализационную строку.
Желательно давать возможность пользователю сменять инициализационные команды, потому как для того чтобы подобрать «ключ» к некоторым авто необходимо выбрать более подходящие настройки адаптера. В нашем же случае используются настройки, которые походят для большинства стандартных протоколов.
Так же желательно обратить внимание на команду APSP0, таким образом мы устанавливаем по умолчанию автоматический подбор протокола, это может занять некоторое время.
Соответственно если пользователь знает какой у его авто протокол, то используя возможность смены протокола подключения он может поменять 0 на номер его протокола.
Считывание диагностических данных
Для считывания диагностических данных используются специальные команды PID’s.
PID (Parameter id’s — Бортовые диагностические идентификаторы параметров) – коды, которые используются для запроса показателей определенных датчиков автомобиля.
Основные пиды можно найти в Википедии, там полный набор основных команд, которые должны поддерживать все автомобили. Так же есть наборы команд для определенных марок и типов автомобилей, эти наборы предоставляются за отдельную плату. В нашем случае приложение заточено на базовую диагностику автомобилей соответственно мы используем базовый набор команд.
Также есть возможность получать текущие данные от автомобиля при этом команда получения данных от авто будет иметь вначале 01, указывая на то что мы хотим получить real data. Если же мы хотим получить сохраненные данные автомобиля, то вначале команды необходимо указать 02. Например, команда для получения текущей скорости автомобиля – 010D, а для получения сохраненной скорости – 020D.
Если внимательно посмотреть на то количество команд, которое предоставляется открытыми ресурсами, то можно как раз и заметить ту проблему, о которой я писал в самом начале, а именно проблема скорости ответа адаптера. Так как отправка и получение команд идет последовательно, то для того чтобы получить показания датчика на текущий момент времени необходимо дождаться ответа на все предыдущие команды. Соответственно если запрашивать на получение все команды, то большая вероятность того что обновление реальных данных будет происходить очень медленно. Но и эту проблему можно решить, если воспользоваться командами, которые отобразят только те команды, что существуют в автомобиле. Например:
0100 – PIDs supported [01 — 20]
0120 – PIDs supported [21 — 40]
0140 – PIDs supported [41 — 60]
0160 – PIDs supported [61 — 80]
0180 – PIDs supported [81 – A0]
01A0 – PIDs supported [A1 — C0]
Я продемонстрирую как определить какие датчики присутствуют в автомобиле при помощи одного из пидов. Например:
0100 \\ запрос
BB1E3211 \\ ответ от авто
Переводим ответ от автомобиля в двоичную систему счисления
Используя следующую табличку можем определить какие пиды поддерживаются нашим автомобилем, начиная от 01 до 20:
Исходя из получившихся данных можем определить, что наш автомобиль поддерживает следующие пиды:
01, 03, 04, 05, 07, 08, 0C, 0D, 0E, 0F, 13, 14, 17, 1C, 20
Теперь вместо отправки всех 32 команд и ожидания ответа на них, несмотря на то, что некоторые могут отсутствовать, мы будем использовать всего 15 команд. Но и это не предел так называемой оптимизации. Для того чтобы данные обновлялись еще быстрее советую запрашивать только данные о тех датчиках, которые отображаются на экране. Хотя это ограничивает некоторый функционал приложения. Например, запись истории.
Считывание и расшифровка ошибок автомобиля
Ошибки автомобиля тоже могут быть различными и для них тоже существуют отдельные команды. Например:
03 – Для отображения сохраненных кодов ошибок
0A – Для отображения постоянных кодов ошибок.
Так как и с остальными командами ошибки автомобиля приходят в закодированном виде, соответственно, как и в остальных командах их нужно раскодировать чтоб получить необходимую информацию. Приведу пример работы декодирования ошибки. Код:
private final static char[] dtcLetters = <'P', 'C', 'B', 'U'>;
private final static char[] hexArray = "0123456789ABCDEF".toCharArray();
private void performCalculations(String fault) <
final String result = fault;
String workingData = "";
int startIndex = 0;
troubleCodesArray.clear();
try <
if (result.contains("43")) <
workingData = result.replaceAll("^43|[\r\n]43|[\r\n]", "");
> else if (result.contains("47")) <
workingData = result.replaceAll("^47|[\r\n]47|[\r\n]", "");
>
for(int begin=startIndex; begin < workingData.length(); begin += 4) <
String dtc = "";
byte b1 =
Utility.hexStringToByteArray(workingData.charAt(begin));
int ch1 = ((b1 & 0xC0) >> 6);
int ch2 = ((b1 & 0x30) >> 4);
dtc += dtcLetters[ch1];
dtc += hexArray[ch2];
dtc += workingData.substring(begin + 1, begin + 4);
if (dtc.equals("P0000")) <
continue;
>
troubleCodesArray.add(dtc);
>
> catch (Exception e) <
Log.e(TAG, "Error: " + e.getMessage());
>
>
А теперь пояснение.
Исходя из полученного ответа мы можем получить код ошибки, для этого декодируем полученное сообщение используя следующие таблички.
3, 4, 5 символы формируются по этой таблице:
Исходя из этого можем попробовать разобрать следующий ответ 0001000000111110
Код ошибки: P103E
На данном этапе мы разобрались в том, каким образом организовать диалог с адаптером, посылать ему команды, получать и расшифровывать его ответы. Это большая часть работы, если считать то, сколько времени уходит на изучение материала, но в то же время довольно таки интересная. За пределами этой статьи осталось множество проблем связанных с визуальным интерфейсом, а также множество дополнительных функций, таких как добавление новых пидов из файла, стандартный и расширенный способ подключения к адаптеру и построения графиков.
С 2006 года все автомобили, как легковые, так и грузовые вне зависимости от используемого топлива в обязательном порядке должны быть оснащены системой OBD. Это позволяет обслуживать автомобили и производить их ремонт на территории Евросоюза при условии наличия стандартизированного разъема OBD. При этом доступ к системам должен быть свободным для всех заинтересованных организаций и служб.
Обзор OBD
Как правило, в состав оборудования современных автомобилей входит электронный блок управления (ЭБУ). Это устройство предназначено для сбора и анализа данных о функционировании некоторых его систем. Чтобы предотвратить несанкционированное подключение к ЭБУ, можно выбрать один из трех способов:
установить дополнительный иммобилайзер с разрывом шины передачи данных;
установить любые дополнительные разъемы в разрыв шины передачи данных;
блокирование шины передачи данных OBD с помощью установки дополнительных каналов (должно происходить в режиме охраны сигнализации, которая установлена на ваше авто).
Общие понятия
Общий термин OBD означает самодиагностику автомобиля. Благодаря использованию этой технологии, появляется возможность контролировать различные системы автомобиля с помощью бортового компьютера.
В начале развития этой технологии имелась возможность получения информации о возникновении неисправности, однако, о ее причинах данные не поступали. В современных версиях в системе применяется стандартизированный цифровой интерфейс, благодаря которому имеется возможность получения получение данных о состоянии систем в реальном времени. При этом одновременно получаются коды неисправностей, идентифицирующих их.
Распиновка
Разъем OBD необходим для подключения приборов, с помощью которых контролируется функционирование систем автомобиля и определяют химический состав выхлопных газов. Под распиновкой OBD2 понимают определенные требования, которым подчиняются автопроизводители.
Место расположения диагностического разъема OBD должно располагаться на расстоянии максимум 18 см от рулевой колонки. Стандартизированная система характеризуется универсальностью и работает с использованием цифрового CAN-протокола, позволяющего получать детальную информацию о возникающих неисправностях.
Благодаря протоколам OBD2 становится возможно считывание параметров систем машины. Их число различается у разных автопроизводителей и зависит от ЭБУ.
Как правило, имеется возможность поддержки приблизительно 20 параметров. Для реализации контроля над какой-либо системой достаточно располагать 2-3 параметрами. В некоторых случаях их требуется больше. На количество параметров, контроль за которыми осуществляется одновременно, и форма их выдачи находится в зависимости от устройства, осуществляющего сканирование, и скорости передачи информации.
Устройство диагностического разъема OBD оснащено 16-ю контактами. Используя распиновку, происходит совмещение бортовых систем автомобиля с колодкой диагностики.
При обнаружении несоответствия состава выхлопных газов нормам, появляется надпись CheckEngine. Она говорит о том, что необходимо осуществить проверку двигателя.
Сегодня речь пойдет о распиновке разъема для диагностики.
Со временем появления в автомобилях электронных систем управления от микропроцессоров также возникла необходимость проверки параметров работы самих блоков и соединительных электрических цепей. С этой целью изобрели оборудование, получившее название OBD (On Board Diagnostic), изначально он только выдавал только информацию о неисправности, без каких-либо уточнений.
В современных автомобилях с помощью разъема OBD с стандартной распиновкой разъема для диагностики к бортовому компьютеру можно подключить специальный адаптер или сканер и провести полную диагностику самостоятельно практически любому автомобилисту. С 1996 года в США была разработана вторая концепция стандарта OBD2, которая стала обязательной для вновь выпускаемых автомобилей.
Назначение OBD2 определить:
- тип диагностического разъема;
- распиновку разъема для диагностики;
- электрические протоколы связи;
- формат сообщения.
В Евросоюзе принят EOBD, в основе которого лежит OBD2. Он обязателен для всех авто с января 2001 года. OBD-2 поддерживает 5 протоколов обмена данными.
Зная место расположение и стандартную распиновку разъема OBD2, можно провести проверку авто самостоятельно. Благодаря повсеместному внедрению OBD2 при диагностики автомобиля можно получить код ошибки, который будет одинаковым вне зависимости от марки и модели авто.
Стандартный код содержит структуру Х1234, где каждый символ несет свою смысловую нагрузку:
- Х — единственный буквенный символ, позволяющий узнать неисправную систему (двигатель, коробка, электронные блоки и т. д.);
- 1 — представляет собой общий код стандарта OBD2 или дополнительные коды завода;
- 2 — уточнение места неисправности (система питания или зажигания, вспомогательные цепи и т. д.);
- 34 — порядковый номер ошибки.
Распиновка диагностического разъема OBD2 имеет особенный штекер питания от бортовой сети, это позволяет использовать любые сканеры и адаптеры без дополнительных электрических цепей. Если раньше протоколы диагностики показывали лишь общую информацию о наличии какой-либо проблемы, то сейчас, благодаря связи диагностического устройства с электронными блоками автомобиля можно считать более полную информацию о конкретной неисправности.
Каждое подключаемое диагностическое оборудование обязательно соответствует одному из трех международных стандартов:
- CAN;
- SAE J1850;
- ISO 9141-2.
Расположение диагностического разъема с распиновкой OBD2 для диагностики может сильно отличаться в различных автомобилях. Никакого единого стандарта для местоположения нет, тут вам поможет инструкция по эксплуатации автомобиля или ловкость рук.
Ниже несколько распространенных точек для удобства поиска:
- в прорези нижнего кожуха панели приборов в районе левого колена водителя;
- под пепельницей, установленной в центральной части панели приборов (некоторые модели Пежо);
- под пластиковыми заглушками на нижней части панели приборов или на центральной консоли (характерно для продукции концерна VAG);
- на задней стенке панели приборов за корпусом перчаточного ящика (некоторые модели Лада);
- на центральной консоли в районе рычага стояночного тормоза (встречается на некоторых машинах
- в нижней части ниши подлокотника (распространено на французских автомобилях);
- под капотом вблизи моторного щита (характерно для некоторых машин корейского и японского производства).
Многие автомобилисты также иногда намеренно переносят разъем распиновку OBD2 в другое не всегда стандартное место, это может быть связано с ремонтом электропроводки или с защитой автомобиля от угона.
Виды разъемов с распиновкой OBD2
В начале 2000 годов не существовало строгих требований к наружной форме разъема, и многие автопроизводители самостоятельно назначали конфигурацию устройства. На сегодняшний день есть два типа разъема OBD 2, обозначаемые как Тип А и Тип В.
Оба штекера практически одинаковые внешне и имеют 16-пиновый выход (два рядя по восемь контактов), отличие состоит только между центральными направляющими пазами.
Нумерация пинов в колодке ведется слева направо, при этом в верхнем ряду стоят контакты с номерами 1-8, а в нижнем — с 9 по 16. Наружная часть корпуса выполнена в форме трапеции со скругленными углами, что обеспечивает надежное подключение диагностического переходника. На фото оба варианта устройств.
Разновидности разъема — Тип A слева и Тип B справа
Разъем OBD 2 - распиновка
Ниже представлена схема и назначение контактов в разъеме с распиновкой OBD2, которые определены стандартом.
Нумерация штекеров в разъеме
Общее описание штекеров:
1 — резервный, на данный пин может выводиться любой сигнал, который установит завод-изготовитель автомобиля;
2 — канал «К» для передачи различных параметров (может обозначаться — шина J1850);
3 — аналогично первому;
4 — заземление разъема на кузов автомобиля;
5 — заземление сигнала диагностического адаптера;
6 — прямое подключение контакта CAN-шины J2284;
7 — канал «К» по стандарту ISO 9141-2;
8 — аналогично контактам 1 и 3;
9 — аналогично контактам 1 и 3;
10 — пин подключения шины стандарта J1850;
11 — назначение пина задается заводом-изготовителем автомобиля;
14 — дополнительный пин CAN-шины J2284;
15 — канал «L» по стандарту ISO 9141-2;
16 — положительный вывод напряжения бортовой сети (12 Вольт).
Примером заводской распиновки разъема OBD 2 может служить Хендай Соната, где на пин 1 подается сигнал от блока управления антиблокировочной системы, а на пин 13 — сигнал от блока управления и датчиков надувных подушек безопасности.
Варианты распиновок
В зависимости от протокола работы допускаются варианты распиновок:
При использовании стандартного протокола ISO 9141-2 он активизируется через пин 7, при этом пины 2 и 10 в разъеме неактивны. Для передачи данных применяются выводы с номерами 4, 5, 7 и 16 (иногда может задействоватся пин номер 15).
При протоколе типа SAE J1850 в варианте VPW (Variable Pulse Width Modulation) задействованы пины 2, 4, 5, а также 16. Разъем характерен для американских и европейских автомобилей Дженерал Моторс.
Использование J1850 в режиме PWM (Pulse Width Modulation) предусматривает дополнительное задействование вывода 10. Такой тип разъема используется на продукции концерна Ford. Для протокола J1850 в любом виде характерно неиспользование вывода с номером 7.Начало формы
Конечно, для многих подобные схемы и описания распиновок разъема OBD2 очень сложны и неестественны. Зачастую, автомобилисты предпочитают периодически отдавать свой авто в профильный автосервис и даже не думать о диагностических разъемах и, тем более, об их распиновках. Но все же стоит признать полезность самостоятельной диагностики. Опытные автомобилисты говорят о том, что иметь диагностический сканер в машине необходимо каждому автовладельцу для оперативной проверки своих сомнений в работе машины, проверки ошибок, настроек и подобного, что прежде всего сэкономит значительные деньги.
Практически каждый автолюбитель слышал про OBD-разъем, через который можно проверить работоспособность систем автомобиля, обновить прошивку блоков управления двигателем, АКПП, расшифровать имеющиеся ошибки и др.
Про OBD вспоминают, как правило, при появлении на приборной панели надписи CheckEngine, свидетельствующей о неисправностях в работе двигателя.
OBD - универсальный аппаратный интерфейс, позволяющий проводить компьютерную диагностику. Диагностический разъем OBD находится в непосредственной близости от руля (на расстоянии не более 18 см), имеет вид розетки трапециевидной формы с 16 контактами, сгруппированных в 2 группы по 8 штук.
Разъем OBD в настоящее время имеется на всех современных автомобилях, оснащенных системой самодиагностики. Это позволяет производить диагностику основных параметров даже без использования специализированного дилерского оборудования.
Для этого достаточно иметь специальный сканер, который опрашивает электронный блок управления автомобилем (ЭБУ) по цифровой шине и получает информацию в режиме реального времени о состоянии систем и датчиков.
Что можно сделать через разъем OBD?
OBD2-разъем получает исчерпывающую информацию по CAN-протоколу от ЭБУ, приблизительно по 20 параметрам работы двигателя. С помощью сканеров и специального оборудования можно:
- прочитать и расшифровать имеющиеся коды ошибок в работе электронной системы автомобиля (состоят из 5 символов – латинской буквы и 4 чисел);
- контролировать параметры работы систем управления автомобилем в режиме реального времени, в том числе - в движении;
- очистить результаты диагностики и сбросить имеющиеся ошибки;
- осуществить контроль выбросов при проведении технического осмотра автомобиля;
- управлять и обновлять отдельные блоки управления автомобилем;
- анализировать статистику (стоп-кадр) показателей системы управления в момент возникновения ошибок.
Кроме того, OBD позволяет скорректировать показания спидометра автомобиля, обнаружить заблокированную электрическую цепь, установленной в автомобиле сигнализацией, или прописать дополнительный ключ.
Эти действия в случае несанкционированного доступа деактивируют штатный иммобилайзер программно, и, соответственно, отключают защиту автомобиля.
Данными возможностями зачастую пользуются преступники, чтобы завладеть автомобилем. Зачастую в эту схему вовлекаются недобросовестные работники сервисных центров.
Как защитить?
OBD-разъем должен быть доступен. Однако, для предотвращения несанкционированного доступа следует озаботиться о защите или блокировке данного разъема.
Существует три варианта защиты разъема OBD и ограничения доступа к ЭБУ.
Рассмотрим подробнее каждый из них.
1. Перенос разъема в труднодоступное место, либо защита его специальным кожухом.
Как правило, данные действия не влекут за собой ограничения в управлении автомобилем. Но в этом случае могут возникнуть вопросы у дилера (особенно при переносе разъема), о несанкционированном вмешательстве в штатную электрическую систему автомобиля и о сохранении гарантийных обязательств. Кроме того, в зависимости от расположения блока не всегда возможно установить защитный кожух.
2. Произвести перепиновку контактов, т.е. поменять их местами, либо замена OBD-разъема другим, нестандартной формы.
В этом случае клиенту передается специальный переходник для подключения типового оборудования (сканеров). Минусы данного решения аналогичны предыдущему – вероятное снятие автомобиля с гарантии. Кроме того, каждый сервис, осуществляющий диагностику, будет в курсе произведенной перепиновки или замены. А значит, велика вероятность, что злоумышленники будут подготовлены к данному факту, и защита не сработает.
3. Блокировка разъема посредством разрыва цифровой шины, связывающей разъем с ЭБУ.
Блокировка осуществляет с помощью стандартного реле дополнительных каналов охранных систем и сигнализаций. Мы считаем этот способ самым оптимальным вариантом защиты OBD-разъема от несанкционированного доступа. В этом случае диагностический разъем доступен любому подключению, пока сигнализация или иммобилайзер не находится в режиме охраны. Место подключения находится в недоступном месте, и выявить ее крайне сложно. В результате сервисмены или угонщики даже не узнают о произведенной блокировке.
Выводы
OBD-разъем, несомненно, удобная и необходимая функция вашего автомобиля. При правильной организации защиты вероятность угона значительно уменьшается. Необходимо применять комплексную защиту и не надеяться только на штатный иммобилайзер, также, как и на отдельно сигнализацию или блокировку диагностического разъема.
Сами по себе все эти устройства и действия имеют определенные недочеты и «дыры» в защите, которыми успешно пользуются злоумышленники. Способы отключения и обхода охранных устройств отработаны ими до автоматизма.
И только нестандартные решения, требующие дополнительного времени на преодоление каждого рубежа охраны, обеспечивают максимальную защиту вашего автомобиля.
А организовать ее вам помогут специалисты Автостудио. Достаточно позвонить нам и получить подробную бесплатную консультацию.
Современный автомобиль – это не только механика, но и огромное число электронных компонентов. Они управляют работой различных узлов и систем, отслеживают их состояние, регистрируют и фиксируют отклонения в работе. Чтение этих параметров позволяет производить полную компьютерную диагностику и выявлять неисправности.
Для того, чтобы диагностировать неисправности авто, необходимо специальное оборудование. Раньше для этих целей каждый производитель предлагал свое снаряжение, но с введением стандарта OBD2 примерно с 2000 года, на рынке появилось множество универсальных OBD2-сканеров.
Мультимарочные адаптеры, подключаемые в стандартный разъем OBD2, поддерживают работу с множеством марок и моделей машин. Специальное ПО для них содержит в базе как стандартные коды ошибок, универсальные для большинства авто, так и фирменные, уникальные для отдельных марок.
Помимо чтения кодов ошибок, современные OBD2-сканеры предлагают некоторые возможности по настройке бортовой электроники автомобиля. Если читать ошибки может практически любой дешевый сканер, но для продвинутой работы нужно оборудование профессионального уровня, которое заметно дороже.
Основные возможности OBD2-сканеров
Главной функцией любого OBD2-сканера является подключение к бортовой электронике авто для чтения ошибок, их расшифровки и удаления после устранения неполадок. Также эти устройства, вне зависимости от класса, могут считывать с ЭБУ двигателя и отображать текущие параметры его работы.
Используя сканер OBD2, можно проанализировать как всю бортовую сеть полностью, так и отдельные системы (например, зажигание или управление впрыском топлива). Возможно отслеживание в режиме реального времени таких показателей, как количество оборотов мотора, скорость, температуры масла и тосола, давление масла и топлива, давление во впускном и выпускном коллекторе, расход воздуха.
Также можно мониторить параметры работы топливной системы и зажигания, вроде угла опережения зажигания, показателей обогащения смеси, полноты сгорания топлива, положения дроссельной заслонки и т.д.
Некоторые из показателей компьютерной диагностики с помощью OBD2-сканера просты для понимания даже неопытными автомобилистами. Другие требуют более глубокого понимания процесса, так как отсылка к нарушению работы одной системы может указывать на неполадки вовсе в другой. К примеру, слишком высокая температура на впуске может говорить о проблемах и с фильтрами, и инжектором, и охлаждением ДВС, и его масляной системой.
В чем отличия между OBD2-сканерами разных марок
На рынке представлены OBD2-сканеры разных производителей, отличающиеся между собой ценой и функциональностью. Их стоимость отличается колоссально: существуют как китайские девайсы за несколько долларов, так и модели за несколько тысяч.
Главным отличием между ними является уровень функциональных возможностей. Также есть отличия в уровне поддержки производителем. Если профессиональные аппараты получают обновления ПО, клиенты могут рассчитывать на поддержку производителя, то отношение китайских компаний к дешевым переходникам может иметь вид «выпустили – и забыли».
Помимо широты функциональности, имеются и отличия в интерфейсе подключения. Популярны беспроводные OBD2-сканеры, работающие по Bluetooth или Wi-Fi, которые подключаются к любому современному смартфону, планшету или ноутбуку. Они удобны и универсальны, часто стоят недорого, но функции таких гаджетов сильно зависят от цены и добросовестности производителя.
Тот же ELM327 (популярный чипсет для OBD2-сканера) не копировал только ленивый. На AliExpress полно клонов по несколько долларов, совместимых с любым смартфоном, но они недотягивают по уровню возможностей до оригинала. Даже диагностика базовых компонентов доступна не в полной мере, не говоря уже о частых проблемах с совместимостью.
Читайте также: