Когда включается втек на хонде цивик 4д
Система i-VTEC в том виде, в котором она существует появилась не так давно, если не брать в расчет традиционный VTEC, который господствовал в мире моторов с 1989 по 2000 годы. Новая же система обзавелась дополнительным символом «i» и стала называться i-VTEC, подразумевая под этим символом наличие интелекта.
Принцип работы i-VTEC отдаленно напоминает традиционный VTEC. И все же «умный фазорегулятор» другой. О чем тут говорить, если даже i-VTEC в версиях SOHC и DOHC — системы функционирующие совершенно по-разному и конструктивно имеют гораздо больше различий, чем количество распределительных валов. Например, DOHC i-VTEC работает в паре с системой VTC, тогда как одновальный i-VTEC работает в одиночку. Кстати, в силу обширности темы сегодня мы будем обсуждать только SOHC i-VTEC. А «красноголовый двухвальник» оставим на потом.
Все описанное в статье будет в большей степени касаться двигателей R-серии, в частности мотора R18A, который появился в 2006 году на Honda Civic и стал первым носителем новой системы SOHC i-VTEC.
Предисловие
Идея новой системы i-VTEC по-большому счету осталась верной старым принципам, но адаптирована к новым общемировым тенденциям — обеспечивать оптимальную отдачу двигателя в различных условиях, при любом стиле вождения и при максимально эффективном потреблении топлива. Чтобы этого достичь необходимо распределить основные технические показатели, такие как мощность и крутящий момент, в максимально широком диапазоне оборотов. Другими словами — объединить хороший крутящий момент на «низах» от большеобъемных моторов и высокую мощность на «верхах» от высокооборотного спортивного двигателя. Лет двадцать назад вам бы сказали, что это невозможно.
Действительно, стандартный двигатель внутреннего сгорания на это не способен. Предыдущие поколения VTEC также с этой задачей справлялись не в полной мере — необходимый крутящий момент на низах традиционный VTEC не обеспечивал, хотя я к минусам это не отношу. Ведь крутить эти моторы одно удовольствие. Новый SOHC i-VTEC справился с поставленной задачей. Моторы оборудованные этой системой имеют приличный запас тяги на «низах» и неплохой «приход» на «верхах». И пусть одновальный i-VTEC делает это не так эффектно как DOHC i-VTEC, свою основную миссию система выполняет .
Принцип действия SOHC i-VTEC
Чтобы лучше понять принцип действия SOHC i-VTEC рассмотрим типичные ситуации. Спокойная езда по городу с пустым багажником и без пассажиров, плавные нажатия на педаль газа. В таком режиме обороты двигателя, как правило, не превышают порог в 2,5 – 3,5 тысяч оборотов в минуту, а усилия на педаль газа минимальны. На стандартных двигателях в таких ситуациях дроссельная заслонка находится почти в закрытом положении.
Дроссельная заслонка — элемент впускной системы, которая регулирует подачу воздуха в двигатель. Самым непосредственныи образом на дроссельную заслонку воздействует педаль газа. В зависимости от количества поступаемого воздуха, электронная система управления двигателем в нужной пропорции подает топливо для образования топливно-воздушной смеси. Чем сильнее нажимаете на педаль газа, тем шире открывается дроссельная заслонка (увеличивается поперечное сечение впускного канала), которая являлась препятствием для прохождения воздуха.
По идее, такое поведение дроссельной заслонки способствует экономии топлива — поступает меньше воздуха и соответственно компьютер уменьшает дозу подаваемого топлива. Однако это не совсем так. В такой ситуации дроссельная заслонка выступает в качестве силы сопротивления, препятствуя прохождению воздуха, когда этого требует рабочий процесс. Получается поршень, опускаясь в цилиндре вниз, должен всасывать топливно-воздушную смесь, затрачивая на это собственную энергию. Энергию, которая в конечном итоге должна была полностью попасть на колеса. Этот побочный эффект прозвали «насосными потерями».
Попытаемся взглянуть на это с практической точки зрения на примере системы SOHC i-VTEC. Ведь именно «игра» с подачей воздуха и устранение насосных потерь – «фишка» нового одновального i-VTEC.
SOHC i-VTEC на двигателе R18A1
Удивительно, насколько гениальным и простым путем пошли инженеры Honda. Все что они сделали – оставили дроссельную заслонку широко открытой на низах, а регулировку подачи толивно-воздушной смеси доверили системе i-VTEC. На деле, разумеется, не все так просто.
Для начала запомним, что период, когда дроссельная заслонка полностью открыта, а на подачу воздуха действуют другие силы, и является рабочей зоной системы SOHC i-VTEC. Получается, что именно в этот период в впускную систему поступает чрезмерно много воздуха и соответственно в цилиндры много топливно-воздушной смеси? Так и есть.
Но смесь не сгорает, как вы, наверное, подумали. Фишка системы состоит в том, что один из двух впускных клапанов в цилиндре после фазы впуска закрывается значительно позже второго.
В стандартных двигателях на фазе впуска впускные клапаны открыты, поршень движется вниз к нижней мертвой точке (НМТ). Как только поршень достигает низшей мертвой точки впускные клапаны закрываются, а поршень, начиная фазу сжатия поднимается к верхней мертвой точке (ВМТ).
Двигатель с SOHC i-VTEC работает несколько иначе. На фазе впуска все как обычно – поршень движется к нижней мертвой точке, впускные клапаны открыты. На фазе сжатия поршень начинает движение вверх к высшей мертвой точке, но! Один из впускных клапанов остается открытым, давая возможность поршню выдавить лишнюю топливно-воздушную смесь обратно в систему впуска, которая беспрепятственно прошла в цилиндр, благодаря полностью открытой дроссельной заслонке.
Конечно, профиль VTEC-ового кулачка, благодаря которому один из клапанов остается дольше открытым, разработан таким образом, что клапан закрывается до встречи с поршнем и в момент, когда в цилиндре остается оптимальное количество топливно-воздушной смеси.
Механизм SOHC i-VTEC
Механизм системы SOHC i-VTEC аналогичен механизму VTEC предыдущих поколений. Все двигатели с системой SOHC i-VTEC имеют два впускных клапана и два выпускных на каждый цилиндр, т.е 16 клапанов на 4 цилиндра. На каждую пару клапанов приходится 3 кулачка – два обычных крайних и один центральный vtec-овый. Кулачки распредвала традиционно воздействуют на клапаны не непосредственно, а через рокеры, которых тоже три на два клапана.
При отключенной системе i-VTEC каждый рокер работает независимо друг от друга. Внешние кулачки обеспечивают открытие клапанов, а центральный кулачок, хотя и вращается вместе с остальными, но до поры до времени работает вхолостую.
Механизм SOHC i-VTEC
механизм системы SOHC i-VTEC в отключенном и включенном состоянии
Как только двигатель переходит в режим работы, которую система Drive by Wire определяет как благоприятную для работы системы — посредством давления масла система смещает пистоны внутри рокеров таким образом, что два из трех рокеров превращаются в одну единую конструкцию. До этого работавший вхолостую vtec-овый кулачок вступает в игру. Теперь один из крайних рокеров начинает работать по законам vtec-ового кулачка, загоняя один из впускных клапанов цилиндра глубже и на дольше. Практически, как обычный VTEC, с той лишь разницей, что работают системы при разных условиях и в разных фазах.
Drive by Wire (DRW) или «управление по проводам» — электронная цифровая система управления автомобилем. Водитель управляет бортовым компьютером, а не непосредственно автомобилем. Компьютер исполняет команды с учётом показаний датчиков, включая-выключая сервомоторы, — по проводам. Система в той или иной мере способна реализовать машину, действующую по принципу «делай то, что я хочу». Например, нажатый до упора тормоз может означать не «зажать колёса с максимальным усилием», а «остановиться как можно быстрее», и уже дело компьютера — решать, как остановиться.
В обычной системе VTEC два внешних кулачка отвечают за работу двигателя на низких оборотах, а центральный vtec-овый подключается на высоких оборотах, загоняя клапаны глубже и дольше, чтобы в цилиндры поступило как можно больше топливно-воздушной смеси. В «умном» SOHC i-VTEC все наоборот — рабочая зона системы находится в диапазоне от 1000 до 3500 оборотов в минуту. На «верхах» же мотор вступает в стандартный режим работы.
Рабочий диапазон системы SOHC i-VTEC
Однако, диапазон оборотов не единственный фактор по которому система Drive by Wire определяет момент включения и выключения системы. Иначе новый i-VTEC мало чем отличался бы от предшественников.
Новый SOHC i-VTEC в паре с «Drive by Wire» умеет определять нагрузку на двигатель и в зависимости от ее величины принимать решение включаться ей или нет. Последнее явление и раскрывает наличие загадочного символа «i» в названии системы. Получается система работает при определенных оборотах двигателя и определенной величине нагрузки на двигатель. Поэтому «Drive by Wire», которая и определяет оптимальные условия, является наиважнейшей составляющей системы в целом. Общий рабочий диапазон SOHC i-VTEC демонстрирует вышерасположенный график. Красная зона на графике и есть благоприятная среда для работы системы.
Судя по статье можно подумать, что система направлена исключительно на экономичность. Это не совсем так. Использование системы SOHC i-VTEC на низких оборотах позволило обычным кулачкам придать более спортивный профиль, при этом, не жертвуя такими показателями, как «умеренный аппетит» и плавность хода.
Кроме этого, в двигателях с данной системой применили новую технологию снижения трений, используются более легкие материалы, благодаря чему потерь стало гораздо меньше, удалось поднять степень сжатия. Если сравнивать двигатели с системой SOHC i-VTEC (например R18A) c аналогичными решениями конкурентов – будьте уверены, хондовское чудо мощнее и экономичнее.
Видио презентация работы Honda R18 1.8L i-VTEC
Система VTEC — The Variable Valve Timing and Lift Electronic Control, электронно-управляемая система фазы клапанов, ее наличие обусловлено моделью двигателя, а именно моделью ГБЦ, соленоидами подачи масла и блока управления двигателям ECU с распределенным впрыском. На нижнем изображении показано место на ГБЦ, где находятся соленоиды VTEC, отвечающие за включение рокера с большим ходом. На втором изображении показано, где находится VTEC — бочонок соленоида говорит о том, что в двигателе установлен VTEC. Существуют разновидности одновальной SOHC системы VTEC, к сожалению, вторая система DOHC VTEC не устанавливалась на моторах серии D D14, D15, D16. Сопротивление клапана соленоида VTEC 14-30ом, при 12 Вольт.
Вид соленоида двустэйжевой системы VTEC
Место расположения соленоида на блоке ГБЦ Honda Civic
Что такое VTEC, как работает VTEC, смысл системы
По простому, электронно-управляемая система фазы клапанов, или просто VTEC. достаточно понять пару основ для чего она нужна и все встанет на своим места. Обычный 4х тактный двигатель, тянет воздух из атмосферы при давление в 1 бар, тоесть примерно 760ммрт (Так же это 1 атмосфера или 101кПа). С увеличением оборотов, возрастает и скрость движения поршня. На низких оборотах поршень засасывает воздух максимально чисто на сколько возможно, тоесть поршень медленно опускаясь засывает объем с давелнием в 1 атмосферу. С увеличением скорости поршня, давление снижается, тк уже не хватает времени чтобы воздух был при нормальных условиях. Вы наверное видели графики с диностенда, где пиковая мощность около 5000-6000 оборотов, а дальше линия мощности падает. Это потому что двигатель не может засосать воздуха больше, он на столько разрежен (тоесть молекул воздуха мало) что становиться трудно раскрутить мотор. Вариантов решения много, убрать сопротивление воздуха путем установки нулевого фильтра, холодного впуска, увеличением диаметра дроселя, портирование каналов впуска или нагнетать воздух под давелнием. Но, Honda придумала свой способ. При достижение критической точки достижения мотора мощности (примерно 5500 оборотов), включается система VTEC на впускных клапанах, которая держит клапана немного дольше открытыми чем обычно, что дает дополнительное время на "всос" воздуха. теперь мертвая точка смещается в диапазон 7000. Любая работа с впускной системой типа портинга дает прибавку к мощности на верхах но может отнять очки по тяге на низах, так как момент так же смещается на более выскокие обороты, до которых еще надо расскрутить двигатель, воздуха очень много. что делать? душить двигатель на низах, уменьшийть пропускаемость воздуха к примерну уменьшив диаметр дроссельной заслонки. Наверное вы слышали что 8 клапанный двигатель на низах имеет больший потенциал чем 16 клапанный. Вот это тоже самое. Инженеры Honda придумали систему ECO-VTEC, принцип работы которого не просто сохранить топливо а еще и "задушить" двигатель до 2500 оборотов (примерно) чтобы вытащить максимальную тягу, при работе всего 12 клапанов. В сумме получается, что при полном VTEC 3-Stage, низы задушенны и имеют хороший момент, далее работа в нормальном 16 клапанном режиме, и активация на высоких оборотах уже VTEC чтобы воздуха попало больше. Вот и все что нужно знать из азов по VTEC.
Принцип работы VTEC
Покажу на примере самого известного и простого анимационного изображения, объясняющего принцип работы VTEC. По достижению давления масла в двигателе, а также достижению оборотов, обычно 5500 RPM за счет соленоида открывается клапан VTEC, который подает масло в систему газораспределения.
Анимационная демонстрация части работы системы VTEC
Давления масла толкает "защелки" рокеров, которыми блокируется основные и средний рокер. Теперь клапаны открываются глубже — дольше. В этот же момент в блоке управления двигателем мозге ECU переключаются топливные карты и карты зажигания. За счет обогащенной смеси и более длительного открытия клапанов появляется более мощный импульс для толкания поршня.
Принцип действия включения рокера VTEC
Длительность открытия клапана VTEC
Как вы понимаете, длительность открытия клапана VTEC зависит от оборотов двигателя RPM. Примерно на 5500 оборотах VTEC включается, при 4600 (примерно) VTEC выключается. На автоматической коробке до 4 передачи включение VTEC составляет не более 5 секунд, система автоматизирована и при достижении оборотов и скорости переключает передачу, а значит, сбрасывает обороты RPM. По времени работы системы VTEC это всего несколько секунд, но именно они дают настоящий прирост. Втек не включается на нетралке, и режиме парковки в автомате и вараторе.
VTEC 3-Stage: что это такое
Наконец я расскажу о системе VTEC 3-Stage, (3 стейдж). Данная система установлена так же в ГБЦ, устанавливалась после 1996 года. Имеет 2 соленоида. Управляется 12вольтами, при подаче открывается клапан подачи масла, если есть конечно давление масла. Ставился на JDM моторе D15B, одновальной SOHC, и конечно не B серии. Вещь довольно интересная и пользуется спросом. Имеет 3 стадии, совмещает все режимы работы всех видов SOHC D серии. ECU были нескольких типов, но только OBD2 серии, ниже список всех ECU p2j 3-Stage
- OBD2A 37820-P2J-J62 Вариатор
- OBD2A 37820-P2J-J63 Вариатор
- OBD2A 37820-P2J-J61 Вариатор
- OBD2A 37820-P2J-003 Механика
- OBD2B 37820-P2J-J11 Механика
- OBD2B 37820-P2J-J81 Вариатор от Vi-RS
- OBD2B 37820-P2J-J71 Вариатор
VTEC 3-Stage: Автомат
В 6 поколление, с которого пошел 3-Stage VTEC, были комплектации только с механической и вариаторной коробкой передач. Но в 7 поколение с 2001 по 2003 год, на моторы 1.6 так-же устанавливалась голова P2J (PLL), и управлялась соответственно мозгом 37820-PLL-D52. Мотор 3-Stage VTEC назывался D16W9 и имел мощность 130лсю
VTEC 3-Stage: принцип работы
Как работает VTEC 3-Stage, первая стадия начинается от 0 RPM и заканчивается в 4000 RPM. в этой стадии ГБЦ работает как VTEC-E. Работает только 12 клапанов. в каждом цилиндре работает два выпускных клапана но только один впускной. Это позволяет делать экономичный и плавный разгон.
Следующая стадия, это работа всех 16 клапанов. Включается первый VTEC соленоид. Обычный режим, работает от 4000 до 6000
Последняя третья стадия, включается второй клапан, впускные клапана открываются на больший период, что позволяет дать больше топливной смеси. Работа от 6000 и до конечной точки работы
Отключается вся система в обратном порядке, сначала 2й соленоид, потом 1 соленоид.
Пора за работу
Теперь когда вы знаете как работает VTEC пора его ставить на свой D14A3 или D14A4, предлагаю воспользоваься переводом статьи DoDo Joris, которой пользовался я, либо воспользоваться моей статьей об установке VTEC. Тем неменее, удачи в ваших экспериментах.
Случайная статья узнай что то новое
Данная статья актуальна для автомобилей Honda выпуска 1992-2000 годов, таких как Civic EJ9, Civic EK3, CIVIC EK2, CIVIC EK4 и CIVIC FERIO (частично). Информация будет актуальна для владельцев Honda Integra в кузовах DB6, DC1, с моторами ZC, D15B, D16A.
Многие из моделей автомобилей Honda оборудуются электронной системой корректировки фаз газораспределения (VTEC).
Различие между обычными двигателями и двигателями, оборудованными системой VTEC, заключается в комплектации и принципе действия клапанного механизма. Конструкция блока двигателя и всех навесных узлов и агрегатов, а также схемы организации систем смазки и охлаждения на обоих агрегатах одинаковы. Внешне оборудованный системой VTEC двигатель отличается наличием сверху на крышке головки цилиндров выпуклой надписи соответствующего содержания (VTEC).
Впускной распределительный вал оборудован тремя кулачками для каждого из приводимых им клапанов. Специальный модуль управления мощностью (РСМ), исходя из данных, поступающих от информационных датчиков определяет какой из комплектов кулачков в каждый текущий момент должен приводить впускные клапаны камер сгорания. На основании анализа поступающей информации РСМ включает или выключает систему VTEC.
В качестве исходных параметров, определяющих функционирование VTEC используются следующие:
a) Частота вращения двигателя (об/мин);
b) Скорость движения автомобиля (мили/ч);
c) Выходной сигнал датчика положения дроссельной заслонки (TPS);
d) Текущая нагрузка на двигатель, определяемая по показаниям датчика абсолютного давления во впускном трубопроводе (МАР);
e ) Температура охлаждающей жидкости.
При малых оборотах двигателя как первичные, так и вторичные впускные клапаны срабатывают от своих собственных кулачков и открываются на одинаковую высоту и с одинаковой продолжительностью, обеспечивая хороший крутящий момент в нижнем диапазоне оборотов и высокую скорость реакции на газ.
Когда возникает необходимость в повышении отдачи двигателя, коромысла первичных и вторичных впускных клапанов посредством специального гидравлического устройства с электронным управлением блокируются с промежуточным коромыслом. При этом длительность и высота открывания обоих клапанов определяется формой промежуточного кулачка, отличающегося большей высотой и меньшей остроконечностью подъема.
Первичные и вторичные коромысла перестают контактировать со своими собственными кулачками до тех пор, пока система не будет отключена. Система позволяет добиваться оптимального крутящего момента как при малых, так и при высоких оборотах двигателя, в зависимости от прикладываемой к нему текущей нагрузки.
Проверка состояния компонентов
Электромагнитный клапан блокировки/датчик-выключатель давления
Электромагнитный клапан блокировки системы VTEC, включающий в себя датчик-выключатель давления расположен в левой части задней стенки двигателя (со стороны переборки двигательного отсека).
Модели 1994 и 1995 г.г. вып.
Неполадки в контуре электромагнитного клапана блокировки VTEC приводят к регистрации кода неисправности (DTC) 21 в памяти блока управления. На панели приборов автомобиля при этом загорается контрольная лампа “Проверьте двигатель”. Подробная информации по DTC систем самодиагностики приведена в Главе Системы управления двигателем.
Отказ датчика-выключателя давления приводит к записи DTC 22 и срабатыванию контрольной лампы “Проверьте двигатель”.
Модели с 1996 г. вып.
Отказ в контурах электромагнитного клапана или датчика-выключателя давления приводит к срабатыванию контрольной лампы “Проверьте двигатель” и записи в память блока управления DTC Р1259. Для считывания диагностических кодов требуется сканер OBD II (см. Главу Системы управления двигателем).
1. Рассоедините круглый электрический разъем на две давления (см. сопроводительную иллюстрацию).
6. Выверните болт на 10 мм из контрольного штуцера давления масла на электромагнитном клапане. Подсоедините к штуцеру механический манометр для измерения давления масла (см. сопроводительную иллюстрацию).
Не следует поднимать обороты двигателя без нагрузки более чем на одну минуту.
11a. Снимите сборку электромагнитного клапана, отделите от нее датчик-выключатель давления.
11b. Вручную проверьте свободу хода плунжера (см. сопроводительные иллюстрации). При установке сборки на место не забудьте заменить уплотнительное кольцо.
Коромысла с маслораспылителями
2. Нажмите пальцем на промежуточное коромысло (см. сопроводительную иллюстрацию) оно должно двигаться свободно от коромысел первичного и вторичного клапанов. В противном случае снимите коромысла с целью проверки состояния компонентов сборки (см. Снятие, проверка состояния и установка распределительных валов и сборки коромысел).
3. После снятия коромысел (см. Отпирание капота) извлеките из них синхронизирующие поршни (см. сопроводительную иллюстрацию).
А) Коромысло первичного клапана
В) Коромысло вторичного клапана
С) Промежуточное коромысло
D) Короткий поршень
Е) Длинный поршень
4. Проверьте все компоненты (коромысла и поршни) на наличие признаков износа, задиров и следов перегрева. Дефектные детали замените. Снимите маслораспылители с впускной и выпускной сторон головки цилиндров (см. сопроводительную иллюстрацию), прочистите их и установите на место.
Перед установкой комплектов коромысел на ось соберите их и скрепите резиновыми бандажами (см. Отпирание капота).
Сборки корректоров клапанных зазоров
3. Пальцами проверьте свободу перемещения плунжера сборки корректора (см. сопроводительную иллюстрацию) должно ощущаться незначительное сопротивление, однако при увеличении нагрузки плунжер должен беспрепятственно отжиматься. В случае выявления дефектов замените сборку.
VTEC – электронная система, разработанная компанией Honda и отвечающая за изменение фаз газораспределения в ДВС. Впервые она начала использоваться в 1989 году.
Несколько слов о назначении
Задача VTEC – сделать работу двигателя максимально эффективной, регулируя процесс наполнения камеры сгорания топливно-воздушной смесью в зависимости от количества оборотов.
При низких оборотах мотор работает в экономном режиме, при высоких развивает предельную мощность, при средних акцент делается на максимальный крутящий момент. Система необходима для того, чтобы повысить экономичность работы ДВС на малых оборотах и обеспечить значительную производительность на высоких.
Существуют несколько моделей VTEC:
1. DONC VTEC. Первое поколение системы. На двигателе установлены 2 распределительных вала и три (вместо двух) кулачка на каждый из них. После соответствующей команды ЭБУ в работу вступает «кулачок мощности», повышающий производительность мотора.
2. SONC VTEC. Является упрощенной версией с одним распредвалом на клапаны впуска и выпуска. Его основная задача – повышение экономичности двигателя и снижение количества вредных выбросов в атмосферу.
3. I-VTEC. На рынке с 2001 года, имеет несколько версий с некоторыми конструктивными отличиями. На двигатели устанавливаются два распредвала, как у первой версии. Сам распредвал способен изменять угол движения клапанов. Также клапаны впуска и выпуска могут синхронно открываться для обеспечения лучшей вентиляции – благодаря чему мощность на высоких оборотах возрастает.
Распространенные неисправности в моторах Хонда
Чтобы разобраться в причинах сбоя в работе VTEC, необходимо снять клапан системы и проверить его составляющие. Для этого необходимо лишь открутить фиксирующие болты. В некоторых случаях достаточно произвести чистку соленоида специальным очищающим составом. Также рекомендуется прочистить или заменить фильтр-сетку.
Какие поломки системы случаются?
• Поломка датчика давления масла. О неисправности сигнализируют ошибка Р2647 и ошибка обрыва клапанной цепи. Для устранения проблемы требуется заменить датчик на новый.
• Неисправность электроклапана. Характерным симптомом является отказ системы. Необходимо проверить состояние клапана (он находится в задней части ГБЦ с правой стороны) и при необходимости заменить его на новый.
• Нарушена проходимость сетчатого фильтра.
• Износ прокладки электромагнитного клапана. При осмотре фильтра и клапана следует проверить и состояние уплотнительной прокладки – вероятно, она слишком сильно изношена. Первый признак износа – потеки масла около клапана. При обнаружении повреждений и деформации уплотнитель необходимо заменить. Также рекомендуется поставить новую прокладку при замене самого клапана и фильтра.
Если система VTEC неисправна, сначала нужно выполнить диагностику для установления точной причины неполадок – только после этого можно устранять поломку. За ремонтом системы VTEC на Honda следует обращаться в профессиональную автомастерскую.
Думаю, никто не будет спорить, что сейчас существует тенденция к уменьшению объема двигателя и увеличению его производительности. Объяснения этому можно дать разные: кто-то скажет, что заботятся об экологии, а кто-то будет отстаивать версию теории заговора, утверждая, что двигатели малого объема сделаны лишь с одной целью – побыстрее угробить новенький мотор и заставить потребителя бежать в автосалон за следующим авто. Думаю, что доля правды есть в обоих мнениях, но сейчас не об этом.
Хонда еще в далеком 1989 году представила свое видение увеличения мощности атмосферного двигателя без увеличения объема самого агрегата. Имя этой системе VTEC (англ. Variable valve timing and lift e lectronic c ontrol — электронная система контроля положения и хода клапанов). Перевел, как смог, но думаю, что смысл работы системы понятен.
Заключается он в том, что на разных оборотах характеристики топливно-воздушной смеси и отработанных газов меняются. То есть для низких оборотов соотношение хода и продолжительности открытия клапанов должно быть одним, а для высоких – совершенно другим. Если унифицировать этот момент, как это делается во множестве атмосферных двигателей, и выставить оптимальное соотношение для средних оборотов, то тогда на высоких оборотов двигатель не будет выходить на максимальную мощность, а на малых будет перерасходовать топливо.
Эту проблему и попытались решить инженеры Хонда с помощью технологии VTEC. Самые первые двигатели с системой VTEC работали по следующей схеме: на распределительном валу для каждого цилиндра были сделаны по три кулачка. Два из них работали в штатном режиме, а третий "подключался" на высоких оборотов. На практике это реализовывалось за счет подачи масла через электронный клапан, который и решал, на каких оборотах стоит привести в действие тот самый третий кулачок, отвечавший за газораспределение на высоких оборотах.
Для конца восьмидесятых это была крайне прогрессивная технология, которая позволяла снимать с обычного атмосферника объемом 1,6 более 150 лошадиных сил. Впоследствии система модернизировалась, были различные версии двигателей SOHC VTEC и DONC VTEC с одним либо двумя распределительными валами. Последние же технологии Хонда называются i-VTEC, то бишь "умный" VTEC. Эта система позволяет двигателю работать на крайне бедной смеси на низких оборотах, чтобы обеспечить максимальную экономию топлива.
Система крайне прогрессивная, но на серийных автомобилях работает она не так хорошо, как на спорткарах. Для этого достаточно лишь посмотреть на характеристики современных двигателей Хонда. Допустим, возьмем двухлитровый двигатель от пятого поколения CR-V. Выдает он 150 сил – весьма обычные показатели для атмосферника, а кушает что-то в районе шести с небольшим литров по трассе по утверждениям производителя.
Ключевая фраза здесь – "по утверждениям производителя". Сколько на самом деле потребляет хондовский VTEC знают лишь владельцы Хонды. Кстати, если среди моих читателей есть такие, прошу отписать свое мнение по поводу двигателя: у самого Хонды никогда не было, все же интересно.
Читайте также: