Как снять осциллограмму с дпкв
Давно хотел написать пост на эту тему так как достали реально безграмотные советы, срач на форумах и т д… Особенно удивляет то что подобные безграмотные советы можно прочитать в руководствах по сервису на конкретный автомобиль, хотя по идее их пишут или должны писать квалифицированные специалисты. Часто можно увидеть рекомендацию что ДПКВ можно проверить на исправность простым мультиметром на сопротивление, ну это самая примитивная проверка зачастую, ничего не говорящая об исправности системы синхронизации.
В качестве примера разберем ситуацию из опыта, приехала машинка Киа сид бензин, на холодную едет все нормально но когда прогреется ничинает дико тупить валит черный дым из выхлопной, динамика нулевая. Подключаю сканер вижу в сохраненных ошибку по ДПКВ, по идее машина должна уже заглохнуть.
Снимаю датчик и как обычно пишут в руководствах проверяю на сопротивление
ну и вижу вполне адекватные параметры.
приговорить наугад датчик стоимостью 1400р. стремно как то…
Скидываю фишку с разьема ДПКВ подключаю оссцилограф и записываю сигнал, завожу машину (шок!)… Машина завелась на ДПРВ, записываю сигнал и вижу что синхроимпульс ДПКВ синхронизации очень слабый особенно с прогревом, практически одинаковый с импульсами отсчета, что то вроде этого-
и ЭБУ его не воспринимает и переводит синхру по ДПРВ и в аварийный режим…
Увидеть подобную неисправность простым мультиметром невозможно!
Поэтому я считаю единственная правильная проверка ДПКВ возможна только пишущим оссцилографом,
Оссцилограмма исправного ДПКВ
В случае повреждения демпфера синхродиска или его крепления, возникают торцевые биения зубчатого диска. Такая неполадка приводит к затруднительному пуску двигателя либо к невозможности запустить двигатель. Если же двигатель всё же запускается, то может работать неустойчиво и только при невысокой частоте вращения коленчатого вала. Биения синхродиска на осциллограмме напряжения выходного сигнала датчика положения коленчатого вала проявляется как цикличное увеличение и уменьшение амплитуды напряжения синхроимпульсов.
Оссцилограмма с задающего венца с поврежденными зубьями при установке коробки кривыми руками на СТО…
Датчик положения коленчатого вала (ДПКВ) самый главный в системе впрыска, по нему осуществляется синхронизация работы электронного блока управления двигателем. Сигнал вазовского дпкв представляет собой серию повторяющихся электрических импульсов напряжения, генерируемых датчиком при вращении коленчатого вала.
Задающий диск представляет собой зубчатое колесо 60-2, т.е. 58 равноудаленных зубцов и два отсутствующих для синхронизации. При вращении задающего диска вместе с коленчатым валом впадины изменяют магнитный поток в магнитопроводе датчика, наводя импульсы напряжения переменного тока в его обмотке.
Осциллограмма индуктивного ДПКВ имеет следующий вид:
Здесь стоит обратить внимание на амплитуду сигнала и форму импульсов. Если витки в обмотке датчика будут короткозамкнуты, то амплитуда сигнала будет снижена. Также по осциллограмме легко вычислить биение задающего диска и повреждение зубцов.
На некоторых иномарках в качестве ДПКВ используется датчик Холла, вырабатывающий прямоугольные импульсы.
Вот типичный пример осциллограммы такого датчика (Hyundai Sonata):
А вот так синхронно работают датчики положения коленчатого и распределительного валов двигателей Nissan. По нарастающим фронтам сигналов можно определить смещение валов относительно друг друга.
А это осциллограмма типичной неисправности датчика Холла (Audi 100). Нарастающий фронт "срезан", сигнал такого датчика блок управления не распознает.
На старых Опелях и Daewoo Nexia в качестве датчика синхронизации используется индукционная катушка с задающим диском.
Осциллограмма такого датчика имеет такой вид:
Датчик положения распредвала
ДПРВ используется в системе управления двигателем для определения положения распределительного вала, что необходимо для синхронизации впрыска топлива. Датчик генерирует один импульс за полный цикл работы двигателя (720 градусов поворота коленчатого вала).
Импульс датчика положения распредвала указывает на верхнюю мертвую точку первого цилиндра.
ДМРВ
Датчик массового расхода воздуха (ДМРВ) применяются во многих системах управления двигателем (в частности ВАЗ) для измерения значения мгновенного расхода воздуха. Выходной сигнал ДМРВ Bosch HFM5 представляет собой напряжение постоянного тока, изменяющееся в диапазоне от 1 до 5 В, величина которого зависит от массы воздуха, проходящего через датчик. При нулевом расходе исправный датчик должен иметь выходное напряжение около 1В. Эталоном считается значение 0,996В.
По осциллограмме можно отследить 2 важных момента:
1. Скорость реакции ДМРВ можно оценить по времени переходного процесса выходного сигнала при подаче питания на датчик.
2. Выходное напряжение датчика при нулевом расходе воздуха (двигатель остановлен).
Осциллограмма исправного ДМРВ при подаче питания имеет следующий вид.
Время переходного процесса равно 0,5 мс. Выходное напряжение при нулевой подаче воздуха равно 0,996 В.
А это осциллограмма выходного напряжения при включении питания неисправного ДМРВ.
Время переходного процесса такого датчика в десятки раз больше, чем исправного, а значит время реакции самого датчика будет значительно снижено и автомобиль будет «вяло» набирать скорость. Выходное напряжение такого ДМРВ при остановленном двигателе равно 1,13 В., что говорит о значительном отклонении сигнала от нормы. Двигатель с неисправным датчиком в значительной степени потеряет «приемистость», будет затруднен пуск и возрастет расход топлива.
Важно: система самодиагностики блока управления двигателем не способна выявить снижение скорости реакции ДМРВ. Такую неисправность можно найти только путем диагностики с применением осциллографа.
Осциллограмма выходного напряжения изношенного ДМРВ при резком открытии дроссельной заслонки.
При значительном загрязнении чувствительного элемента датчика, скорость реакции на изменение воздушного потока снижается и форма осциллограммы становится более "сглаженной".
Исправный датчик при быстром открытии дроссельной заслонки должен выдавать кратковременно в первом импульсе более 4 В.
ДМРВ Bosch
Лямбда-зонд
По анализу осциллограммы выходного сигнала лямбда-зонда на различных режимах работы двигателя можно оценить как исправность самого датчика, так и исправность всей системы управления двигателем.
Осциллограмма напряжения исправного циркониевого лямбда имеет следующий вид:
Здесь следует обратить внимание прежде всего на 3 момента:
1. Размах напряжения выходного сигнала должен быть от 0,05-0,1 В до 0,8-0,9 В. При условии, что двигатель прогрет до рабочей температуры и система управления работает по замкнутой петле обратной связи.
2. Время перехода выходного напряжения зонда от низкого к высокому уровню не должно превышать 120 мс.
3. Частота переключения выходного сигнала лямбда-зонда на установившихся режимах работы двигателя должна быть не реже 1-2 раз в секунду.
ДПДЗ
Датчик положения дроссельной заслонки (ДПДЗ) служит для отслеживания угла открытия дроссельной заслонки и представляет собой потенциометр. Опорное напряжение датчика равно 5 В. Сигнал исправного ДПДЗ представляет собой напряжение постоянного тока в диапазоне от 0,5 до 4,5 В. При повороте дроссельной заслонки, сигнал должен меняться плавно, без скачков и провалов.
Пример осциллограммы двух датчиков положения дроссельной заслонки VW Passat с двигателем RP показана на рисунке ниже.
Один из датчиков работает в диапазоне от 0 до 25% открытия дроссельной заслонки, а второй от 25 до 100%.
Датчик абсолютного давления (ДАД)
На основании данных с этого датчика о разряжении и температуре во впускном коллекторе, блок управления рассчитывает количество воздуха, поступающего в цилиндры двигателя. Принцип действия основан на преобразовании значения давления в соответствующую величину выходного напряжения. Применяемые в современных системах управления двигателем датчики чрезвычайно надежны. Проверить работу датчика абсолютного давления можно осциллографом, подключившись к его сигнальному выходу.
Осциллограмма с датчика при открытии дроссельной заслонки имеет такой вид:
Датчик детонации (ДД)
Наиболее распространенный широкополосный датчик детонации пьезоэлектрического типа с генерирует сигнал напряжения переменного тока с частотой и амплитудой зависящей от степени "шума", который издает та часть двигателя, на которую он установлен. При возникновении детонации амплитуда вибраций повышается, что приводит к увеличению напряжения выходного сигнала ДД. При этом контроллер корректирует угол опережения зажигания для гашения детонации.
Проверить датчик детонации можно на столе, подключившись щупами осциллографа к его выводам. При легком постукивании металлическим предметом на осциллограмме отобразятся такие импульсы:
Датчик скорости автомобиля
Как правило такие датчики имеют в своей основе элемент Холла. Однако встречаются и индуктивные датчики.
Типичный пример осциллограммы индуктивного датчика скорости автомобиля Ауди 100 имеет такой вид:
Индуктивный датчик АБС
Хоть этот датчик не относится к системе впрыска, но раз уж попалась на глаза, выкладываю осциллограмму.
Такой вид имеет сигнал с индуктивного датчика системы АБС.
Обратите внимание на амплитуду сигнала. В данном конкретном случае осциллограмма снята при простом прокручивании колеса рукой. Однако если датчик имеет короткозамкнутые витки, то его амплитуда будет значительно меньше. Сигнал такого датчика блок управления АБС не "увидит".скачать dle 10.6фильмы бесплатно
Датчик положения коленвала предназначен для синхронизации системы зажигания и работы топливных форсунок в бензиновой инжекторном двигателе. Соответственно, его поломка приведет к тому, что зажигание будет спешить или запаздывать. Это приведет к неполному сгоранию топливной смеси, нестабильной работе двигателя или полном его отказе.
В настоящее время существует три типа датчиков — индукционные, на основе эффекта Холла, а также оптические. Однако самыми распространенными являются датчики, относящиеся к первому типу (индукционные). Далее мы поговорим с вами о возможных неисправностях и методы их устранения.
Признаки неисправности датчика коленвала
Независимо от того, по какой технологии работает ДПКВ, признаки неисправностей в его работе всегда одинаковы. Если не работает датчик коленвала, то об этом вам скажут следующие признаки:
Датчик коленвала который будет давать сбой из-за большого количества металлической стружки
- значительное снижение динамических характеристик машины (хотя этот фактор может быть следствием и других поломок, все же стоит провести диагностику ДПКВ);
- произвольно меняются обороты двигателя в движении;
- в холостом режиме обороты мотора «плавают»;
- во время динамической нагрузки в двигателе возникает детонация;
- при полном выходе из строя ДПКВ, становится невозможно запустить двигатель.
Далее вкратце остановимся на устройстве датчика коленвала для того, чтобы лучше понять причины возникновения неисправностей и методы их устранения.
Устройство датчика коленвала
Для того чтобы понять работу и ошибки ДПКВ в первую очередь необходимо разобраться с принципом работы датчика. Он представляет собой конструкцию из стального сердечника, обмотанного медным проводом, помещенного в пластмассовый корпус. Все провода изолированы друг от друга компаундной смолой.
Датчик положения коленвала/распредвала. Устройство и назначение
Видео лекция об устройстве и назначению датчика положения коленвала/распредвала. Функциональные особенности и выход из строя датчиков положения коленчатого вала и распределительного вала (ДПКВ и ДПРВ).
Подробнее
Задача устройства — фиксировать прохождение возле датчика металлических зубьев шкива. На нем есть 60 зубьев, 2 из которых отсутствуют. Именно прохождение этого пустого промежутка должен зафиксировать датчик. Это дает возможность синхронизировать работу системы зажигания и системы питания с тем, чтобы обеспечить правильную последовательность подачи топлива через форсунки. Это необходимо для создания оптимальной топливной смеси.
Перед тем как перейти непосредственно к описанию принципа работы датчика коленвала необходимо указать, что всего существует три их разновидности. В частности:
- Индукционный датчик. В его основе лежит использование намагниченного сердечника, вокруг которого намотана медная проволока (катушка), концы которой выведены для фиксации изменения напряжения. Именно такой тип датчика чаще всего устанавливается в современных машинах.
- Оптический датчик работает на основе светодиода, который излучает световой луч и приемника, фиксирующего этот луч с другой стороны. При прохождении контрольного зуба луч прерывается, что фиксируется контрольным прибором. Информация о частоте вращения передается на ЭБУ.
- Датчик Холла. Он основан на одноименном физическом эффекте. Так, на коленвале установлен магнит, который фиксируется датчиком, в котором в этот момент начинается движение постоянного тока, что фиксируется синхронизирующим диском. Подробнее об этом вы можете почитать в следующей статье.
Далее перейдем к рассмотрению неисправностей.
Три способа как проверить датчик коленвала
Мы поговорим с вами о том, как сделать проверку индуктивного датчика, поскольку, как было указано выше, именно такой тип наиболее распространен на современных автомобилях. Итак, переходим к рассмотрению диагностики.
Проверка OBD-2 сканером
В дороге, быстрее всего выявить сбой поможет диагностический сканер. Самым доступным и популярным является корейский Scan Tool Pro Black Edition.
Как выглядит диагностический сканер
Ошибка датчика коленвала при диагностике
Если при визуальном осмотре вы не заметили грязи и стружки на торце ДПКВ (очистить можно бензином или спиртом), то стоит подключить OBD2 сканер к автомобилю и любым гугл приложением подключится по Wi-Fi или Bluetooth с телефона к ЭБУ автомобиля. Самые популярные приложения на смартфон:
- Torque (максимальная совместимость с возможностями сканера);
- Auto Doktor OBD;
- MobileOpenDiag;
- InfoCar — OBD2.
Диагностические коды неисправности (DTC) датчика коленчатого вала — P0335 или P0336 в зависимости от того поступает ли вообще сигнал с датчика и удается ли обнаруживать на задающем зубчатом диске синхронизирующий выступ. Также в режиме реального времени можно посмотреть количество оборотов двигателя и есть ли синхронизиронизация фаз зажигания по периоду импульса сигнала напряжения.
Но, так как возможность проверить сканером есть не у всех, то все же предлагаем более детально остановится на проверке датчика КВ мультиметром и осциллографом, он дает самый точный анализ его работоспособности. Перед тем как снять датчик с его посадочного места, не забудьте обозначить метками его положение на двигателе. Это избавит вас от проблем при повторном его монтаже.
Проверка сопротивления омметром
Проверка ДПКВ с помощью омметра и осциллографа
Это наиболее простой метод проверки своими руками, однако он не дает 100% гарантии того, что такая проверка выявит неисправность. Для этой процедуры вам понадобится мультиметр, который вы должны переключить в режим измерения сопротивления (омметр). С его помощью нужно измерить сопротивление катушки индуктивности. Сделать это можно, просто прикоснувшись щупами мультиметра попарно к выводам катушки. Полярность в данном случае не имеет значения.
Как правило, значение сопротивления большинства катушек находится в пределах 500. 700 Ом. Однако точное значение лучше почитать в документации к датчику или найти в интернете. Соответственно, на мультиметре нужно устанавливать верхний предел — 2 кОм (предел может различаться у разных моделей мультиметров, главное, чтобы он был больше измеряемого и наиболее близок к нему). Если в результате замера вы получили значение, близкое к обозначенному выше, значит, с катушкой все в порядке. Однако успокаивать себя еще рано, ведь такая проверка не полная. Лучше продолжить проверку с помощью других методов.
Проверка значения индуктивности
Любая катушка в возбужденном состоянии имеет свою индуктивность. Это же касается и той, которая встроена в корпус ДПКВ. Метод проверки заключается в измерении этого значения. Для этого вам понадобится:
- мегаомметр;
- сетевой трансформатор;
- измеритель индуктивности;
- вольтметр (желательно цифровой).
Некоторые мультиметры имеют встроенную функцию измерения индуктивности. Если же у вашего прибора ее нет, то стоит воспользоваться дополнительным оборудованием. В любом случае измеренное значение индуктивности катушки ДПКВ должно находиться в пределах 200. 400 мГн (в отдельных случаях может незначительно отличаться). Если вы получили значение, которое сильно отличается от указанного, то велика вероятность того, что датчик неисправен.
Далее нужно измерить сопротивление изоляции между провода катушки. Для этого используют мегаомметр, установив на нем выдаваемое напряжение, равное 500 В. Процедуру замера лучше проводить 2-3 раза для получения более точных данных. Измеренное значение сопротивления изоляции не должно быть ниже 0,5 МОм. В противном случае можно констатировать нарушение изоляции в катушке (в том числе возможность появления межвиткового короткого замыкания). Это указывает на неисправность прибора. Размагничивание катушки необходимо провести с помощью сетевого трансформатора. Однако самый совершенный метод диагностики ДПКВ заключается в использовании осциллографа.
Проверка с помощью осциллографа
Осциллограмма на работающем двигателе. Красным обозначено прохождение места без зубьев
С помощью этого метода можно не только узнать контролируемые значения, но и увидеть процесс формирования сигналов. Это дает исчерпывающую информацию о состоянии и работе ДПКВ. Лучше проводить его на работающем двигателе. Однако можно и снять датчик. Для работы вам понадобится электронный осциллограф и программное обеспечение для работы с ним. Проверка со снятым датчиком проходит по следующему алгоритму:
- Подсоединить щупы осциллографа к выводам катушки ДПКВ. Полярность не имеет значения.
- Запустить программу для работы с осциллографом.
- Взять любой металлический предмет и помахать им перед ДПКВ.
- Если датчик исправен, то одновременно с этим на экране будет воспроизводиться осциллограмма, которая будет строиться по данным от датчика.
Если датчик зафиксировал перемещения металлического предмета, значит, он, скорее всего исправен. Однако точный диагноз можно поставить лишь при подключении осциллографа к датчику с работающим двигателем. Это делается просто, подключив щупы параллельно к выводам датчика. Полученная таким образом осциллограмма даст вам информацию о формирующихся сигналах.
Итоги
Датчик положения коленвала индуктивного типа — несложное, однако очень важное устройство. При описанных выше признаках неисправности обязательно проведите его диагностику. Какой метод выбрать, зависит от наличия в вашем распоряжении необходимых приборов и инструментов. Советуем вам начать с простейшего метода по измерению сопротивления катушки. Если у вас нет описанных выше инструментов и приборов, то отгоните машину на СТО, где мастера проведут для вас полную диагностику.
Найти неисправность стало гораздо проще. Не надо разбирать и подкидывать каждую запчасть, что удешевляет поиск неисправности и экономит время. Автомобильный осциллограф применяется для диагностики двигателя, датчиков электронной системы управления, генератора, стартера, аккумулятора. Нужен при комплексной автомобильной диагностике, дополняет проверку сканером. Позволяет делать дефектовку мотора без вскрытия.
Осциллограф – это прибор, который снимает параметры времени и амплитуды электрического сигнала. При неисправностях автомобиля, также нужны эти характеристики. То есть как изменяется сигналы датчика, катушки, форсунки по времени.
Какой выбрать осциллограф для диагностики авто
Рассмотрим наиболее удобные и информативные приборы.
USB Autoscope Постоловского
Преимущества
- Профессиональные скрипты от Андрея Шульгина.
- Удобный интерфейс.
- Широкий диапазон измерения от 6 до 300 вольт.
- Обработка скриптов в автоматическом режиме.
- Информативный скрипт эффективности по цилиндрам CSS, показывающий работу форсунок, системы зажигания.
- Тест аккумулятора, генератора, стартера. Показывает неисправности в автоматическом режиме. Легкий процесс съема характеристик: достаточно иметь доступ к плюсовой или минусовой клеммам АКБ.
- Тест давления в цилиндре. Показывает метки системы газораспределения, правильно ли стоят фазы. Выявляет провернутый задающий диск.
Полная документация по работе с прибором. Подробно описаны скрипты, схемы подключения. Есть видео инструкция на сайте производителя. Отзывчивая поддержка.
Мотодок 3
Преимущества и недостатки
- Скрипт Андрея Шульгина эффективности цилиндров. Есть некоторые недостатки по синхронизации с некоторыми автомобилями, имеющими слабый сигнал с датчика коленчатого вала. Но это сглаживается удобством и быстрой работой.
- Подключения на любое расстояние по кабелю RJ 45.
- Качество картинки при диагностике, что не маловажно при работе.
- Подробная документация на сайте производителя.
Для примера приведены только два осциллографа для диагностики авто. Существуют и другие приборы: отличаются ценой, производителем, но принцип измерения одинаков. Самое главное иметь опыт в чтении осциллограмм к каждой марке автомобиля.
Диагностика осциллографом автомобиля: как проводить
Пользоваться осциллографом не составляет особых трудностей у диагностов. Методика подробно описана в инструкциях к прибору. Главное знать места подключения к датчику положения коленчатого вала для проведения скрипта Шульгина по эффективности цилиндров. Для различных марок автомобилей ДПКВ может находится возле задающего диска или маховика.
Проверка датчиков осциллографом
Датчик положения коленчатого вала. Нужен для синхронизации искры и форсунок по такту сжатия. Сигнал имеет синусоидальную форму с разрывом. Форма сигнала с одинаковой амплитудой. Если есть отклонения, значит задающий диск имеет не равномерность вращения или люфт.
Исправный ДПКВ
- Подключаем измерительный щуп к сигнальному проводу осциллографа.
- Ставим диапазон измерения до 300-500 вольт.
- Нажимаем кнопку пуск и снимаем сигнал.
Датчик положения распределительного вала. Имеет прямоугольную форму сигнала амплитудой 12,3 – 12,7 вольта. Полезно снимать одновременно сигналы ДПКВ и ДПРВ для определения фазы впрыска и смещения распределительных валов относительно друг друга. Но как правило этот параметр проверки ДВС есть на сканере.
Нижний фронт сигнала ДПРВ совпадает с разрывом зубьев на задающем диске, что говорит о правильной фазе впрыска.
Датчик массового расхода воздуха применяется на бензиновых двигателях для измерения объема прошедшего воздуха. Основной параметр для диагностики — это его АЦП равное 0,996 вольт при включенном зажигании. При углубленной диагностике ДМРВ, нужно померить время релаксации – период, за который, датчик выходит в нулевое положение.
Исправный ДМРВ. Нулевое напряжения равно 0,996 вольт и скорость выхода на рабочий диапазон 0,5 мс.
Ниже представлена осциллограмма неисправного ДМРВ. Время перехода 20 мс, а напряжение при нулевом объеме воздуха 1,130 вольт. Авто с таким датчиком будет расходовать много топлива и терять мощность.
Неисправный дмрв
Немаловажно проверить пик выхода датчика на максимальный уровень напряжения. Для этого нужно снять сигнал с ДМРВ на заведенном ДВС, при резко нажатой педали газа. Чем больше показания к 5 вольтам, тем датчик имеет большую отдачу и авто будет эластичнее.
Сигнал напряжения ДМРВ под нагрузкой
Работа с автомобильным осциллографом не страшна для начинающих диагностов. Нужно тщательно изучить инструкцию по работе с прибором и применять на практике. Чем больше опыт подключения к конкретной марке, тем быстрее и точнее поиск неисправностей.
Датчик положения дроссельной заслонки. Проверить легче всего сканером. Но при плавающей неисправности, когда автомобиль едет рывками, нужно проверить сигнал осциллографом. Подключаем сигнальный провод щупа к выходу ДПДЗ и снимаем сигнал открывая дроссель. Не должно быть резких скачков.
Исправный датчик положения дроссельной заслонки
Неисправный датчик положения дроссельной заслонки
Проверка массы двигателя осциллографом
Плохую массу двигателя можно проверить измерительным щупом осциллографа. Минус щупа соединяется с минусовой клеммой АКБ, а сигнальный с двигателем или кузовом. Значительные помехи говорят о плохой массе.
Хорошая масса
Диагностика катушек зажигания с помощью осциллографа
Проверка системы зажигания возможна только по анализу сигнала вторичной или первичной цепи. Самодиагностика двигателя автомобиля способна только косвенно определить дефекты в высоковольтной части. Может выдать ошибку по пропускам зажигания. Коды неисправностей пропусков дают общую картину работы цилиндра. Они могут возникнуть как от неисправной катушки, свечи, высоковольтного провода, форсунки, низкой компрессии, подсоса воздуха. Для точного определения неисправной катушки зажигания нужна проверка осциллографом.
Ниже приведен пример типичного сигнала высоковольтного пробоя, по которому можно судить о работоспособности всей высоковольтной системы автомобиля. Любой дефектный элемент: катушка, провод, свеча проявится на этой осциллограмме.
Типичные неисправности системы зажигания
Межвитковое замыкание в первичной цепи катушки
Пробой высоковольтного провода
Свеча в саже
Слишком большое время накопления катушки. Дефект в электронном блоке управления двигателем.
Проверка индивидуальных катушек зажигания
Для диагностики индивидуальных катушек зажигания очень удобно использовать осциллограф АВТОАС-ЭКСПРЕСС М. Удобство заключается в его компактности и легкости подключения. Достаточно загрузить программу и приложить индуктивный или емкостной датчик прибора к самой катушке. Получаем осциллограмму как показано выше.
Диагностика топливной форсунки осциллографом
Форсунка бензинового двигателя состоит из запорного клапана, электромагнитный катушки. Соответственно движение этого клапана возможно проверить осциллографом.
Исправная форсунка
Неисправная форсунка
Диагностика форсунок с помощью осциллографа требуется в случае тщательного поиска неисправности. В большинстве случаев достаточно сделать тест Андрея Шульгина на эффективность работы цилиндров.
Проверка датчика кислорода с применением осциллографа
Лямбда зонд служит для точного дозирования топливо – воздушной смеси и снижения уровня токсичности отработавших газов. Работает по принципу гальванического элемента. Вырабатывает напряжение в зависимости от присутствия свободного кислорода во внутренней и внешней ячейке датчика. Напряжение варьируется от 0,1 – 0,9 вольт, что соответствует бедной и богатой смеси.
Проверить работу датчика можно
- Сканером
- Осциллографом
Первый вариант быстрый и достаточный для оценки общей работы. Второй же вариант диагностики датчика кислорода более точный и позволяет оценить скорость сработки лямбда зонда в режиме обратной связи.
Неисправный датчик кислорода. Скорость реакции медленная
Датчик кислорода полностью неисправен
Скрипт CSS Андрея Шульгина
Вот мы и добрались до самой сути диагностики автомобильных двигателей. Для диагностов любой марки это самый информативный скрипт. Он показывает работу форсунок, искры и компрессии за одну проверку. Для проведения этого теста достаточно снять сигнал с датчика положения коленвала и синхронизацию с искры первого цилиндра. Сложность может заключаться в подключении к ДПКВ некоторых марок, но это сглаживается информацией, которую дает скрипт.
Порядок записи сигнала применительно к осциллографу USB Autoscope:
- Подключиться параллельно сигнальным щупом осциллографа к выходу ДПКВ
- Если установлена система зажигания DIS поставить щуп синхронизации на первый цилиндр, индивидуальная катушка — воспользоваться индуктивным датчиком.
- Запустить двигатель и дать работать на холостом ходу.
- Активировать скрипт CSS
- Через 5-10 секунд плавно поднять обороты до 3000 и опустить.
- Спустя 5-10 секунд резко поднять обороты и выключить искру оставив педаль газа полностью нажатой.
- Остановить скрипт.
Анализ теста Андрея Шульгина
- Нажать кнопку «Выполнить скрипт»
- Задать входную информацию для анализа: количество и порядок работы цилиндров, угол опережения зажигания с погрешностью ±10°.
- Анализируем полученную картинку.
- Холостой ход — снижена эффективность 3 цилиндра.8.
- Низкая компрессия в 3 цилиндре.
Таким образом, за 5 минут можно найти причину «троящего» двигателя, не откручивая свечи и не замеряя компрессию.
Порядок проведения теста эффективности на осциллографе Мотодок 3
Порядок снятия скрипта аналогичный USB Autoscope:
Анализ осциллограммы давления в цилиндре
Для снятия характеристики газодинамических процессов в цилиндре в комплекте с Мотортестером прилагается датчик давления на 16 атм. Двигатель должен быть прогрет до температуры 80-90 °C
Порядок проведения теста:
- Датчик давления вкрутить вместо свечи. Высоковольтный провод проверяемого цилиндра соединить с разрядником и подключить к нему датчик синхронизации первого цилиндра.
- Выключить форсунку в проверяемом цилиндре.
- Запустить прибор.
- Завезти двигатель и дать работать на холостых оборотах.
- Получить осциллограмму давления синхронизированную по ВМТ 0°C, как показано ниже.
Важно проанализировать две точки на осциллограмме:
- Момент открытия выпускного клапана. На моторах без фазовращателей значение 140-145°, с фазовращателями порядка 160°.
- Момент перекрытия, когда выпускной и впускной клапана открыты одновременно. Должен быть 360-360°.
При отклонениях от этих значений, можно говорить о смещении фаз газораспределения.
Все вышеприведенные методы работы с мотор тестером можно делать в различной последовательности. Все зависит от конкретного случая. Где-то достаточно провести тест Шульгина или снять характеристику давления в цилиндре. Главное найти неисправность меньшими потерями для владельца автомобиля.
Автомобиль: Opel Corsa D 2008 z14xep 1.4 л 90 л.с.
Речь в данной статье пойдёт скорее не о поиске неисправности, а о способах доказывания существующей неисправности для клиента и другого сервиса, где производились работы по замене цепи ГРМ в двигателе.
С клиентом вели переписку уже давно на тему перепрошивки его автомобиля, немного его консультировал. И вот в один из дней он пишет мне примерно следующее:
На что я ему ответил и про возможность чип-тюнинга и главное, что необходимо разбираться с ошибкой P0344 (ошибка по датчику распредвала)
На что я получаю от него следующую информацию:
После этого мы в ходе переписки пришли к выводу, чтобы он сначала съездил к ним с просьбой разобраться, а только потом уже приезжал ко мне.
Через несколько дней он до них доехал, оставил автомобиль на несколько часов. В результате они сказали, что вскрывать крышку двигателя долго, пусть сначала датчики проверит, причем про датчик коленвала почему-то утверждали, мол, он может давать такой эффект. Так или иначе автомобиль приехал ко мне в мастерскую.
Передо мной стояла задача убедиться, что метки ГРМ выставлены верно, ведь ошибка просто так после замены не загорается, а именно так может себя проявлять ошибочное выставление меток системы ГРМ.
Подключил сканер, включил зажигание, ошибки подтвердились.
Я прекрасно понимаю, что ошибка по датчику распредвала может гореть и из-за неисправности электрических цепей, и по идее при сбросе ошибки на незаведённом авто должна сразу же проявить себя снова (так было уже в моей практике).
Сбросил ошибки, всё стало чисто, ничего не появилось. Подобный расклад наводит на мысли, что ошибка проявляется лишь при движущемся распредвале, а значит мои предположения начинают подтверждаться.
Завёл автомобиль, он сначала подкинул обороты до 2200, затем снизил до нормального холостого хода, секунд пять неравномерно работал, а потом нормализовался. Ошибка P0344 снова появилась.
Теперь нужно было сверить метки. Изначально планировал снять осциллограмму ДПРВ+ДПКВ. Если с датчиком распредвала вопросов не возникло: немного пришлось разобрать штатный разъём, но доступ получил, то ДПКВ В данном авто расположено очень далеко и неудобно. (у меня отсутствует смотровая яма)
Сам ЭБУ расположен в моторном отсеке, рядом с двигателем, тоже довольно неудобен в плане диагностики, подключения щупов к пинам.
Пока искал сигнальный пин ДПРВ на датчике заодно и проверил исправность цепей датчика: и +5В и масса масса были, сигнальный пин звонится до блока ЭБУ кабельтрекером.
Эталонные осциллограммы найдены на просторах Интернета:
Авто: Opel Corsa D 2007-2014
Код двигателя : Z12XEP 16V 1.2L
Система управления двигателем
Сигнал ДПКВ + ДПРВ
Несмотря на то, что осциллограмма снята с другой модели двигателя, можно её принять за эталон: Как я понял из программы диагностики ЭБУ на этих моделях стоят одинаковые (и у z12xep, и у z14xep стоят блоки Bosch ME761C), а значит и алгоритм обработки сигналов не должен отличаться.
Итого получается, что снять я могу только сигнал с распредвала. Была мысль подключить датчик давления в цилиндр, чтобы отловить ВМТ, но катушка имеет общий корпус на все 4 цилиндра.
Покрутив-повертев осциллограмму, заметил то, что на сигнале ДПРВ имеются помехи. Это же искра!
Привязавшись к ней, как к точке отсчета мы сможем хотя бы примерно понимать, где ВМТ в данном случае.
Подключил датчик-присоску на катушку в районе первого цилиндра:
Чтобы понимать вообще, почему такой сигнал получается на датчике распредвала, надо понимать, как выглядит задающий лепесток на распредвале:
Тем, кто знаком с принципом работы датчика Холла, понятна природа такого сигнала.
Данную осиллограмму следует трактовать таким образом, что не искра бьёт неправильно, а именно сам распредвал генерирует сигнал неверно, невовремя. В зоне задающего диска коленвала с маховиком никаких работ не производилось, поэтому искра стабильно привязана к положению коленвала (с учетом коррекции угла зажигания на ХХ). Я в свою очередь знаю, что производились работы по замене цепи ГРМ, а значит с метками распредвала могли ошибиться и что-то смонтировать неправильно.
Возвратимся к полученной осциллограмме. Невооруженным глазом видно, насколько сильно смещена искра относительно сигнала ДПРВ, если сравнивать с эталоном. Маркерам отмечены линии, которые должны соответствовать ВМТ согласно эталону, и очевидное несоответствие в опережении зажигания наводит на мысли о неверной генерации сигнала с ДПРВ. Остается лишь вопрос, как авто при таком смещении может вообще нормально заводиться, работать на ХХ (хоть и не сразу) и развивать мощность.
Попробовал другим способом нащупать ВМТ в этом двигателе, привязав её к сигналу с ДПРВ.
Подключил датчик разрежения:
Пожалуй впервые ощутил нехватку каналов осциллографа именно сейчас: Хотелось бы третий канал, чтобы определить где первый цилиндр для осциллограммы разрежения. В целом её можно читать и так, но было бы удобнее.
Из осциллограммы видно, что пульсации разрежения в двигателе нормальные, без искажений. Не совсем понятно, почему, ведь судя по двум замерам распредвал смещен очень сильно!
Пошёл в интернет, чтобы понять, как вообще меняют эту цепь и где можно ошибиться при этих работах.
Представлю скриншоты из видеоролика на ютубе, на которые следует обратить внимание.
При выставлении меток ставится специальная планка на распредвалы. По заверению автора ролика ставится очень плотно, зазоры очень маленькие, распредвалы фиксируются без единого люфта.
Задающий лепесток ДПРВ не имеет шпонок при посадке его на распредвал, то есть без спецфиксатора может быть установлен в любом положении.
Как это делается правильно можно увидеть на скриншотах:
После этой дополнительной проверки у меня не осталось сомнений, что лепесток был установлен неверно. Если с распредвалами еще всё более-менее нормально было, двигатель поэтому нормально и работал, то с лепестком они промахнулиссь. Всего скорее данного комплекта фиксаторов в той мастерской просто не было.
Курахтанов Игорь
©Легион-Автодата
Кострома, Малый переулок, 10
+7 (963) 930-18-21
режим работы 9-21
autodiagnostic44.ru
Читайте также: