Subaru avcs принцип работы
Не дает мне покоя этот клапан, по логам не синхронная работа, разница получается 2-4 градуса, и до 10 градусов доходит. Врет только левый клапан.
Кто нибудь пробовал разобраться почему он может не корректно работать?
Я взял у родственника для опытов клапан VVTI с мотора 1MZ.
У него загорелся чек, сняли клапан, помыли, поставили, чек погас, пару дней поработал, потом опять чек, купил новый, сейчас все нормально.
Фото сделал тоетовского клапана.
Наш клапан AVCS практически такой же, даже размеры практически совпадают.
Снял свой клапан, тоже разобрал.
Проверил катушки на наличие КЗВ, все норм, значит электрическая часть исключается, видимых дефектов нету.
Механическая часть тоже без видимых дефектов, то есть на вид он нормальный, но почему он не корректно работает.
Единственное на пружине с двух сторон набито, то есть как выработка небольшая
Замерил шток и корпус.
Клапан AVCS: шток - 9.465мм, в корпусе - 9.512мм, то есть рабочий зазор получается порядка 0,02мм (какой у нового не знаю)
Клапан VVTI: шток - 9.462мм, в корпусе - 9.508мм, размеры те же, разница в несколько микрон тут думаю не важна.
Как он работает, в катушке во втулке вверху подшипник с 4-мя шариками и в низу тоже, в них вставляется небольшой шток, который при подаче 12в идет в низ и давит на шток который уже управляет подачей масла, пружина возвращает шток на место когда напряжения нету.
Получается у клапана два положения, шток внизу, шток вверху, то есть открыт/закрыт, правильно я понимаю?
В спокойном положении подача масла закрыта, когда подается питание, подача масла открывается, правильно я понимаю?
Закрыто всегда маленькое отверстие, которое находится у основание катушки, при перемещении штока, оно открывается.
В итоге, что может влиять на его работу, может пружина прослабла, или рабочий зазор должен быть меньше?
Найти бы живой датчик на денек, что бы замерить размеры и усилие пружины, для этого даже не нужно развальцовывать его, шток можно снять сняв стопорное кольцо.
А вот тоетовский нужно развальцовывать.
Главная | Статьи о Субару | Устройство изменения фаз газораспределения Subaru
Система AVCS и AVLS Subaru
Active Valve Control System или коротко AVCS — система управления фазами газораспределения, которая направлена на контроль подъема клапанов, а также на изменение времени их открытия и закрытия. Данная система изменения фаз применяется только компанией Subaru и является разновидность технологий VVT и VVL. Сама система изменения фаз в свою очередь подразделяется на технологии AVCS, Dual AVCS и i-AVLS.
Схема работы AVCS схожа с системой VVT-i — под воздействием давления масла на лопасти муфты шкива распределительного вала с помощью электромагнитного клапана, впускной распредвал поворачивается на определенные градусы от стандартного состояния.
Максимальный градус поворота распредвала установлен в пределах 35 градусов. При подсчете угла поворота система берет показания ДМРВ, ETC, кислородного датчика (для определения нагрузки на двигатель), датчика топливо-воздушной смеси, а также датчика положения распредвала и коленвала.
На холостом ходу двигателя или при низкой нагрузке AVCS задерживает открытие клапанов, тем самым работы двигателя становится ровнее.
Когда нагрузка на двигатель начинает расти и доходит до среднего значения, система AVCS начинает открывать впускные клапана во время последней фазы выпуска, когда выпускные клапана еще слегка приоткрыты. При этом избыточное выпускное давление выталкивает часть выхлопных газов во впускной тракт, имитируя эффект системы EGR. Также впускные клапана раньше закрываются. Это повышает КПД двигателя и улучшает его топливную экономичность
При очень большой нагрузке система AVCS сдвигает фазу открытия впускных клапанов еще раньше, создавая эффект продувки — впускной поток помогает вытеснять выхлопные газы из цилиндра. Также впускные клапана закрываются еще раньше, что повышает эффективность заполнения цилиндров топливо-воздушной смесью и улучшает мощностную отдачу
Принципиально AVCS состоит из трех компонентов:
блок управления двигателем (ECU), определяющий, какой угол доворота распредвала нужен в данный момент работы двигателя;
масляный клапан с соленоидом, контролирующий давление масла, направляемого на муфту распредвала;
трехлопастная муфта на распредвале, непосредственно выполняющая его доворот.
Dual AVCS
Вариация технологии Dual AVCS управляет клапанами и на впуске, и на выпуске, аналогично Dual VVT-i.
Диаграмма углов доворота распредвалов системы Dual AVCS относительно оборотов.
Устройство Dual AVCS отличается от обычного AVCS только вторым исполнительным комплектом клапан-муфта
i-AVLS
Активная система управления клапанами ( AVCS ) представляет собой систему изменения фаз газораспределения, разработанную специалистами Subaru, для обеспечения увеличенных показателей и рабочих характеристик двигателя, а именно, увеличенный крутящий момент в диапазоне малых и средних оборотов и увеличение мощностных показателей двигателя при высоких скоростях вращения. Технология AVCS представляет собой механизм способный увеличивать или уменьшать угол поворота распределительного вала. Сам механизм представляет собой сложной структуры звездочку передачи крутящего момента от коленчатого вала - распределительному. Управление этой звездочкой осуществляется управляющим клапаном по средствам давления масла, итогом этого будет доворачивание распределительного вала в ту или иную сторону.
Как работает AVCS:
Система представляет собой замкнутый контур с использованием датчиков распредвала, датчиков коленчатого вала, расходомера воздуха, положения дроссельной заслонки, а также датчиков кислорода и / или датчиков соотношения воздух-топливо для расчета нагрузки двигателя. Электронный блок управления запрограммирован для управления клапанами, которые регулируют подачу гидравлического давления, чтобы переместить распределительный вал в положение, обеспечивающее максимальную производительность двигателя при соблюдении норм выбросов.
Система AVCS может быть построена как только для впускного распределительного вала , так и на обоих распредвалах (Dual AVCS).
На холостых оборотах или в моменты не требующие нагрузки двигателя система AVCS задерживает открытие клапанов, выравнивая и стабилизируя работу двигателя.
При повышении нагрузки до средней система Active Valve Control System ( AVCS ) начинает открывать впускные клапана во время последней фазы выпуска ( выпускные клапана еще слегка приоткрыты ). При этом избыточное выпускное давление выталкивает часть выхлопных газов во впускной тракт, имитируя эффект системы EGR. Также впускные клапана раньше закрываются. Это повышает КПД двигателя и улучшает его топливную экономичность.
При большой нагрузке система AVCS сдвигает открытие впускных клапанов в самое раннее положение, создавая эффект продувки — впускной поток помогает вытеснять выхлопные газы из цилиндра. Также впускные клапана закрываются еще раньше, что повышает эффективность заполнения цилиндров топливо-воздушной смесью и улучшает мощностную отдачу.
Устройство и компоненты AVCS
Наиболее часто встречающаяся конфигурация AVCS включает в себя 3 компонента:
- электронный блок управления двигателем (ECU), определяющий, какой угол доворота распределительного вала нужен в конкретный момент.
- Управляющий клапан, соленоид. Управляется электронным блоком и контролирует давление в магистрали управления муфтой AVCS.
- Непосредственно муфта на распредвале ( или простыми словами - звездочка сложного строения ), непосредственно выполняющая доворот коленчатого вала в ту или иную сторону.
Что такое Dual AVLS:
Вариация технологии Dual AVCS управляет клапанами и на впуске, и на выпуске, аналогично Dual VVT-i.
Зачастую система AVCS включает в себя и технологию варьирования высоты подъема клапана AVLS
Система AVCS была внедрена в двигатели серии EJ и используется на моторах EJ207, EJ255, EJ257 и EZ30D ( 2 поколения ). На современных двигателях EZ36 ( Subaru Tribeca с 2008г ) используется система Dual AVCS. Dual AVCS также оборудовались и модели линейки Spec для японского рынка.
Дополнительная информация и фото к теме AVCS Subaru:
В идеале, система переменной высоты подъема клапана должна опираться на скорость вращения коленчатого вала: чем выше скорость вращения, тем больше должен подниматься клапан от своего седла, обеспечивая больший приток воздуха в цилиндр.
Эта система похожа на Honda VTEC . Кулачок блокируется штифтом перемещаемым гидравлически в зависимости от давления, перемещая штифт через гидравлическое давление. Как и в случае других систем с изменением времени, возможно более тихое поведение двигателя на низких скоростях, даже при использовании кулачкового вала с долоточными профилями, более похожими на те, которые используются для высокоскоростного двигателя.
AVLS был впервые использован на 2,5-литровым четырехцилиндровым оппозитном двигателе Subaru ( модели от 2006 года ). Для шестицилиндровых и двигателей с турбонагнетателем Subaru продолжает использовать AVCS ( звездочка изменения фаз газораспределения ). Если сравнить обе системы, то новый двигатель 2.5 литровый двигатель с системой AVLS, имеет более широкую и более плоскую кривую крутящего момента, чем двигатель без AVLS, с AVCS или без нее. Также стоит отметить, что двигатели имеющие систему AVLS увеличили максимальную мощность со 165 л.с. (123 кВт) до 175 л.с. (130 кВт) во всем рабочем диапазоне оборотов. Цель построения двигателей с системой AVLS состоит в том, чтобы иметь лучшую экономию топлива, улучшенную производительность и большую управляемость.
Точка открытия соленоида, управляется ЭБУ и изменяется в зависимости от частоты вращения двигателя, открытия дроссельной заслонки, атмосферного давления и других факторов.
"I в названии i-Active Valve Lift System означает интеллектуальное - это означает, что система автоматически реагирует на температуру воздуха и атмосферное давление для достижения оптимальной производительности. "
Как работает система AVLS:
Стоит рассмотреть работу системы Active Valve Lift System, как для двигателя DOHC так и для двигателя SOHC:
При малых оборотах двигателя: каждый из впускных клапанов ( два для каждого цилиндра ) регулируется двумя различными профилями распределительного вала, при помощи коромысел. Один из клапанов приводится в действие кулачком с низким профилем и задающий меньшее время открытие клапана, другой - управляется кулачком с гораздо более выступающим профилем и с большим временем открытия.
При увеличении скорости вращения двигателя или в ситуации требуемой больше мощности, модуль управления двигателем ( ECU ) подает сигнал на соленоид управления штифтом блокировки лепестков клапана, нагнетание масла приведет к перемещению штифта, который блокирует два лепестка вместе, что означает, что оба всасывающих клапана будут управляться кулачком с большим профилем, тем самым двигатель получит больше воздуха повышая эффективность и мощность двигателя.
Каждый впускной клапан управляется коромыслом и его собственным кулачком распределительного вала: один - коромыслом с высоким профилем, другой - с более низким профилем. Клапана зависимые от кулачка с большим профилем имеют большую пропускную способность воздуха. |
Система изменения высоты подъема клапана обеспечивает экономию топлива, при более низких оборотах двигателя, и увеличивает мощность двигателя на более высоких оборотах двигателя. Система AVLS оптимизирует подъем впускного клапана, переключаясь с низкопрофильного кулачка распредвала на высокопрофильный в зависимости от оборотов двигателя или иных заданных задач.
Распределительный вал обрабатывается разделенным лепестком для каждого впускного клапана. Центральный кулачок имеет более низкий профиль подъема и задает подъем клапану при более низких оборотах. Внешние кулачковые лопасти описываются как высокие и задают работу и подъем клапанов при высокоскоростной работе. Переключение между рабочими кулачками распределительного вала, задается электронным клапаном управления давлением масла и электронным блоком управления.
При низких оборотах двигателя подъем клапана снижается для увеличения скорости всасываемого воздуха и получения эффективное сгорание и высокий крутящий момент. Стоит отметить что подъемы клапанов различны, закручивая объем всасываемого воздуха таким образом, что бы завихрения возникающие при этом задавали улучшенные характеристики топливно-воздушной смеси при сжигании. При высоких оборотах двигателя: впускные клапана поднимаются выше тем самым не только не ограничивают поступающий воздух но и уменьшают скорость его всасывания, тем самым производя больше мощности. Для защиты двигателя система не позволяют ускорить движение двигателя до высоких в режимах P или N.
Подъемный механизм в собранном виде, обеспечивает работу клапана по кулачками с высоким профилем.
Наружный и внутренний подъемник при низких оборотах двигателя, обеспечивает работу клапана при кулачке низкого профиля.
Два масляных канала
Подъемник впускного клапана оснащен гранями, которые гарантирует, что подъемник не сможет вращаться во время работы. Два порта давления масла видны снаружи подъемника. Масляный порт, расположенный ближе к центру колпачка используется для обеспечения рабочего давления на стопорный штифт внешнего подъемника. Другой порт масла используется для подачи смазки к внутреннему подъемнику. Конструктивно ни сам подъемник ни его механихм не обеспечивают вращение во время работы.
Запорный штифт внешнего натяжителя (обложка)
Давление масла, подаваемое в внешний подъемник из клапана давления масла толкает стопорный штифт внешнего подъемника во внутренний стопорный штифт подъемника. Это блокирует левую часть внешний подъемник в левую сторону внутреннего подъемника.
Запирающий штифт внутреннего затвора (обложка)
Запирающий штифт внутреннего затвора (обложка)
Наружный подъемник (художественное произведение)
При снижении давления от елапана, под действием пружины стопорный штифт подъемника приходит в свое первоначальное состояния деблокируя сцепку внутренней и внешней части подъемника, тем самым позволяю клапану реагировать только на малый кулачок распределительного вала.
Выводы: Стоит также добавить пару слов от себя: При подготовки статьи было прочитано много научного материала и много ненаучных форумом, очень много материала на иностранных языках,от сюда такие порой странные объяснения и описания процессов. Добавлю всего пару слов на более простом языке: И так как и в системе SOHC так и DOHC распредвал задающий движение впускных клапанов имеет для них два различных по высоте профиля подъема. И если система SOHC изначально задает движение одного клапана по большему кулачку и второго по меньшему, то система DOHC способна варьировать оба из впускных клапанов но всегда их подъем будет оставаться различным (это необходимо для создания завихрений в камере сгорания, что повышает эффективность сгорания топливно-воздушной смеси). При повышении оборотов клапана при обоих системах начинают открываться сильнее так же сохраняя разницу в величине открытия. Соленоид управления штифтом запирающим клапана на высоком подъеме управляется компьютером или в системе с приставкой I автоматически опираясь не только на обороты двигателя но и на показания некоторых датчиков ( зачастую говорят что эта система так же опирается на показатели атмосферного давления и величины открытия дроссельной заслонки) . Но эта тайна заданная японскими конструкторами, как и обороты при которых клапана начинают опираться на большие кулачки распредвала. Обороты включения системы AVLS напрямую нигде не указаны, однако наиболее часто звучат цифры 4000-4500 оборотов в минуту при АКПП и оклото 3000 при МКПП. Так же стоит отметить, тот момент, что если штифт управления высотой подъема клапана управляется соленоидом по средствам моторного масла, то и работа всей системы может зависеть от вязкости масла, и рекомендация производителем к этому двигателю.
Среди турбированных бензиновых двигателей есть множество разнообразных представителей, но сейчас речь пойдёт о силовом агрегате производства Subaru – EJ205. Сей двигатель выпускается с 1998 года и предназначается для таких автомобилей как:
На всех шатунах, движек имеют в конструкции шатунную шейку. Это означает, что поршни расположены в едином положении.
- небольшие габариты,
- гашение вибраций,
- улучшение манёвренности,
- уменьшенный крен во время прохождения поворотов,
- умеренный расход топлива,
- также дополнительная безопасность при фронтальном столкновении.
Конечно же, ииеются и недостатки в особенностях конструкции данной модели двигателя.
- Двухвальное устройство газораспределения (DOHC) несколько усложнило ремонт и обслуживание установки, а также потребовало от автовладельца использовать исключительно качественное синтетическое масло.
- Гражданская версия– выдает на пике 180 лошадиных сил;
- Спортивная версия – выдает на пике 230 лошадиных сил.
На обоих двигателях была установлена турбина производства Mitsubishi VF29.Кроме того, в спортивной модификации установлена система AVCS, которая управляет фазами газораспределения и клапанами для повышения производительности и отдачи крутящего момента на максимум , экономии топлива и выравнивания работы узла.
Система управляется различными датчиками и дроссельной заслонкой. Технология является аналогом VVT-i и VTEC.
Среди недостатков силового узла, присутствуют и такие моменты:
- Протечка прокладок клапанных крышек и сальников распределительных валов;
- Большой расход масла;
- Двигатель может заглохнуть из-за проблем с шестернями рапсредвалов;
- Невысокая эффективность системы охлаждения;
- Залегание поршневых колец;
- Деформация перегретого блока и головок ГБЦ.
Ресурс силовых агрегатов равен, как минимум, 210-230 тысяч километров пробега. Очень многое здесь будет зависеть от автовладельца, ведь стиль езды, периодичность замены масла, регулярные ТО (каждые 15000 километров), марка используемого топлива и своевременная профилактика целиком и полностью зависят от водителя.
Что касается топлива, то следует использовать бензин с октановым числом не ниже АИ-95 ( по рекомендации производителя). Расход на примере Forester, даёт нам 13,1 литра при езде по городу и почти 10 литров при движении на трассе. Неровный холостой ход и плавающие обороты могут возникнуть из-за неполадок программного обеспечения ЭБУ. Всё решается довольно просто перепрошивкой чипа. Не рекомендую делать это самостоятельно, не имея должных навыков и опыта.
Всем спасибо за внимание и до скорых встреч…!
Видео по теме:
Похожие статьи:
О двигателе 1AZ FE TOYOTA
О двигателе K24A HONDA
О двигателе H23A HONDA
Модификации
В 1998 г. на автомобиле STI GC8, прошедшем омологацию для участия в мировом чемпионате WRC, Субару представили новую модификацию двигателя EJ20 (v5). От основной серии его отличали открытый блок цилиндров, новая головка блока цилиндров, легкие кованые поршни и новые распредвалы DOHC. Это позволило повысить мощность и предел максимальных оборотов.
- Разгон 0-100 км/ч (Subaru Sti JDM 2001)
- Холодный запуск
В следующем году на Subaru STI GF8 был представлен ДВС v6, который получил незначительные изменения. При этом мощностные характеристики не изменились.
С 2000 г. двигатель EJ207 v7 начал устанавливаться на серийные автомобили Impreza WRX STI. Для увеличения эластичности работы ДВС был оснащен новым ECU и системой изменения фаз газораспределения (AVCS) для впускных распредвалов. Кулачки получили менее острую вершину для снижения подъема клапанов, что позволило добиться повышения предела максимальных оборотов.
На автомобили, предназначенные для Европы, устанавливалась втулочная турбина VF-35, что в совокупности с фазовращателями обеспечило мощность 265 л.с. и 343 Нм. На JDM (автомобили для внутреннего рынка Японии) устанавливались 2 вида турбин: втулочная VF-30 (280 л.с. и 373 Нм) и шарикоподшипниковая VF-34 (320 л.с. и 384 Нм). JDM турбины более надежные и не имели склонности к передуву, что позволило повысить показатель мощности.
В 2002 г. Impreza STI получила новый полуоткрытый блок двигателя (v8). Он сохранил высокий показатель охлаждения цилиндров, но стал прочнее и надежнее. Оппозитный ДВС в такой комплектации устанавливался на Европейские автомобили до 2007 г.
Для EJ207 v8 JDM были спроектированы 3 новые турбины типа twin-scroll:
- Шарикоподшипниковая VF-36 устанавливалась на стандартные STI и Spec C и обеспечивала 280 л.с. и 394 Нм крутящего момента.
- Втулочная VF-37 устанавливалась на версии Type RA, WR Limited и STI Spec C 16”/17” tire Spec. Мощность силового агрегата составляла 280 л.с. и 412 Нм.
- Шарикоподшипниковая VF-42 с измененной геометрией выпускной крыльчатки была рассчитана на работу при высоких оборотах двигателя. Ее устанавливали на двигатель самой мощной модификации Impreza S203 STI (320 л.с. и 422 Нм).
Для реализации потенциала геометрии новых турбин была изменена выхлопная система и выпускной коллектор, который получил схему 4-2-2.
Впускной коллектор JDM лишился заслонок TGV. Это позволило избавиться от турболага и повысить пропускную способность. Реализовать такую модификацию на европейских версиях было невозможно из-за экологических норм.
Были возвращены острозубые распредвалы, обеспечивающие высокий подъем клапанов. Для лучшего охлаждения на двигатель установили глубокий поддон, увеличивающий общий объем масла.
В 2003 г. JDM EJ207 получил новый блок управления, способный вычислять физическую модель работы ДВС. Для реализации новых возможностей во впускной коллектор был добавлен датчик температуры нагнетаемого воздуха. Благодаря этим улучшениям крутящий момент двигателя стал доступен практически во всем диапазоне оборотов.
С 2005 г. на Импрезах появилась девятая модификация двигателя. Основное отличие от предыдущих 207-х — наличие иммобилайзера. Изменения в конструкцию были внесены только для модификаций Type RA-R и S204. На этих автомобилях система AVCS устанавливалась как на впускные распредвалы, так и на выпускные. Это позволило получить ровное плато мощностных показателей и повысить крутящий момент до 432 Нм.
Аналогичные двигатели с индексами EJ20X и EJ20Y устанавливались на Legacy GT с 2003 по 2009 г. В этих модификациях поршни были заменены на литые, а мощность снижена до 260 л.с.
1. Общая процедура диагностики . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2. Меры предосторожности во время работы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
3. Питание . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
4. Распределение заземления . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
5. Система подушек безопасности . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
6. Система кондиционера воздуха . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
7. Антиблокировочная система тормозов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
8. Система управления AT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
9. Аудиосистема . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
10. Система зарядки . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
11. Комбинационный прибор . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
12. Система круиз-контроля . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
13. Система измерителя температуры охладителя двигателя . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
14. Электрическая система двигателя . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
15. Система измерителя топлива . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177
16. Постоянная двухдиапазонная система . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179
17. Система переднего дополнительного источника питания . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181
18. Система настройки луча передних фар . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182
19. Система звукового сигнала . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183
20. Система иммобилайзера . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184
21. Система доступа без ключа . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188
22. Система освещения заднего хода . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197
23. Система габаритных огней и освещения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198
24. Система передних противотуманных огней . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210
25. Система передних фар . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213
26. Система освещения внутри салона . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215
27. Система стоп-сигналов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219
28. Система светового сигнала указателя поворота и аварийного освещения . . . . . . . . . . . . . . . .220
29. Система предупреждающего светового сигнала давления масла . . . . . . . . . . . . . . . . . . . . . . .224
30. Система отображения температуры за бортом . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226
31. Предупреждающая система стояночного тормоза и уровня тормозной жидкости . . . . . . . . . .228
32. Система электростеклоподъемников . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230
33. Система вентилятора радиатора . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238
34. Система задних противотуманных огней . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240
35. Система размораживателя заднего стекла . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242
СИСТЕМА ПРОВОДКИ
Особенности конструкции
С 1989 г. ДВС серии EJ с оппозитным расположением цилиндров и низким центром тяжести — визитная карточка Subaru. В середине 1990 гг. инженеры отказались от закрытого блока с длинными поршнями EJ20G и разработали открытую схему с лучшим охлаждением, а использование кованых шатунов, коленчатого вала и поршней позволило повысить степень сжатия и крутящий момент.
Регламент мирового ралли запрещает использование турбонагнетателей с изменяемой геометрией. Для устранения турбоямы и получения пиковой мощности в большом диапазоне оборотов было принято решение использовать твинскрольные турбины IHI. Их особенность — наличие 2 каналов в горячей части. Каналы расположены под разными углами относительно крыльчатки. Первый обеспечивает эффективную работу при низких оборотах, а второй — при высоких.
Для силового агрегата EJ207 был разработан новый впускной коллектор, который обеспечил возможность установки прямого впускного патрубка для турбины. Технические характеристики этой модификации двигателя обеспечивают высокую эластичность и отзывчивость.
Неисправности и ремонт
Двигатели серии EJ считаются надежными и качественными, но недолговечными. Ресурс двигателей этой серии составляет 250 тыс. км, но если атмосферные модификации способны отработать заявленный ресурс, то турбированные моторы редко служат более 100 тыс. км без капитального ремонта. А учитывая специфическое устройство оппозитных двигателей Субару, подобный ремонт могут выполнить только на специализированных сервисных станциях.
Существует несколько распространенных неисправностей у двигателей EJ20:
- Повышенный расход масла. Проявляется в результате закоксовывания поршневых колец из-за низкого качества масла и топлива.
- Течь масла из-под сальников распредвалов или клапанных крышек. Причина заключается в низком качестве материалов, из которых изготовлены уплотнители.
- Перегрев четвертого цилиндра. Конструктивно этот цилиндр имеет плохое охлаждение, поэтому при агрессивной эксплуатации автомобиля появляется стук в задней левой части двигателя.
Для увеличения ресурса ДВС необходимо соблюдать регламент технического обслуживания и использовать качественное топливо.
Устройство и компоненты AVCS
Наиболее часто встречающаяся конфигурация AVCS включает в себя 3 компонента:
- электронный блок управления двигателем (ECU), определяющий, какой угол доворота распределительного вала нужен в конкретный момент.
- Управляющий клапан, соленоид. Управляется электронным блоком и контролирует давление в магистрали управления муфтой AVCS.
- Непосредственно муфта на распредвале ( или простыми словами — звездочка сложного строения ), непосредственно выполняющая доворот коленчатого вала в ту или иную сторону.
Тюнинг
Наиболее распространенный подход к тюнингу двигателя EJ207 заключается в замене топливного насоса, установке прямоточного выхлопа и чип-тюнинге. Владельцам европейских STI приходится удалять TGV заслонки. Этого достаточно для получения 340-350 л.с., что является пределом для полуоткрытого блока EJ20.
Для получения большей мощности потребуется замена блока двигателя на тюнинговый (закрытого типа), установка строкер-кита (2200 см³) или распредвала от EJ25 (2124 см³), фронтального интеркуллера, новых форсунок (850сс), масляного радиатора и масляного насоса с высокой продуктивностью, холодного впуска Simota, большого турбокомпрессора (VF-53) с равнодлинным выпускным коллектором и Blow-Off. Эти изменения позволят преодолеть предел в 400 л.с.
Учитывая низкий запас прочности и высокую стоимость комплектующих, двигатели EJ не лучший вариант для тюнинга. Несмотря на это, сложно найти Subaru STI с двигателем без модификаций, а фанаты Субару добиваются мощности в 700-800 л.с.
Читайте также: