Контроллер разряда аккумулятора 12 вольт для видеорегистратора
Контроллеры заряда SCD0049 позаботятся о безопасном заряде Вашего аккумулятора, прощают ошибки при подключении, миниатюрные и мощные.
Недорогой и простой в эксплуатации контроллер разработан специально для встраивания в аккумуляторные системы. Контроллер "прощает" ошибки при подключении, переполюсовка питания и аккумулятора не выведут из строя как сам аккумулятор, так и контроллер, минимум органов управления и индикации позволяет использовать контроллер даже любителю. Контроллер имеет два клеммника для удобства подключения источника питания и аккумулятора и два светодиода статуса для отображения состояния.
Схема включения контроллера заряда SCD0049
Технические характеристики
Напряжение питания | 16..25 В |
Диапазон регулировки напряжения окончания заряда | 13,4..13,9 В |
Защита от переполюсовки аккумулятора | Да |
Защита от переполюсовки питания | Да |
Описание работы
Контроллер работает в режиме постоянной подзарядки (буферный режим), подстроечный резистор на плате контроллера позволяет выставить напряжение окончания заряда в диапазоне от 13,4 до 13,9 вольт. Буферный режим заряда наиболее оптимален для продления срока эксплуатации аккумулятора, так как аккумулятор большую часть времени находится в максимально заряженном состоянии.
Регулировка напряжения контроллера заряда SCD0049
Контроллер заряда имеет два светодиода. Зеленый светодиод информирует о том, что в данный момент происходит заряд аккумулятора. Контроллер автоматически определяет необходимый ток заряда. В процессе заряда, с приближением напряжения аккумулятора до установленного, ток заряда снижается. При снижении зарядного тока менее определённого уровня (см. параметр “Отключение индикации заряда при токе менее” в таблице Технические характеристики), зелёный светодиод отключается.
Красный светодиод информирует о том, что аккумулятор подключен в обратной полярности, заряд при этом не происходит.
При отключении питающего напряжения разряд аккумулятора через модуль не происходит.
Подключенный к зарядному устройству аккумулятор, с остаточным напряжением менее 10 В, контроллер определяет как неисправный и заряд не происходит.
При питании модуля от низкочастотного трансформатора с диодным мостом, на выход диодного моста необходимо установить конденсатор емкостью не менее 1000 мкФ.
С использованием нескольких модулей SCD0049 можно конструировать системы заряда для группы последовательно включенных аккумуляторов, без дополнительной схемы балансировки, при условии питания модулей от отдельных гальванически развязанных источников питания.
Программируемый контроллер разряда SDC0009 позволяет защитить аккумулятор от переразряда (глубокого разряда), губительного для акб.
Гарантия - 1 год Гарантия производителя 1 год с момента приобретения
Гарантированное качество Гарантированное качество и технические параметры
Немецкое оборудование Произведено на немецком автоматическом оборудовании AUTOTRONIK, позволяющем выполнять SMD-монтаж с точностью до 30 микрон
Визуальный контроль Визуальный контроль гарантирует отсутствие внешних дефектов
Русская техподдержка Разработка, производство, техническая поддержка выполняются российскими специалистами. Обратиться в техподдержку.
- Описание
- Отзывы
- Задать вопрос
- ОЕМ-поставки
Известно, что переразряд сильно сказывается на сроке службы и качественных параметрах аккумуляторов, а глубокий переразряд – и вовсе губителен! Контроллер SDC0009 позволяет защитить аккумулятор от переразряда.
Технические характеристики
Параметр | Значение |
Диапазон рабочих напряжений | 4..30 В |
Потребляемый ток | 8 мА |
Программируемое напряжение включения (U_ON) | 4..25,5 В |
Гистерезис (Hysteresis) | 0..6,2 В |
Погрешность U_ON и Hysteresis не более | 0,1 В |
Коммутируемая нагрузка при питании 6..30В | 15 А |
Коммутируемая нагрузка при питании 4..6В | 5 А |
Сопротивление коммутации при питании 6. 30В, не более | 0,004 Ом |
Диапазон рабочих температур | -40..+105°C |
Рис 4. Габаритные размеры
Описание
U_OFF = U_ON — Hysteresis
Необходимо помнить, что при отключении нагрузки напряжение на аккумуляторе увеличится, поэтому важно правильно задать параметр Hysteresis, таким образом, чтобы при отключении нагрузки контроллером, напряжение не поднялось сразу до уровня U_ON. В противном случае контроллер будет циклически включать и выключать нагрузку с частотой 1 раз в секунду.
Данный контроллер, может быть использован для аккумуляторов любых типов. Контроллер, при напряжении питания контроллера в диапазоне 6..30 В позволяет коммутировать нагрузку до 15 А, и в диапазоне питаний 4..6 В не более 5 А. Сопротивление контроллера на контактах коммутирующих нагрузку, во включенном режиме, не более 0,004 Ом. Контроллер питается от контролируемого аккумулятора и потребляет около 8мА. При эксплуатации контроллера, внешняя коммутация системы (аккумулятор + контроллер) должна происходить между аккумулятором и контроллером (рис. 1). Это позволит избежать разряд аккумулятора контроллером, когда нагрузка отключена. Контроллер работает полностью в автоматическом режиме, т.е. включение и отключение нагрузки происходит автоматически в зависимости от напряжения аккумулятора, и не требует какого либо сброса после отключения нагрузки. Сам аккумулятор может быть подключен одновременно как к нагрузке, так и к схеме заряда. Минимальное напряжение питания контроллера 4 В, при меньшем напряжении нагрузка автоматически отключатся.
Рис 1. Подключение контроллера
Рекомендуется установить предохранитель между аккумулятором и входом контроллера.
Джампера могут быть переустановлены как до включения, так и во время работы контроллера, установленные джамперами параметры будут применены немедленно.
Не допускается установка джамперов Hysteresis в положение 00000. Это технологическая комбинация.
Рис 2. Установка параметра U_ON
Рис 3. Установка параметра Hysteresis
При правильно заданных параметрах, контроллер отключит нагрузку, подключенную к аккумулятору, чтобы избежать переразряда аккумулятора. При достижении напряжения на аккумуляторе до нормального уровня, контроллер автоматически подключит нагрузку. Таким образом, используя контроллер разряда SDC0009, можно защитить аккумулятор от глубокого разряда, губительного для аккумуляторов. Не дайте аккумулятору "умереть".
Полезные ссылки
Для производственных предприятий возможна поставка партий в технологической упаковке, т.н. OEM поставка. Удобный и выгодный вариант для производителей. В OEM партии модули поставляются упаковками.
SDC0009 - Программируемый контроллер разряда аккумулятора SDC0009 - Программируемый контроллер разряда аккумулятора 0331
Аккумулятор — важнейший компонент автомобиля, который нужно беречь и следить, чтобы он неожиданно не разрядился, например, от оставленного включенным видеорегистратора. Поможет в этом специальный прибор NAVITEL Smart Box Max, который побывал у нас на практическом тесте.
фото: компании-производители, Андрей Киреев
Электрическая сеть автомобиля постоянно нагружена различными потребителями энергии, включая лампочки, датчики, охранной системой, а также внешними подключенными через разъем прикуривателя приборами. Во время работы двигателя вся нагрузка ложится на генератор, который одновременно заряжает аккумуляторную батарею, а при его выключении основным источником энергии становится уже сам аккумулятор. Несмотря на его большую емкость, этот элемент рассчитан на кратковременные большие токи отдачи, но не на длительные маломощные устройства потребления.
Все дело в том, что рабочее для нормального запуска двигателя напряжение автомобильного аккумулятора не должно опускаться ниже 11,5 В. При этом маломощные потребители энергии, такие как, видеорегистратор или автонавигатор, все могут долгое время работать и при падении напряжения до 9 В. Именно поэтому автолюбители вынуждены, при постановке машины на стоянку, отключать все внешние приборы, в том числе видеорегистратор.
Встает вопрос — как обеспечить, например, видео охрану машины при длительной стоянке и не рисковать разрядом аккумулятора? Компания NAVITEL для такого случая выпустила специальное устройство — контроллер питания NAVITEL Smart Box Max. Он позволяет автоматически отключать потребитель энергии, например, видеорегистратор через определенный период времени или при достижении напряжения в бортовой сети определенного минимального значения. Мы протестировали этот девайс и делимся впечатлениями.
NAVITEL Smart Box Max: комплект поставки
Устройство поставляется в небольшой коробке из тонкого картона, какой обычно применяется для аксессуаров. На ней особый акцент производитель делает на три главные функции контроллера: 6 режимов таймера отключения, скрытая установка и защита от скачков напряжения.
Как таковых контроллеров разряда-заряда не существует. Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки - сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде - это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют защиту от глубокого разряда.
При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого зарядного устройства для литиевого аккумулятора.
Исходя из своего опыта могу сказать, что под контроллером заряда/разряда на самом деле понимают схему защиты аккумулятора от слишком глубокого разряда и, наоборот, перезаряда.
Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:
И вот тоже они:
Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).
Контроллеры заряда-разряда
Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).
DW01-Plus
Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.
Вывод 1 и 3 - это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 - датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.
Паразитные диоды, встроенные в полевики, позволяют осуществлять заряд аккумулятора, даже если сработала защита от глубокого разряда. И, наоборот, через них идет ток разряда, даже в случае закрытого при перезаряде транзистора FET2.
Вся схема выглядит примерно вот так:
Правая микросхема с маркировкой 8205А - это и есть полевые транзисторы, выполняющие в схеме роль ключей.
S-8241 Series
Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241.
Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.
AAT8660 Series
Решение от Advanced Analog Technology - AAT8660 Series.
Пороговые напряжения составляют 2.5 и 4.32 Вольта. Потребление в заблокированном состоянии не превышает 100 нА. Микросхема выпускается в корпусе SOT26 (3х2 мм, 6 выводов).
FS326 Series
Очередная микросхема, используемая в платах защиты одной банки литий-ионного и полимерного аккумулятора - FS326.
В зависимости от буквенного индекса напряжение включения защиты от переразряда составляет от 2.3 до 2.5 Вольт. А верхнее пороговое напряжение, соответственно, - от 4.3 до 4.35В. Подробности смотрите в даташите.
LV51140T
Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T.
Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы - вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.
R5421N Series
Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки - порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).
Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:
Обозначение | Порог отключения по перезаряду, В | Гистерезис порога перезаряда, мВ | Порог отключения по переразряду, В | Порог включения перегрузки по току, мВ |
---|---|---|---|---|
R5421N111C | 4.250±0.025 | 200 | 2.50±0.013 | 200±30 |
R5421N112C | 4.350±0.025 | |||
R5421N151F | 4.250±0.025 | |||
R5421N152F | 4.350±0.025 |
SA57608
Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608.
Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:
Обозначение | Порог отключения по перезаряду, В | Гистерезис порога перезаряда, мВ | Порог отключения по переразряду, В | Порог включения перегрузки по току, мВ |
---|---|---|---|---|
SA57608Y | 4.350±0.050 | 180 | 2.30±0.070 | 150±30 |
SA57608B | 4.280±0.025 | 180 | 2.30±0.058 | 75±30 |
SA57608C | 4.295±0.025 | 150 | 2.30±0.058 | 200±30 |
SA57608D | 4.350±0.050 | 180 | 2.30±0.070 | 200±30 |
SA57608E | 4.275±0.025 | 200 | 2.30±0.058 | 100±30 |
SA57608G | 4.280±0.025 | 200 | 2.30±0.058 | 100±30 |
SA57608 потребляет достаточно большой ток в спящем режиме - порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).
LC05111CMT
Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor - контроллер заряда-разряда на микросхеме LC05111CMT.
Решение интересно тем, что ключевые MOSFET'ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.
Переходное сопротивление встроенных транзисторов составляет ~11 миллиом (0.011 Ом). Максимальный ток заряда/разряда - 10А. Максимальное напряжение между выводами S1 и S2 - 24 Вольта (это важно при объединении аккумуляторов в батареи).
Микросхема выпускается в корпусе WDFN6 2.6x4.0, 0.65P, Dual Flag.
Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.
Контроллеры заряда и схемы защиты - в чем разница?
Важно понимать, что модуль защиты и контроллеры заряда - это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.
Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV - постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество "заливаемой" в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.
По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.
Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу - при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.
Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (~4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.
Контроллеры заряда SCD0049 позаботятся о безопасном заряде Вашего аккумулятора, прощают ошибки при подключении, миниатюрные и мощные.
Недорогой и простой в эксплуатации контроллер разработан специально для встраивания в аккумуляторные системы. Контроллер "прощает" ошибки при подключении, переполюсовка питания и аккумулятора не выведут из строя как сам аккумулятор, так и контроллер, минимум органов управления и индикации позволяет использовать контроллер даже любителю. Контроллер имеет два клеммника для удобства подключения источника питания и аккумулятора и два светодиода статуса для отображения состояния.
Схема включения контроллера заряда SCD0049
Технические характеристики
Напряжение питания | 16..25 В |
Диапазон регулировки напряжения окончания заряда | 13,4..13,9 В |
Защита от переполюсовки аккумулятора | Да |
Защита от переполюсовки питания | Да |
Описание работы
Контроллер работает в режиме постоянной подзарядки (буферный режим), подстроечный резистор на плате контроллера позволяет выставить напряжение окончания заряда в диапазоне от 13,4 до 13,9 вольт. Буферный режим заряда наиболее оптимален для продления срока эксплуатации аккумулятора, так как аккумулятор большую часть времени находится в максимально заряженном состоянии.
Регулировка напряжения контроллера заряда SCD0049
Контроллер заряда имеет два светодиода. Зеленый светодиод информирует о том, что в данный момент происходит заряд аккумулятора. Контроллер автоматически определяет необходимый ток заряда. В процессе заряда, с приближением напряжения аккумулятора до установленного, ток заряда снижается. При снижении зарядного тока менее определённого уровня (см. параметр “Отключение индикации заряда при токе менее” в таблице Технические характеристики), зелёный светодиод отключается.
Красный светодиод информирует о том, что аккумулятор подключен в обратной полярности, заряд при этом не происходит.
При отключении питающего напряжения разряд аккумулятора через модуль не происходит.
Подключенный к зарядному устройству аккумулятор, с остаточным напряжением менее 10 В, контроллер определяет как неисправный и заряд не происходит.
При питании модуля от низкочастотного трансформатора с диодным мостом, на выход диодного моста необходимо установить конденсатор емкостью не менее 1000 мкФ.
С использованием нескольких модулей SCD0049 можно конструировать системы заряда для группы последовательно включенных аккумуляторов, без дополнительной схемы балансировки, при условии питания модулей от отдельных гальванически развязанных источников питания.
Читайте также: