Конструктивные элементы кузова снижающие тяжесть последствий дтп
В арсенале любого современного автомобиля есть целый ряд средств для смягчения последствий ДТП:
· деформируемые зоны и т.д.
Для того чтобы лучше разобраться в пассивной безопасности автомобиля необходимо понять, что происходит с автомобилем и его пассажирами при лобовом ударе. Автомобиль деформируется и останавливается, а пассажиры по инерции продолжают движение вперёд, навстречу рулю, панели приборов и лобовому стеклу. Казалось бы, места в салоне машины немного, сильно разогнаться и, значит, удариться не получится. Но в реальности это не так, так как ускорение очень большое, и такой удар может быть равносилен прыжку с многоэтажного дома. Именно в это время происходит большая часть травм в результате ударов головой — о ветровое стекло, грудью — о рулевое колесо и рулевую колонку, коленями — о нижнюю кромку панели приборов.
Процесс удара обычно разделяют на три фазы. В течение первой фазы соударяющиеся тела, сближаясь, деформируются, их кинетическая энергия частично переходит в потенциальную, а частично затрачивается на разрушение, перемещение и нагрев деталей. Во второй фазе накопленная потенциальная энергия снова превращается в кинетическую, и тела начинают расходиться. В течение третьего периода тела не контактируют, их энергия расходится на преодоление внешнего сопротивления.
Согласно исследований НАМИ, при наезде автомобиля на неподвижное препятствие длительность первой фазы составляет 0,05 - 0,1 с, а второй - 0,02 - 0,04 с.
Остаточные деформации пассажирских автомобилей после удара о плоскую стенку достигают 400 - 500 мм, а грузовых 150 - 180 мм, что обусловлено большей жесткостью последних. При ударе о сосредоточенное препятствие (столб, дерево) деформация может быть значительно больше.
Важно отметить, что основной причиной разрушения автомобилей и травмирования людей при ДТП являются ударные нагрузки. Эти нагрузки имеют импульсивный характер, и хотя действие их кратковременно, они достигают больших величин вследствие резкого изменения скорости автомобиля. При встречных столкновениях автомобилей и наезде автомобиля на препятствие замедление особенно большое значение имеет в зоне переднего бампера и уменьшается по направлению к задней части автомобиля (300 - 400 g).
Для снижения инерционных нагрузок увеличивают продолжительность деформации деталей. С этой целью создают защитную зону вокруг водителя и пассажиров путем устройства жесткого каркаса в сочетании с легко сминающимися при ударах передней и задней частями кузова. У автомобилей рамной конструкции ослабляют лонжероны и поперечины, уменьшая их сечение, предусматривая отверстия в слабонагруженных местах или применяя хрупкие материалы, например, алюминиевые трубы и брусья, разрушающиеся при ударе.
При встречных столкновениях картер рулевого механизма, установленный на лонжероне рамы, смещается назад, приближаясь к водителю. В результате водитель получает тяжелые травмы лица, груди, брюшной полости, а иногда и сердца.
Для того, чтобы рулевое колесо при лобовых ударах не представляло серьезную опасность для водителя и не причиняло тяжелых травм, ступицу рулевого колеса глубоко утапливают и обкладывают мягкими материалами. Рулевую колонку часто выполняют из перфорированного металла, так что при ударе она деформируется, поглощая пластическую энергию (рис. 4, а).
Предусматриваются и другие меры защиты, снижающие тяжесть последствий столкновения: возможность перемещения рулевого колеса и рулевой колонки (рис.4, б) и поглощения ими энергии удара, а также равномерного распределения удара рулевого колеса по поверхности груди водителя (рис. 4, в).
Чтобы водитель и пассажиры остались в живых и не получили тяжелых травм во время серьёзной аварии, их скорость при столкновении нужно снизить как можно плавнее (недаром, прыгающим с высоты подстилают многоярусные маты). Причём скорость снижать нужно так, чтобы внутри автомобиля оставалось достаточно жизненного пространства. И это уже задача, которая предъявляется к силовой структуре кузова автомобиля.
Поэтому одним из основных средств пассивной безопасности автомобиля является конструкция кузова.
Так в автомобиле (Дайхатсу Эсси) - конструкция кузова предусматривает, что при столкновении части кузова деформируются как бы по отдельности. Плюс к этому в конструкции использованы высоконапряженные металлические листы. Это делает машину более жесткой, а с другой стороны позволяет ей быть не такой тяжелой. На фотографии голубым цветом выделены те конструктивные элементы, которые принимают на себя лобовой удар, а все, что окрашено в желтую краску, рассчитано на поглощение бокового удара.
Вавтомобиле Volkswagen Phaeton - для изготовления кузова используются разные материалы - сталь, легкий металл и пластик.
Капот, крышка багажника и четыре двери Phaeton полностью изготовлены из легкого металла, за счет этого снижен вес автомобиля. Снижение веса и качество материала - критерии объясняющие использования пластика для обоих передних крыльев и гнезда для запасного колеса автомобиля. Крылья переменной толщины от 2,7 до 3,4 мм не только дают экономию веса на 20 %, но и снижают последствия незначительных ударов, которые возможны при парковке. Гнездо для запасного колеса из пластика тоже на 5 кг легче по сравнению с такой же деталью из стали.
Стальные детали Phaeton изготовлены из высокопрочных сплавов. Благодаря оптимальному использованию материалов обеспечивается максимальная прочность кузова. Все детали, выполненные из стали оцинкованы, тем самым они оптимально защищены от коррозии. В результате покупателю гарантируется длительный срок службы автомобиля и не менее длительное сохранение его стоимости.
Исключительно жесткий кузов Phaeton гарантирует несминаемость его салона. Деформируемые при столкновении передняя и задняя зоны автомобиля поглощают такое количество энергии, что Volkswagen Phaeton не только укладывается в соответствующие нормы обеспечения безопасности, но и обладает существенным запасом по этому показателю.
Двери также входят в систему пассивной безопасности. Благодаря жесткости их конструкции обеспечивается максимальная защита при боковых ударах.
Поэтому основной метод уменьшения нагрузок, действующих на водителя и пассажира - это восприятие кинетической энергии удара при помощи демпфирующей системы. Кинетическая энергия удара может восприниматься как самим автомобилем, так и системой ограничения перемещения пассажира внутри кузова.
Пассивная безопасность автомобиля – комплекс его свойств, снижающих возможность возникновения тяжких последствий, когда с помощью активных действий водителя и свойств автомобиля избежать дорожно-транспортное происшествие не удалось или не возможно.
Исходя из всего сказанного сущность пассивной безопасности автомобиля заключается в возможности автомобиля сохранить жизнь и здоровье пассажиров, если нештатная аварийная ситуация переросла в ДТП.
Вывод: подводя итог вопросу, мы с Вами можем отметить, что основным методом уменьшения нагрузок, действующих на водителя и пассажира, является восприятие кинетической энергии удара при помощи демпфирующей системы, являющейся элементами кузова автомобиля.
Также следует отметить, что помимо улучшения элементов кузова, специалистами автомобильной промышленности ведется совершенствование автомобиля и повышение его пассивной безопасности происходит одновременно по нескольким направлениям:
Конструктивная безопасность автомобиля - это свойство предотвращать ДТП, снижать тяжесть их последствий, не причиняя вреда людям и окружающей среде. Конструктивная безопасность подразделяется на: активную, пассивную, послеаварийную, экологическую.
Активная безопасность – свойство автомобиля снижать вероятность столкновения или полностью его предотвращать, когда водитель активными действиями противостоит аварии. Она зависит от компоновочных параметров автомобиля (габарита, веса), его динамичности, управляемости и информативности.
Пассивная безопасность – свойство автомобиля уменьшать тяжесть последствий ДТП, если оно уже случилось. Пассивную безопасность обеспечивают конструктивные мероприятия:
-Использование безопасных рулевых колонок
-Использование ремней безопасности
-Использование безопасного кузова и других элементов.
Послеаварийная безопасность – свойство автомобиля уменьшать тяжесть последствий ДТП после столкновения и предотвращать возникновение новых аварий. Сюда входят противопожарные мероприятия, эвакуация пассажиров и водителя из аварийного транспортного средства.
Экологическая безопасность – свойство автомобиля, позволяющее уменьшить вред, наносимый участниками движения окружающей среде в процессе эксплуатации (СО и уровень шума).
2. Активная безопасность.
Активная безопасность – свойство автомобиля снижать вероятность столкновения или полностью его предотвращать, когда водитель активными действиями противостоит аварии. Она зависит от компоновочных параметров автомобиля (габарита, веса), его динамичности, управляемости и информативности.
Высокие показатели активной безопасности достигаются благодаря следующим параметрам:
• Безотказности – стабильной работе всех основных узлов, агрегатов и систем автомобиля.
• Тормозным свойствам. Они должны обладать эффективной степенью реакции, чтобы автомобиль имел максимальную возможность избежать ДТП. Этому способствует специально разработанная антиблокировочная система (АБС), которая корректирует силу торможения каждого колеса и сводит к минимуму их скольжение.
• Тяговым свойствам. За счет тяговой динамики автомобиль может избежать аварии в случае, если торможение и маневрирование уже не возможно. При превышении силы тяги на колесе случается его пробуксовка. Бороться с данным явлением помогает противобуксовочная система (ПБС).
• Устойчивости автомобиля Фактор, позволяющий сохранить прямолинейное движение автомобиля вопреки воздействующим на него силам, провоцирующим занос или опрокидывание при больших скоростях.
• Управляемости автомобиля. Способность транспортного средства реагировать на малейшее действие водителя. При неподвижном рулевом колесе автомобиль должен менять направление движения – это, так называемая, поворачиваемость, которая бывает шинной и креновой. Для облегчения усилий водителя в настоящее время практически во всех автомобилях иностранного производства в базовую комплектацию включаются гидроусилители или электроусилители руля (ГУР, ЭУР)
• Информативности, которая делится на внутреннюю, внешнюю и дополнительную. Внутренняя – обзорность, показания приборов, расположение органов управления – помогает водителю управлять автомобилем. Внешняя – размер и окраска кузова, световая и звуковая сигнализация – обеспечивает нужной информацией других участников движения. Дополнительная информативность – противотуманные фары и другие устройства и характеристики – помогает в экстренных условиях.
• Комфортабельности. Комфортабельность дает возможность длительное время, не уставая, управлять автомобилем. В этом очень помогает оснащение современных автомобилей круиз-контролем, который способен автоматически поддерживать заданную скорость и снижать ее, в случае необходимости. Удобные для водителя и пассажиров сиденья, регулировка их по высоте, наклону спинки, расстоянию до рулевой колонки, возможность отрегулировать расположение самой рулевой колонки также играют непоследнюю роль.
3.Пассивная безопасность. Ее виды.
Пассивная безопасность — конструктивные мероприятия, направленные на сведение к минимуму вероятности ранений человека при ДТП. Она подразделяется на внешнюю и внутреннюю. Внешняя достигается исключением на внешней поверхности кузова острых углов, выступающих ручек и т.д. Для повышения уровня внутренней безопасности используются следующие конструктивные решения:
ü конструкция кузова, обеспечивающая приемлемые нагрузки на тело человека от резкого замедления при ДТП и сохранение пространства пассажирского салона после деформации кузова;
ü ремни безопасности, без использования которых смертельные исходы в результате аварии возможны уже при скорости 20 км/ч. Применение ремней повышает этот порог до 95 км/ч;
ü надувные подушки безопасности — аэрбеки. Они размещаются не только перед водителем, но и перед передним пассажиром, а также с боков (в дверях, стойках кузова и т. д.).
Конструкция кузова автомобиля (рис. 1) должна отвечать многим требованиям. С одной стороны, необходимо снижать его массу и улучшать аэродинамические качества, с другой стороны, все большее значение приобретают факторы пассивной безопасности автомобиля.
Рис. 1. Кузов легкового автомобиля: 1 — подоконная балка; 2 — передняя балка крыши; 3 — лонжерон крыши; 4 — задняя балка крыши; 5 — задняя стойка кузова; 6 — задняя панель; 7 — пол в задней части кузова; 8 — задний лонжерон; 9 — средняя стойка кузова; 10 — поперечина под задним сиденьем; 11 — передняя стойка; 12 — поперечина под сиденьем водителя; 13 — порог; 14 — надколесная ниша; 15 — поперечная балка опор двигателя; 16 — передний лонжерон; 17 — поперечина передняя; 18 — поперечина радиатора
Кузов относится к элементу пассивной безопасности автомобиля и, чтобы в случае ДТП максимально снизить вероятность травм и летальных исходов, должен выполнять основные требования:
Жесткая конструкция салона кузова — основа безопасности при аварии. Для достижения высокой прочности кузова используются чрезвычайно прочные материалы, особенно в пассажирском пространстве, где допускаются только минимальные деформации. Чтобы удовлетворить противоречивые требования, конструкцию автомобиля совершенствуют в следующих направлениях:
- использование алюминиевых и магниевых сплавов;
- применение высокопрочного листового материала;
- оптимизация толщины панелей;
- новые технологии соединения деталей;
- достижение, по возможности, наименьших зазоров в соединениях.
Для выдерживания внешних нагрузок в легковых автомобилях используются преимущественно несущие кузова. Несущий кузов достаточно легкий, однако благодаря целостной конструкции обладает значительной жесткостью на кручение и на изгиб. Он представляет собой сочетание тонких стальных штампованных листов различной формы, соединенных вместе точечной сваркой.
При фронтальном столкновении особое внимание уделяется минимизации смещения элементов конструкции автомобиля в пространство для ног водителя и пассажира.
Требования к прочности кузова при ударе сзади состоят из жесткости каркаса салона и деформируемости задней части кузова. Защита топливной системы от удара сзади обеспечивается геометрией задней подвески и расположением топливного бака.
При боковом столкновении важнейшими конструктивными элементами, воспринимающими основную энергию бокового удара, являются средняя стойка и двери. При их изготовлении используются сверхвысокопрочные материалы. Центральным звеном системы является средняя стойка, которая переносит возникающие силы на порог и каркас крыши. Двери, усиленные диагональными брусьями безопасности, также гасят чрезмерную энергию столкновения. Таким образом, при боковом столкновении достигается невысокая скорость смятия и минимальное смещение конструктивных элементов внутрь салона.
При расчете передней части автомобиля учитываются дополнительные силы инерции и жесткость таких элементов, как двигатель и колеса.
Первоначальной целью конструкторов является проектирование такого автомобиля, чтобы его внешняя форма способствовала минимизации последствий при основных видах ДТП (при столкновениях, наездах, а также при повреждениях самого транспортного средства).
Наиболее тяжелым травмам подвергаются пешеходы, которые наталкиваются на переднюю часть автомобиля. Последствия столкновения с участием легкового автомобиля могут быть уменьшены лишь конструктивными мерами, которые включают:
- убираемые фары;
- спрятанные заподлицо стеклоочистители;
- заделанные заподлицо с панелями сточные желоба;
- утопленные дверные ручки.
Определяющими факторами обеспечения безопасности пассажиров являются:
- деформационные характеристики кузова автомобиля;
- длина пассажирского отсека, объем пространства для выживания во время и после возникновения столкновения;
- удерживающие системы;
- зоны возможного столкновения;
- система рулевого управления;
- извлечение пользователей;
- противопожарная защита.
Для защиты от ударов на легковых автомобилях имеются три различные области, которые в случае аварии должны принимать удар на себя: верхняя, средняя и нижняя поверхности, т.е. соответственно крыша, боковая часть и днище автомобиля. Целью всех мер по защите от удара является минимизация деформации кузова и, следовательно, минимизация риска травматизма пассажиров при ударе. Она достигается за счет того, что возникающие при ударе силы целенаправленно действуют на конкретный компонент структуры кузова (рис. 3). Таким образом, снижается коэффициент деформации деталей, на которые приходится удар, так как возникающие при этом силы распределяются по большей площади.
Рис. 3. Распределение сил при ударе: а — боковой удар; б — лобовой удар
Чтобы силовая конструкция кузова могла соответствовать предъявляемым требованиям, в ней используются прочные и особо прочные стали.
Одним из способов повышения безопасности при изготовлении кузовов является применение многофункциональных литых узлов, имеющих оптимизированные по толщине и массе стенки, а также оптимизированную общую конфигурацию. Такие узлы изготовлены из алюминиевых сплавов и отливаются в вакууме. Эти детали обладают не только высокой прочностью, но и высокой пластичностью. Поэтому их используют преимущественно в составе узлов, заведомо деформируемых при ДТП, например в виде лонжеронов, опор амортизаторных стоек, а также передних и центральных стоек кузова. Например, отливаемый в вакууме лонжерон (рис. 4) обладает рядом преимуществ по сравнению с лонжероном, изготовляемым по обычной технологии. Обе половины лонжерона оптимизированы по толщине стенок, а их конструкция и размещение ребер рассчитаны на строго определенные деформации. Места крепления подвески на нижних частях лонжеронов сконструированы так, что энергия удара расходуется прежде всего на деформацию лонжеронов, а не относительно жесткого подрамника. Обе литые части лонжерона образуют многофункциональную конструкцию: они воспринимают усилия с объединенной подвески двигателя и коробки передач, служат в качестве опор для домкрата и несут проушину для буксировки.
Рис. 4. Передний лонжерон автомобиля Audi A2, установленный на болтах: 1 — лонжерон; 2 — подрамник
Боковой удар или боковое столкновение имеют свою специфику в части повреждения водителя или пассажира при аварии. Запас зоны деформации при боковом столкновении, в отличие от передней или задней части автомобиля, составляет незначительную величину — всего 100…200 мм.
Рис. 5. Механизм для предотвращения последствий бокового удара: а — исходное состояние механизма; б — рабочее состояние механизма; 1 — штырь; 2 — стержень; 3 — поворотный упор; 4 — возвратная пружина
Работа механизма обратима, так как в нем нет одноразовых пиропатронов. Если аварии не случилось, штанга укоротится до исходной длины, а пружина подтянет штырь обратно.
В процессе разработки кузова, наряду с безопасностью пассажиров, все большее внимание уделяется безопасности пешеходов. Для снижения риска травматизма пешеходов в переднем бампере автомобиля используется эластичный ударопоглощающий (защитный) элемент. Он позволяет достичь определенной зоны деформации передней части кузова при ударе.
В состоянии покоя электромагниты элемента безопасности обесточены и удерживают элементы с помощью фиксирующей планки во вдвинутом положении. Если блок управления подушек безопасности распознает столкновение или угрозу опрокидывания автомобиля, на электромагниты подается напряжение и они освобождают элементы безопасности. Находящиеся в сжатом состоянии пружины распрямляются и выдвигают элементы безопасности за 0,25 с.
Рис. 6. Защита пассажиров при опрокидывании автомобиля на примере Volkswagen EOS: 1 — элемент безопасности в исходном положении; 2 — элемент безопасности после срабатывания
Выдвинутые элементы безопасности можно разблокировать механически и вновь вернуть в исходное положение.
Защита при опрокидывании автомобиля срабатывает при помощи блока управления подушек безопасности при сильных лобовых, боковых и задних столкновениях, при опрокидывании автомобиля или при предельном боковом крене.
Конструкция рулевой колонки ограничивает движение рулевого колеса в случае фронтального удара. Конструкция педалей гарантирует соскальзывание в случае удара, уменьшая риск травмы ноги водителя.
Кузов — основа безопасности современного автомобиля. Сочетание специальных сминаемых зон, зон с повышенной энергоемкостью удара, успешное обеспечение прогрессивной деформации — вот лишь некоторые качества, присущие современному безопасному кузову.
Как правило, при тяжелой аварии автомобиль резко и неожиданно замедляется, вплоть до полной остановки. В результате этого тела водителя и пассажиров испытывают колоссальные перегрузки, и в некоторых случаях летальный исход неизбежен. Это означает, что жизненно важно найти способ, который помог бы уменьшить нагрузки на тело человека. Одним из вариантов решения этой задачи является проектирование областей разрушения, которые могли бы снижать энергию столкновения в передней и задней части кузова автомобиля. При этом разрушение автомобиля будет более сильным, так как кузов возьмет на себя значительную часть энергии удара, но пассажиры уцелеют. Обратный эффект может быть при авариях старых автомобилей, когда на машине остаются легкие царапины, а пассажиров приходится везти в реанимацию.
Конструкция современного кузова автомобиля предполагает, что при аварии определенные части кузова деформируются по отдельности.
Кроме того, в конструкции кузова широко применяются высоконапряженные листы металла, благодаря чему кузов становится более жестким, одновременно не увеличивая вес автомобиля.
Для производства кузовных элементов немецкие компании BASF и SGL разработали новый легкий и прочный материал, состоящий из полиамидной смолы и углеродного волокна. Специалисты BASF занимались разработкой новых полимерных матриц, а инженеры SGL готовили проекты термообработки нового материала при высоких температурах и сочетания его с углеродным волокном.
В конструкции новой, четвертой по счету генерации Range Rover компании Land Rover главным материалом является алюминий. Он применен как в постройке кузова, так и в деталях подвески. Новая модель получила цельный алюминиевый кузовной каркас. Благодаря этому конструкторам удалось снизить массу автомобиля на 420 кг, что на 39 % легче, чем масса стального кузова предыдущей модели.
Под пассивной безопасностью (ПБ) подразумевают комплекс эксплуатационных свойств транспортного средства, обеспечивающих снижение тяжести последствий ДТП. Пассивная безопасность вступает в действие, если водителю не удалось избежать аварии, и обеспечивает уменьшение инерционных нагрузок на водителя и пассажиров, ограничение перемещения их в кабине, защиту от травм, увечий при ударе, устранение возможности выбрасывания из кабины или салона транспортного средства в момент столкновения. Различают внутреннюю и внешнюю пассивную безопасность.
Внутренняя пассивная безопасность – свойства транспортного средства, снижающие тяжесть последствий ДТП для водителя и пассажиров, находящихся в транспортном средстве.
Внешняя пассивная безопасность — свойства транспортного средства, позволяющие снизить тяжесть последствий для других участников ДТП (пешеходов, водителей и пассажиров других транспортных средств).
Система обеспечения ПБ комплекса ЧАДС (человек-автомобиль-дорога-среда) включает пассивную безопасность автомобиля (А), дороги (Д), и человека (Ч). На рис 1 приведена схема структуры системы ПБ автомобиля..
Рисунок 1. Структура системы пассивной безопасности автомобиля
Уровень ПБ автомобиля характеризуется ударно-прочностными свойствами и возгораемостью. В таблице 1. даны критерии оценки основных свойств системы ПБ., принятые с учетом функционирования системы и подсистем.
Таблица 1. Критерии оценки основных свойств системы обеспечения ПБ
При оценке ударно-прочностных свойств используются три основных измерителя
- перегрузки человека (автомобиля) Nч
- деформации (перемещения) автомобиля Qа
- вероятность выбрасывания человека из автомобиля Рэч
Перегрузки человека и автомобиля изменяются в процессе ДТП
, где t – время процесса столкновения.
Деформации автомобиля возникают и изменяются в процессе ДТП и оцениваются значением Qа для i-го элемента, способного вызвать нарушение жизненного пространства или затруднить эвакуацию человека из автомобиля.
Вероятность выбрасывания человека из автомобиля Рэч зависит от угловой скорости и изменения поступательной скорости автомобиля .
Возгораемость автомобиля измеряется вероятностью его воспламенения при ДТП и характеризуется изменениями в процессе ДТП.
К комплексу пассивной безопасности относятся:
демпфирующие свойства передней и задней части автомобиля, бамперов;
надежность закрывания замков дверей;
- безосколочное ветровое стекло; энергопоглощающая рулевая колонка; системы ограничения перемещения человека в салоне — ремни безопасности, подголовники, пневматические подушки;
- отсутствие острых и жестких выступающих внутренних панелей салона и ручек органов управления;
- средства защиты пешеходов выступающими снаружи деталями кузова автомобиля.
Эффективным средством обеспечения безопасности водителя и пассажиров автомобиля являются ремни безопасности. При столкновении автомобиля на скорости 50 км/ч человек, не пристегнутый ремнями, ударяется с силой, в 30 — 60 раз превышающей его собственный вес.
По статистике, риск серьезных ранений для пассажиров, пристегнутых ремнями безопасности на заднем сиденье, снижается в 2,86 раза. Кроме того, непристегнутый пассажир, находящийся на заднем сиденье, подвергает риску не только себя, но и тех, кто сидит спереди.
При резких фронтальных ударах пассажиры автомобиля полу чают ускорение до (40 — 50)g. Если имеется надежное амортизиру ющее средство, подобные ускорения могут быть перенесены без значительных травм. Для защиты водителя и пассажиров при фронтальных ударах применяют системы пневматических подушек, автоматически срабатывающих за короткий промежуток времени от момента удара автомобиля о препятствие до момента удара тела человека о рулевое колесо или элементы интерьера (0,03. 0,04 с). При срабатывании пневматических подушек рассеивается до 90 % кинетической энергии удара.
По результатам исследований, проведенных в США, пневматические подушки снижают риск смертельного исхода для водителей: на 31 % при прямом лобовом столкновении; 19 % при всех лобовых столкновениях; 11 % при любом другом столкновении.
При испытаниях на лобовое столкновение легковых автомобилей, оборудованных пневматическими подушками, принимая в расчет их массу, были получены следующие результаты снижения риска гибели водителя:
• легкие автомобили (вес до 1 260 кг) — на 31 %;
• средние автомобили (вес 1 260. 1 420 кг) — на 25 %;
• тяжелые автомобили (вес более 1 420 кг) — на 39%. Надежность защиты водителя и пассажиров от получения травм различной степени тяжести и гибели увеличивается при комбинировании разных систем ограничения перемещения человека в салоне.
Так, в случае использования пневматических подушек снижение риска получения травм, угрожающих жизни человека, достигает 40%, травм средней тяжести — 10%, а при совместном использовании пневматических подушек и ремней безопасности соответственно 64 и 66 %.
В случае бокового столкновения водитель и пассажиры получают серьезные ранения от удара о дверь. Для того чтобы снизить тяжесть таких ранений, для дверей используют специальные заполнители и современные композитные материалы, хорошо поглощающие энергию удара. Некоторые производители оборудуют свои автомобили системами защиты от удара о боковые элементы автомобиля, а именно боковые пневматические подушки (от удара о двери) и пневматические шторы (от удара о наддверную часть потолка). Такие системы постепенно становятся обязательным атрибутом новых автомобилей, их задача — поглощение энергии удара головы и грудной клетки человека о потолок, дверь и внешние объекты (например, дерево, столб или другое транспортное средство). Боковые пневматические подушки могут устанавливаться в двери, сиденье или балке автомобильной рамы.
Важный элемент внутреннего обустройства автомобиля — сиденья. Использование сидений специальной конструкции можетсущественно повысить безопасность водителя и пассажиров, чтодостигается применением амортизаторов, усилением креплений сидений, фиксацией спинок передних сидений защелками, ограничением перемещения головы в момент удара при помощи подголовников. В последние годы серьезное внимание стали уделять надежному креплению подушки заднего сиденья и его спинки. При фиксации спинок сидений с помощью защелки пассажиры на заднем сиденье не ударяются о детали интерьера передней части салона.
Большое внимание должно уделяться пассивной безопасности детей. Детей массой до 9 кг обязательно следует перевозить в детском кресле с обратной посадкой, установленном на заднем сиденье и пристегнутом ремнями безопасности. Заднее сиденье всегда безопаснее переднего, даже оборудованного пневматической подушкой.
Детей массой более 9 кг следует перевозить в детском кресле с посадкой лицом вперед, а затем в детском удерживающем устройстве. В любом случае дети в возрасте до 12 лет должны находиться только на заднем сиденье и быть пристегнутыми ремнями безопасности. По результатам исследований, для ребенка, сидящего на заднем сиденье, риск гибели при лобовом столкновении на 36 % ниже, чем для ребенка на переднем сиденье.
Многие производители автомобилей начали оборудовать свои модели сиденьями нового стандарта, которые облегчают установку детского кресла и повышают безопасность ребенка.
Большое внимание уделяется исследованию влияния рулевой колонки на безопасность водителя при ДТП. При хорошо сконструированной и правильно расположенной рулевой колонке опасность травмирования водителя уменьшается на 30. 40%. Имеются разные конструкции безопасного рулевого колеса, например снабженные предохранительной мягкой накладкой, рулевое колесо с гибким ободом.
Снижение тяжести последствий ДТП для других участников дорожного движения является неотъемлемой характеристикой современного автомобиля.
Испытания автомобилей показывают:
конструкция автомобиля определяет тяжесть ранения пешехода и степень повреждения другого автомобиля в случае ДТП. Например, изменение конструкции капота таким образом, чтобы между крышкой капота и верхними элементами двигателя находилось не менее 50. 80 мм пустого пространства, уже позволяет значительно снизить тяжесть травм пешехода в случае ДТП;
алюминиевый капот лучше поглощает энергию удара, поэтому снижает тяжесть последствий ДТП для пешехода;
при наезде на пешеходов до 55 % всех травм пешеходов вызвано ударом о бампер. Тяжесть травм коленей пешеходов возрастает, если бампер автомобиля расположен на высоте 0,5. 0,53 м от поверхности дороги. Если бампер расположен на уровне половины тела человека, пешеход получает еще более тяжелые травмы тазовых костей. Таким образом, чем ниже расположен бампер, тем меньше вероятность травм коленей и тазовых костей, а чем меньше жесткость бампера, тем меньше тяжесть этих травм.
Конструктивной безопасностью автомобиля называется свойство предотвращать ДТП, снижать тяжесть его последствий и не причинять вреда людям и окружающей среде. Это свойство сложное и связано с другими эксплуатационными свойствами автомобиля (тяговой и тормозной динамичностью, устойчивостью, управляемостью, информативностью). Конструктивную безопасность делят на активную, пассивную, послеаварийную и экологическую (рис. 1).
Рис. 1. Классификация конструктивной безопасности транспортных средств
Активная безопасность– это свойство автомобиля снижать вероятность возникновения ДТП или полностью его предотвращать. Оно проявляется в период, когда в опасной дорожной обстановке водитель еще может изменить характер движения автомобиля. Активная безопасность зависит от компоновочных параметров автомобиля (габаритных и весовых), его динамичности, устойчивости, управляемости и информативности.
Пассивная безопасность – это свойство автомобиля уменьшать тяжесть последствий ДТП, если оно все же случилось. Пассивная безопасность проявляется в период, когда водитель, несмотря на принятые меры безопасности, не может изменить характер движения автомобиля и предотвратить дорожно-транспортное происшествие (кульминационная фаза ДТП).
Послеаварийная безопасность – это свойство автомобиля уменьшать тяжесть последствий ДТП после остановки и предотвращать возникновение новых аварий (конечная фаза ДТП). Для этого внедряют противопожарные мероприятия, облегчают эвакуацию пассажиров и водителя из аварийного автомобиля.
Экологическая безопасность – это свойство автомобиля, позволяющее уменьшать вред, наносимый участникам движения и окружающей среде в процессе его нормальной эксплуатации. Мероприятиями по уменьшению вредного воздействия автомобилей на окружающую среду следует считать снижение токсичности отработавших газов и уровня шума.
В действительности все виды безопасности связаны между собой, влияют один на другой, и не всегда можно провести четкую границу между ними. Так, например, хорошая тормозная система, позволяющая остановить автомобиль на коротком расстоянии, повышает вероятность предотвращения ДТП, улучшая активную безопасность автомобиля. Кроме того, чем эффективнее тормозная система, тем большее замедление автомобиля она обеспечивает на том же расстоянии. Следовательно, если даже не удастся предотвратить наезд или столкновение, то вероятная тяжесть последствий ДТП все же будет меньше, т.е. повысится пассивная безопасность. Замки автомобильных дверей должны выдерживать большие перегрузки, не открываясь, чтобы предотвратить выпадение пассажиров при ДТП (пассивная безопасность). Вместе с тем они не должны заклиниваться и препятствовать эвакуации пострадавших из автомобиля (послеаварийная безопасность). Взаимосвязь различных видов безопасности и противоречивость требований, предъявляемых к конструкции автомобиля, вынуждают конструкторов и технологов принимать компромиссные решения. При этом неизбежно ухудшаются одни свойства, менее существенные для автомобиля данного типа, и улучшаются другие, имеющие большее значение.
Читайте также: