Пример работы с осциллографом в автоэлектрике где бы вам могла пригодиться функция синхронизации
Что можно сделать с помощью осциллографа
В мастерской электронщика и электрика если не обязательно, то, по крайней мере, крайне желательно наличие осциллографа. Его используют на ряду с простыми измерительными приборами: амперметром, вольтметром, омметром, в конце концов мультиметром. Из этой статьи вы узнаете об осциллографе - что это такое и для чего он нужен.
Осциллограф - что это?
Все, кто работает с электричеством, знают, что напряжение измеряют вольтметром, а ток амперметром. Но эти приборы показывают только то значение тока, которое есть в момент измерений. Даже при измерении переменных по значению и знаку величин вы получаете какое-то усредненное по определенным алгоритмам или законам значение.
Но с помощью вольтметра можно следить за тем, как измеряется величина, правда, с погрешностями. У стрелочных приборов они обусловлены конструктивными особенностями, а у цифровых также, но добавляются еще и частота дискретизации и другие программные проблемы.
Но как проследить за быстроизменяющимся сигналом, у которого величины изменяются за тысячные и миллионные доли секунды?
Такие измерения крайне важны во многих сферах:
Во всех областях электронике;
При изучении параметров электрооборудования;
В диагностике и настройки систем автомобиля и прочих.
Для этого используют осциллографы и осциллографические пробники. Осциллограф - это тот же вольтметр, только на экране которого показывается не значение напряжения сигнала, а его форма и поведение. Форма сигнала отображается с привязкой к шкале проградуированной в Вольтах (вертикально) и секундах (горизонтально) - для подробного их изучения.
На картинке ниже вы видите примеры изображений на экране осциллографа, красным выделено сколько микросекунд в одном квадратике по горизонтали, а зеленым – сколько вольт по вертикали. Иными словами цена деления на изображении – 1В/дел и 10 мкс/дел.
Сразу стоит отметить, что, в основном, с помощью осциллографов изучают сигнал, который периодически повторяется. Сигналы изменяющиеся произвольным образом изучают с помощью осциллографа с функцией самописца.
Такой функцией обладают преимущественно цифровые осциллографы, но не все цифровые осциллографы умеют записывать осциллограммы в память. На фото ниже изображен аналоговый с электроннолучевой трубкой – он для таких задач не подходит.
Чтобы разобраться каким образом сигнал, который измеряется с периодом в доли секунды замирает на экране можно привести простой пример - стробоскоп. Если любой подвижный предмет периодически освещать коротковременными вспышками света, то в результате вы будете видеть конкретные его положения, как на фотографиях.
При этом, если освещать таким образом вращающийся с определенной скоростью предмет, то при условии, что частота вспышек совпадет со скоростью его вращения - вы будете видеть неподвижный предмет или определенную часть вращающегося предмета обращенного к вам одной и той же стороной в момент вспышки. Если частота вспышек не будет совпадать со скоростью вращения предмета, то вы будете видеть последовательность отдельных его участков в произвольном порядке.
Я встречал и сравнение на примере поезда с бесконечным числом одинаковых вагонов:
Если вспышки буду идти с частотой, совпадающей с частотой смены вагонов перед вами, то вам будет казаться, что каждый раз вы видите один и тот же неподвижный вагон перед собой.
Таким же образом работает и осциллограф - он отображает один и тот же участок периодического сигнала, в результате вы можете изучить особенности его изменения.
В пределах этой статьи мы не будем вдаваться в блоки, из которых он состоит, режимы работы, синхронизации и прочего, давайте рассмотрим что можно сделать с помощью осциллографа.
Осциллограф в электронике
Первое что приходит в голову - это электроника. Вы не можете наглядно увидеть, открылся ли транзистор, и как часто он это делает. Кроме того, при проектировании современных быстродействующих устройств, важно знать не только о самом факте срабатывания полупроводниковых ключей, но и о формах фронтов нарастания и затухания тока и напряжения.
Благодаря этому вы можете узнать насколько правильно подобран режим работы транзистора или другого компонента и о корректности работы радиоэлектронного устройства в целом.
Итак, при проектировании электроники нужно использовать осциллограф для наладки готового изделия и подбора конечных номиналов компонентов, что повышает его надежность.
Осциллограф в ремонте
Ремонт электроники это процесс поиска вышедшей из строя детали, который без необходимого набора инструментов сводится к поочередной замене элементов и узлов до доведения прибора до работоспособности. Иначе говоря - ремонт методом тыка.
Отдельные элементы, например транзисторы, резисторы, индуктивности и конденсаторы зачастую вы можете проверить с помощью мультиметра или универсального транзистор-тестера. С микросхемами дело обстоит иначе.
При ремонте блоков питания вы можете наглядно проконтролировать работу ШИМ-контролера - сердца импульсных преобразователей. Больше нет способов с помощью которых вы можете достоверно убедится в его исправности. Хотя в этом можно убедиться по косвенным признакам.
При ремонте устройств с микроконтроллерами можно проверить работу тактового генератора, наличие сигналов на всех пинах микроконтроллера.
При диагностике усилителей звука, можно увидеть в каком месте исчезает или искажается сигнал.
Ремонт автомобилей
Большинство неисправностей современных автомобилей типа: "не заводится", "провалы при разгоне", "плохо едет и глохнет", - связаны с проблемами в электрической части. Так как все двигателя, которые сейчас устанавливаются, инжекторные, если речь вести о газе или бензине, а если в двигатель работает на дизельном топливе, то у него наверняка стоят форсунки с электронным управлением. То же самое касается и системы зажигания.
Для функционирования систем впрыска и зажигания топлива, расчета моментов срабатывания форсунок и искрообразования, необходимо знать о положении коленчатого и распределительного валов двигателя. Поэтому автомобили оборудованы множеством датчиков.
Для диагностики всех этих систем используют как встроенные протоколы связи, считывают ошибки, так и мотортестеры - приборы которые могут и связываться с системой управления двигателя и работать в роли осциллографа.
Таким образом вы можете узнать о работе датчиков положения, проследить соответствие положения распределительного и коленчатого вала (фазы ГРМ).
С помощью специальных щупов - исправность работы системы зажигания, а по форме осциллограммы определить неисправность катушки, свечей, высоковольтных проводов и наличие импульса на катушки вообще.
Систему зарядки автомобиля можно проверить с помощью осциллографа. Так вы можете диагностировать неисправности диодного моста генератора, не снимая его с автомобиля.
Заключение
Осциллограф помогает увидеть форму сигнала и есть ли он вообще. Это важно и при разработке устройств и при их ремонте. Следует отметить, что можно обойтись и без него, но тогда вы потратите намного больше времени на диагностику прибора, а ремонт превратится в гадание на кофейной гуще.
▌Старая статья о аналоговом осциллографе
Рано или поздно любой начинающий электронщик, если не бросит свои эксперименты, то дорастет до схем, где нужно отслеживать не просто токи и напряжения, а работу схемы в динамике. Особенно это часто нужно в различных генераторах и импульсных устройствах. Вот тут без осциллографа делать нечего !
Страшный прибор, да? Куча ручек, каких то кнопочек, да еще экран и нифига не понятно что тут да зачем. Ничего, сейчас исправим. Сейчас я тебе расскажу как пользоваться осциллографом.
На самом деле тут все просто — осциллограф, грубо говоря, это всего лишь… вольтметр ! Только хитрый, способный показывать изменение формы замеряемого напряжения.
На этом же принципе построен стробоскоп — девайс, позволяющий разглядывать быстро движущиеся или вращающиеся хреновины. Там тоже шторка быстро-быстро открывается и закрывается.
Конструкция
Делается это посредством лучевой трубки, отклоняющей системы и генератора развертки.
В лучевой трубке пучок электронов попадая на экран заставляет светится люминофор, а пластины отклоняющей системы позволяют гонять этот пучок по всей поверхности экрана. Чем сильней напряжение, приложенное к электродам, тем больше отклоняется пучок. Подавая на пластины Х пилообразное напряжение мы создаем развертку . То есть луч у нас движется слева-направо, а потом резко возвращается обратно и продолжает снова. А на пластины Y мы подаем изучаемое напряжение.
Принцип работы
Дальше все просто, если начало появления периода пилы (луч в крайне левом положении) и начало периода сигнала совпадают, то за один проход развертки нарисуется один или несколько периодов измеряемого сигнала и картинка как бы остановится. Меняя скорость развертки можно добиться того, что на экране вообще останется только один период — то есть за один период пилы пройдет один период измеряемого сигнала.
Развертка осциллографа во времени
Синхронизация
Синхронизировать пилу с сигналом можно либо вручную, подстраивая ручкой скорость так, чтобы синусоида остановилась, а можно по уровню . То есть мы указываем при каком уровне напряжения на входе нужно запустить генератор развертки. Как только напряжение на входе превысит уровень, так сразу же запустится генератор развертки и выдаст нам импульс.
В итоге, генератор развертки выдает пилу только тогда, когда надо. В этом случае синхронизация получается полностью автоматической. При выборе уровня следует учитывать такой фактор, как помехи. Так что если взять слишком низкий уровень, то мелкие иголки помех могут запустить генератор когда не нужно, а если взять уровень слишком большой, то сигнал может под ним пройти и ничего не случится. Но тут проще покрутить ручку самому и сразу же все станет понятно.
Также сигнал синхронизации можно подать и с внешнего источника.
Мой верный осциллограф
Итак:
Яркость, фокус и освещение шкалы думаю не требуют пояснений. Это настройки интерфейса.
Усилитель У и стрелочки вверх вниз. Эта ручка позволяет гонять изображение сигнала вверх или вниз. Добавляя ему дополнительное смещение. Зачем? Да иногда не хватает размера экрана, чтобы вместить весь сигнал. Приходится его загонять вниз, принимая за ноль не середину, а нижнюю границу.
Ниже идет тумблер переключающий ввод с прямого, на емкостный. Этот тумблер в том или ином виде есть на всех без исключения осциллографах.
Важная вещь! Позволяет подключать сигнал к усилителю либо напрямую, либо через конденсатор. Если подключить напрямую, то пройдет и постоянная составляющая и переменная . А через кондер проходит только переменная .
Например, надо нам посмотреть на уровень помех блока питания компа. Напряжение там 12 вольт, а величина помех может быть не более 0.3 вольт. На фоне 12 вольт эти жалкие 0.3 вольт будут совсем незаметны. Можно, конечно увеличивать коэффициент усиления по Y , но тогда график вылезет за экран, а смещения по Y не хватит, чтобы увидеть вершину. Тогда нам нужно лишь врубить конденсатор и тогда те 12 вольт постоянки осядут на нем, а в осциллограф пройдет только переменный сигнал, те самые 0.3 вольта помехи. Которые можно усилить и разглядеть в полный рост.
Далее идет коаксиальный разъем подключения щупа . Каждый щуп содержит в себе сигнал и землю . Землю обычно сажают на минус или на общий провод схемы, а сигнальным тычут по схеме. Осциллограф показывает напряжение на щупе относительно общего провода. Чтобы понять где сигнальный, а где земля достаточно взять за них рукой по очереди. Если возьмешься за общий, то на экране по прежнему будет пульс трупа. А если взяться за сигнальный, то увидишь кучу срача на экране — наводки на твое тело, служащее в данный момент антенной. На некторых щупах, особенно на современных осциллографах, внутри встроен делитель напряжения 1:10 или 1:100 , который позволяет воткнуть осциллограф хоть в розетку, без риска его спалить. Включается и выключается он тумблером на щупе.
Еще почти на каждом осциллографе есть калибровочный выход . На котором ты всегда можешь найти прямоугольный сигнал частотой 1Кгц и напряжением около полувольта . В зависимости от модели осцила. Используется для проверки работы самого осциллографа, ну иногда и в тестовых целях пригождается :)
Две здоровенные крутилки Усиление и Длительность
Усиление служит для масштабирования сигнала по оси Y . Там же показано сколько вольт на деление в итоге покажет.
Скажем, если у тебя стоит 2 вольта на деление, а сигнал на экране достигает высоты две клеточки размерной сетки, значит амплитуда сигнала равна 4 вольта.
Длительность определяет частоту развертки. Чем короче интервал, чем больше частота, тем более высокочастотный сигнал ты сможешь разглядеть. Тут клеточки проградуированы уже в милли и микросекундах. Так что по ширине сигнала ты можешь посчитать сколько он клеток, а умножив его на масштаб по оси Х получишь длительность сигнала в секундах. Также можно посчитать длительность одного периода, а зная длительность легко найти частоту сигнала f=1/t
Верхняя пипка на крутилках позволяет менять масштаб плавно. Обычно у меня она стоит на щелчке, чтобы я всегда четко знал какой у меня масштаб.
Также там есть вход Х на который можно подать свой сигнал, вместо пилы развертки. Таким образом осциллограф может послужить телевизором или монитором, если собрать схему которая будет формировать изображение.
Крутилка с надписью Развертка и стрелочками влево и вправо позволяет гонять график по экрану влево и вправо. Удобно иногда бывает, чтобы подогнать нужный участок под деления сетки.
Ручка уровня — задает уровень от которого будет стартовать генератор пилы.
Переключатель со внутренней на внешнюю , позволяет подать на вход синхроимпульсы с внешнего источника.
Переключатель с надписью +/- переключает полярность уровня. Есть не на всех осциллографах.
Ручка стабильность — позволяет вручную попытаться подобрать скорость синхронизации.
Как только появилась полоса, то выстави крутилками смещения её на ноль. Если у тебя аналоговый осцил, особенно если древний, то дай ему прогреться. У моего после включения ноль плавает еще минут пятнадцать.
Дальше выстави предел измерений по напряжению . Бери с запасом, если что уменьшишь. Теперь если земляной провод осциллографа приложишь к минусу батарейки, а сигнальный к плюсу, то увидишь как график скакнет на полтора вольта. Кстати, старые осциллографы зачастую начинают подвирать, поэтому по эталонному источнику напряжения полезно посмотреть насколько точно он отображает напряжение.
Выбор осциллографа.
Если ты только начал, то тебе подойдет любой . Крайне желательно если он будет двухканальным . То есть у него будет два щупа и две крутилки Усиления, для первого и второго канала, что позволяет одновременно получить два графика.
Вторым по важности критерием осциллографа является частота. Максимальная частота сигнала которую он может уловить. Мне пока хватало 1МГц на большее не замахивался. Те осциллографы, что продаются в магазинах уже имеют частоту от 10МГц и выше. Самый дешевый осциллограф который я видел стоил 5 тысяч рублей — ОСУ-10. Двухканальный стоит уже 10 тысяч, ну а я нацелился взял себе цифровой RIGOL DS1042CD за килобакс. Разные запросы — разные игрушки. Но, повторюсь, для начала хватит и 1МГц, и хватит надолго. Так что найди себе хоть какой нибудь осциллограф. А там поймешь что тебе надо.
Спасибо. Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics. Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто. Сейчас идет заключение договора и подготовка к строительству!
А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок.
84 thoughts on “Использование осциллографа”
Вот думаю компьютерный осцил в буке заюзать,не подскжете програмку поудобнее и несложную приставку на вход?
Осциллограф может применяться для диагностики двигателя, датчиков электронной системы управления, генератора, стартера, аккумулятора и других систем и устройств автомобиля. При комплексной автомобильной диагностике осциллограф дополняет проверку сканером, но в некоторых случаях может дать более подробную информацию о неисправностях в электрических и электронных системах.
При использовании осциллографа необходимо знать места подключения его щупов к диагностируемому элементу, а также форму осциллограммы для номинального режима работы этого элемента. Впрочем, методика использования осциллографа, как правило, подробно описана в инструкциях, прилагаемых к прибору.
Диагностирование датчиков осциллографом
Датчик положения коленчатого вала (ДПКВ)
Этот датчик служит для синхронизации времени подачи искры и срабатывания форсунок по такту сжатия в цилиндрах. В общем случае датчик сообщает блоку управления (ЭБУ) о положении поршня первого цилиндра в верхней мертвой точке при такте сжатия. Для различных марок автомобилей ДПКВ может располагаться рядом с задающим диском у шкива коленчатого вала или маховика.
Сигнал датчика положения коленчатого вала в номинальном рабочем режиме имеет синусоидальную форму с разрывом. Форма сигнала имеет равномерную одинаковую амплитуду. Если на осциллограмме присутствуют отклонения, значит, задающий диск имеет не равномерность вращения или люфт, т. е. плохо закреплен или поврежден.
Методика диагностирования ДПКВ осциллографом заключается в следующих действиях:
Датчик положения распределительного вала (ДПРВ)
Датчик положения распределительного вала (или датчик фаз) служит для синхронизации времени впрыска топлива форсунками с временем открытия впускных клапанов. Осциллограмма сигнала с этого датчика имеет прямоугольную форму с амплитудой 12,3…12,7 В.
Больше информации о работе датчиков можно получить, если снимать одновременно сигналы ДПКВ и ДПРВ для определения фазы впрыска и смещения распределительных валов относительно друг друга.
На рисунке 2 показан номинальный сигнал датчиков положения коленчатого и распределительного вала.
На графике нижний фронт сигнала ДПРВ совпадает с разрывом зубьев на задающем диске, что говорит о правильной фазе впрыска.
Датчик массового расхода воздуха (ДМРВ)
Датчик массового расхода воздуха сообщает электронному блоку (ЭБУ) о количестве воздуха, поступившего в цилиндры двигателя для определения оптимального количества топлива, впрыскиваемого форсунками, т. е. времени открытого состояния форсунки при впрыске.
Основной параметр для диагностики датчика - это его нулевое напряжение, которое у исправного датчика при включенном зажигании должно быть равным 0,996 В. При углубленной диагностике ДМРВ, необходимо измерить время релаксации - период, в течение которого датчик выходит в нулевое положение.
На рисунке 3 показана осциллограмма исправного датчика массового расхода воздуха. Нулевое напряжение на датчике в этом случае равно 0,996 В, а скорость выхода на рабочий диапазон 0,5 мс.
На рисунке 4 представлена осциллограмма неисправного ДМРВ. Время перехода 20 мс, а напряжение при нулевом объеме воздуха - 1,130 В. Автомобиль с таким датчиком будет расходовать много топлива, и терять мощность.
Немаловажно проверить пик выхода датчика на максимальный уровень напряжения. Для этого нужно снять сигнал с ДМРВ на работающем двигателе при резко нажатой педали газа.
Чем ближе значение сигнала к 5 В, тем датчик имеет большую отдачу и двигатель будет эластичнее в работе (рис. 5).
Датчик положения дроссельной заслонки (ДПДЗ)
Датчик положения дроссельной заслонки легче всего проверить сканером. Но при плавающей неисправности, когда автомобиль движется рывками, лучше проверить сигнал датчика осциллографом.
Для этого сигнальный провод щупа подключают к выходу ДПДЗ и снимают сигнал, открывая дроссель, т. е. нажимая на педаль акселератора.
График осциллограммы должен иметь форму плавной кривой, на которой не должно быть резких перепадов, ступенек, скачков и т. п.
На рисунке 6 приведены осциллограммы сигналов с исправного и неисправного датчика положения дроссельной заслонки.
Проверка массы двигателя осциллографом
Диагностика катушек зажигания с помощью осциллографа
Проверка системы зажигания возможна только по анализу сигнала вторичной или первичной цепи. Самодиагностика двигателя автомобиля способна только косвенно определить дефекты в высоковольтной части, в частности - может выдать ошибку по пропускам зажигания.
Коды неисправностей пропусков дают общую картину работы цилиндра. Они могут возникнуть как от неисправной катушки, свечи, высоковольтного провода, форсунки, низкой компрессии, подсоса воздуха. Для точного определения неисправной катушки зажигания требуется проверка осциллографом.
На рисунке 8 приведен пример характерного высоковольтного сигнала в системе зажигания при правильной работе всех элементов. По отклонениям от номинального графика осциллограммы можно судить о работоспособности всей высоковольтной цепи системы зажигания.
Любой неисправный элемент цепи - катушка, высоковольтный провод, свеча изменят характер графика осциллограммы, как показано на рисунках 9. 12.
Диагностика осциллографом топливных форсунок
Форсунка бензинового двигателя состоит из запорного клапана, который управляется электромагнитом (электромагнитной катушкой). Перемещение этого клапана в процессе работы форсунки можно проверить осциллографом.
Диагностика форсунок с помощью осциллографа требуется при скрупулезном поиске неисправности в затруднительных случаях диагностирования.
В большинстве случаев достаточно сделать анализ эффективности работы цилиндров двигателя.
С помощью осциллографа можно оценить время нахождения форсунок в отрытом состоянии, а также некоторые другие параметры, которые важны при тщательном поиске неисправностей при неправильной работе системы питания.
Более подробный анализ работы форсунок приводится в инструкции по использованию осциллографа.
Благодаря широкому интервалу развертки осциллограф дает возможность развернуть импульс даже для контроля наносекундных промежутков времени. Кроме того, некоторые осциллографы (многоканальные) способны одновременно снимать данные о сигналах с нескольких диагностируемых объектов (датчиков, систем и т. п.).
Увеличивая частоту снятия характеристик сигнала (частоту амплитудных колебаний), можно получить более подробную информацию о функционировании того или иного элемента электроники или электрооборудования автомобиля. При этом визуальный анализ осциллограммы интуитивно более понятен для специалиста, понимающего, как должна выглядеть осциллограмма в номинальном режиме работы диагностируемого элемента.
Во многих случаях осциллограф увеличивает скорость диагностики и достоверность полученного диагноза, поскольку осциллограмма зачастую более информативна, чем аналогичная информация, полученная с других диагностических приборов.
При работе с осциллографом от специалиста-диагноста требуется, в первую очередь, знать, как правильно подключить прибор, и как должен выглядеть график осциллограммы сигнала с исправно работающего прибора, системы или электрического устройства, т. е. элемента, подлежащего диагностированию.
Механическое состояние деталей цилиндропоршневой группы можно оценить, если в свечное отверстие цилиндра вставить датчик давления. В этом случае оценить состояние деталей ЦПГ можно достовернее, чем обычным пневмотестером.
В общем случае, при определенных навыках использования прибора, осциллограф позволяет диагностировать любую электрическую систему, прибор или устройство. Т. е. этим прибором можно проверять не только электронику систем, управляющих двигателем (ЭСУД), но и других электрических и электронных систем автомобиля – управление АКПП, ABS, ASR, ESP и т. п.
Принципиальное устройство осциллографа
Переключатель синхронизации работает в положениях синхронизации:
- от исследуемого сигнала;
- от сети;
- от внешнего источника.
Первое положение применяется чаще, так как оно более удобно.
Классификация осциллографов
Существует несколько видов осциллографов, имеющих разные характеристики, устройство и работу.
Аналоговые осциллографы
Такие осциллографы можно отнести к классическими моделями этого типа измерительных приборов. Любые аналоговые осциллографы имеют делитель, вертикальный усилитель, синхронизацию и отклонение, блок питания и лучевую трубку.
Такие трубки имеют больший диапазон частоты. Отклонение луча на экране прямо зависит от напряжения пластин. Горизонтальная развертка работает по линейной зависимости от напряжения горизонтальных пластин.
Нижний предел частоты равен 10 Герцам. Верхняя граница определяется емкостью пластин и усилителем. Сегодня аналоговые устройства вытесняются цифровыми приборами со своими достоинствами. Но аналоговые приборы пока не исчезают ввиду их малой стоимости.
Цифровые запоминающие осциллографы
Преобразование сигнала в цифровой код дает возможность увеличить устойчивость отображения, сохранять данные в память, сделать растяжку и масштаб проще. Применение дисплея вместо электронной трубки позволяет отображать любые данные и осуществлять управление прибором. Дорогостоящие приборы оснащаются цветным экраном, что позволяет различать сигналы других каналов, курсоры, выделять цветом разные места.
Параметры цифровых осциллографов намного выше аналоговых моделей, в больших пределах находится растяжка сигнала. Кроме простых схем включения синхронизации, может использоваться синхронизация при некоторых событиях или параметрах сигнала. Синхронизацию можно увидеть непосредственно перед включением развертки. Информация в цифровом виде позволяет записать в память экран с итогами измерения, а также распечатать на принтере.
Многие приборы оснащены накопителями для записи изображения в архив и последующей обработки.
Цифровые люминофорные осциллографы
Такой тип осциллографов работает на новой структуре построения, основанной на цифровом люминофоре. Он имитирует по подобию с аналоговыми приборами изменение изображения на экране. Люминофорные цифровые типы осциллографов дают возможность наблюдать на дисплее все подробности модулированных сигналов, как и аналоговые типы. При этом обеспечивается их анализ и хранение в памяти.
Люминофорные приборы, как и цифровые запоминающие осциллографы, имеет свою память для хранения различной информации, в том числе хранится разница задержки времени между разными пробниками. Возможность люминофорных осциллографов выводить данные с изменяемой интенсивностью значительным образом упрощает поиск повреждений в импульсных блоках. Это выражено при вычислении глубины модуляции сигнала при регулировке напряжения на выходе, приводящее к нестабильному функционированию блоков.
В люминофорных цифровых осциллографах объединены достоинства цифровых и аналоговых устройств, а во многом превосходят их. Люминофорные приборы обладают всеми преимуществами запоминающих осциллографов, обеспечивая возможности аналоговых приборов: быструю реакцию на смену сигнала и его отображение с разной яркостью.
Цифровые стробоскопические осциллографы
В этом виде осциллографов применяется эффект последовательного стробирования сигнала. При повторении сигнала выбирается мгновенное значение в определенной точке. При поступлении нового сигнала точка выбора смещается по сигналу. Так продолжается до полного стробирования сигнала. Модифицированный таким образом сигнал в виде огибающей линии мгновенных величин сигнала входа, повторяет форму сигнала.
Продолжительность модифицированного сигнала на много больше продолжительности тестируемого сигнала, а значит, имеется сжатие спектра. Это соответствует увеличению полосы пропускания. Стробоскопические виды осциллографов имеют большие полосы пропускания, и дают возможность производить исследования периодических сигналов с наименьшей продолжительностью. Стробоскопические осциллографы являются достаточно дорогими приборами, поэтому их применяют чаще всего для решения сложных диагностических задач.
Виртуальные осциллографы
Новый вид приборов может быть отдельным устройством с параллельным портом для вывода или ввода информации, а также с портом USB, а также встроенным вспомогательным прибором на базе карт ISA. Программная оболочка виртуальных осциллографов позволяет полностью управлять устройством, и имеет несколько возможностей сервиса: импорт и экспорт информации, цифровая фильтрация, разнообразные измерения, обработка информации математическим способом и т.д.
Осциллографы с применением персонального компьютера могут применяться для широких возможностей измерения. Например, для обслуживания и разработки радиотехнической и электронной аппаратуры, в телекоммуникационной связи, при изготовлении компьютеризированного оборудования, при выполнении диагностических мероприятий средств автотранспорта на станциях технического обслуживания и для многих других случаев, где требуется оценка и тестирование неустойчивых переходных процессов.
Виртуальные модели осциллографов являются хорошей альтернативой стандартных запоминающих цифровых осциллографов, поскольку они значительно дешевле, проще в применении и компактнее. К недостаткам виртуальных осциллографов относится невозможность измерения и отображения постоянной величины сигналов.
Портативные осциллографы
Цифровые технологии быстро развиваются, в результате чего цифровые стационарные приборы модифицируют в портативные устройства с хорошими параметрами габаритных размеров и массы, а также низким расходом электрической энергии.
При этом портативные осциллографы с питанием от гальванических элементов не уступают по характеристикам стационарным приборам по количеству функций, имеют большие возможности использования в разных областях научных исследований, промышленном производстве, в том числе - в авторемонтном производстве.
Как пользоваться осциллографом
Чаще всего в распоряжении начинающего радиолюбителя оказывается однолучевой осциллограф, но освоив приемы пользования таким прибором, не составит труда перейти на двухлучевой или цифровой осциллограф.
На рисунке 1 показан достаточно простой и надежный осциллограф С1-101, имеющий настолько малое количество ручек, что запутаться в них абсолютно невозможно. Обратите внимание, что это не какой-нибудь осциллограф для школьных уроков физики, именно таким пользовались на производстве всего лишь лет двадцать назад.
Питание осциллографа не только 220В. Возможно питание от источника постоянного тока 12В, например автомобильного аккумулятора, что позволяет пользоваться прибором в полевых условиях.
Рисунок 1. Осциллограф С1-101
Вспомогательные регулировки
На верхней панели осциллографа расположены ручки регулирования яркости и фокусировки луча. Их назначение понятно без объяснений. На передней панели находятся все остальные органы управления.
Два регулятора, обозначенные стрелками, позволяют регулировать положение луча по вертикали и горизонтали. Это позволяет более точно совмещать изображение сигнала на экране с координатной сеткой для улучшения отсчета делений.
Нулевой уровень напряжения находится на центральной линии вертикальной шкалы, что позволяет наблюдать двухполярный сигнал без постоянной составляющей.
Для исследования однополярного сигнала, например цифровых схем, луч лучше переместить на нижнее деление шкалы: получится одна вертикальная шкала из шести делений.
На передней панели находятся также тумблер включения питания и индикатор включения.
Усиление сигнала
Вращением этого переключателя следует добиться, чтобы размах исследуемого импульса был не менее 1 деления вертикальной шкалы. Только тогда можно добиться устойчивой синхронизации сигнала. Вообще следует стремиться, получить размах сигнала по возможности больше, до тех пор, пока он не вышел за пределы координатной сетки. В таком случае точность измерений возрастает.
В общем случае рекомендация по выбору усиления может быть такой: выкрутить переключатель против часовой стрелки до положения 5V/дел, после чего вращать ручку по часовой стрелке до тех пор, пока размах сигнала на экране не станет таким, как было рекомендовано в предыдущем абзаце. Это как в случае с мультиметром: если величина измеряемого напряжения неизвестна начинать измерения с самого высоковольтного диапазона.
Открытый и закрытый вход
В правом положении вход усилителя вертикального отклонения включается через конденсатор, который не пропускает постоянную составляющую, зато можно увидеть переменную, даже если постоянная составляющая находится далеко от 0В.
В качестве примера использования закрытого входа можно привести такую распространенную практическую задачу, как измерение пульсаций источника питания: выходное напряжение источника 24В, а пульсации не должны превышать 0,25В.
Если предположить, что напряжение 24В при чувствительности канала вертикального отклонения 5В/дел. займет почти пять делений шкалы (ноль придется устанавливать на самую нижнюю линию вертикальной шкалы), то луч взлетит под самый верх, и пульсации в десятые доли вольта будут практически незаметны.
Чтобы точно измерить эти пульсации достаточно перевести осциллограф в режим закрытого входа, поместить луч в центр вертикальной шкалы и выбрать чувствительность 0,05 или 0,1В/дел. В таком режиме замер пульсаций будет достаточно точным. Следует заметить, что постоянная составляющая может быть достаточно большой: закрытый вход рассчитан на работу с постоянным напряжением до 300В.
В среднем положении переключателя измерительный щуп просто ОТКЛЮЧАЕТСЯ от входа усилителя Y, что дает возможность выставить положение луча, не отключая щуп от источника сигнала.
В некоторых ситуациях это свойство достаточно полезно. Самое интересное, что это положение отмечено на панели осциллографа значком общего провода, земли. Создается впечатление, что измерительный щуп соединяется с общим проводом. И что будет тогда?
В некоторых моделях осциллографов переключатель режима входа не имеет третьего положения, это просто кнопка или тумблер, переключающий режимы открытый/закрытый вход. Важно, что в любом случае такой переключатель есть.
Вот тут можно вспомнить один из способов проверки конденсаторов на обрыв: если взять в руку исправный конденсатор и коснуться им горячего конца, то на экране появится та же лохматая синусоида. Если конденсатор в обрыве, то никаких изменений на экране не произойдет.
Управление разверткой
Как добиться устойчивого изображения сигнала
При подключении к исследуемой цепи на экране чаще всего может появиться картинка, показанная на рисунке 3.
Рисунок 4. Синхронизация изображения
Если осциллограф имеет линию задержки, то подобного пропадания не будет. Для синусоиды это, может быть, не особо заметно, а вот при исследовании прямоугольного импульса можно лишиться на изображении всего фронта импульса, что в ряде случаев достаточно важно. Особенно при работе с внешней разверткой.
Работа с внешней разверткой
Там же расположены гнезда выхода пилообразного напряжения развертки (используется для управления различными ГКЧ), выход калибровочного напряжения (может использоваться в качестве генератора импульсов) и гнездо общего провода.
В качестве примера, где может потребоваться работа с внешней разверткой может послужить схема задержки импульса, показанная на рисунке 5.
Рисунок 5. Схема задержки импульса на таймере 555
При подаче на вход устройства положительного импульса выходной импульс появляется с задержкой, определяемой параметрами RC цепочки, время задержки определяется по формуле, показанной на рисунке. Но по формуле значение определяется весьма приблизительно.
При наличии двухлучевого осциллографа определить время очень просто: достаточно оба сигнала подать на разные входы и измерить время задержки импульса. А если двухлучевого осциллографа в наличии нет? Вот тут-то и придет на помощь режим внешней развертки.
После этого надо запомнить положение на экране входного сигнала и подать на вход Y выходной сигнал. Остается только подсчитать требуемую задержку по делениям шкалы. Естественно, что это не единственная схема, где может потребоваться определение времени задержки между двумя импульсами, таких схем великое множество.
В следующей статье будет рассказано про виды исследуемых сигналов и их параметры, а также про то, как проводить различные измерения с помощью осциллографа.
Читайте также: