Что такое лямбда выражение в c
Буквально на днях случайно наткнулся на Хабре на статью о лямбда-выражениях из нового (будущего) стандарта C++. Статья хорошая и даёт понять преимущества лямбда-выражений, однако, мне показалось, что статья недостаточно полная, поэтому я решил попробовать более детально изложить материал.
Вспомним основы
В прошлой статье лямбда-выражения сравнивали с указателями на функции и с функторами. Так вот первое, что следует уяснить: лямбда-выражения в C++ — это краткая форма записи анонимных функторов. Рассмотрим пример:
Фактически данный код целиком соответствует такому:
Вывод соответственно будет следующим:
На что здесь стоит обратить внимание. Во-первых, из Листинга 1 мы видим, что лямбда-выражение всегда начинается с [] (скобки могут быть непустыми — об этом позже), затем идет необязательный список параметров, а затем непосредственно тело функции. Во-вторых, тип возвращаемого значения мы не указывали, и по умолчанию лямбда возвращает void (далее мы увидим, как и зачем можно указать возвращаемый тип явно). В-третьих, как видно по Листингу 2, по умолчанию генерируется константный метод (к этому тоже еще вернемся).
Не знаю, как вам, но мне for_each, записанный с помощью лямбда-выражения, нравится гораздо больше. Попробуем написать немного усложненный пример:
В данном случае лямбда играет роль унарного предиката, то есть тип возвращаемого значения bool, хотя мы нигде этого не указывали. При наличии одного return в лямбда-выражении, компилятор вычисляет тип возвращаемого значения самостоятельно. Если же в лямбда-выражении присутствует if или switch (или другие сложные конструкции), как в приведенном ниже коде, то на компилятор полагаться уже нельзя:
Код из Листинга 4 не компилируется, а, к примеру, Visual Studio пишет ошибку на каждый return такого содержания:
Компилятор не может самостоятельно вычислить тип возвращаемого значения, поэтому мы должны его указать явно:
Теперь компиляция проходит успешно, а вывод, как и ожидалось, будет следующим:
Захват переменных из внешнего контекста
Все лямбда-выражения, приведенные выше, выглядели как анонимные функции, потому что не хранили никакого промежуточного состояния. Но лямбда-выражения в C++ — это анонимные функторы, а значит состояние они хранить могут! Используя лямбда-выражения, напишем программу, которая выводит количество чисел, попадающих в заданный пользователем интервал [lower; upper):
Ранее я упоминал, что список параметров лямбды можно опускать, когда он пустой, однако для того чтобы компилятор правильно распарсил применение слова mutable, мы должны явно указать пустой список параметров.
При выполнении программы из Листинга 8 получаем следующее:
Следует отметить, что синтаксис наподобие &out в данном случае не означает взятие адреса. Его следует читать скорее как SomeType & out, то есть это просто передача параметра по ссылке. Рассмотрим пример:
В этот раз вместо явного захвата переменной init, я указал режим захвата по умолчанию: [&]. Теперь когда компилятор встречает внутри тела лямбды переменную из внешнего контекста, он автоматически захватывает её по ссылке. Вот эквивалентный Листингу 9 код:
И соответственно вывод будет следующим:
Теперь вам главное не запутаться, что, где и когда передавать по ссылке. Фактически, если мы указываем [&] и не указываем mutable, то все равно сможем менять значение захваченной переменной и это отразится на локальной, потому что operator()() const подразумевает, что мы не можем менять, на что указывает ссылка, а это и так невозможно.
Если лямбда-выражение имеет вид [=] (int & _val) mutable , то переменные захватываются по значению, но меняться будет только их внутренняя копия, а вот параметр передается по ссылке, то бишь изменения отразятся и на оригинале. Если [] (const SomeBigObject & _val) , то ничего не захватывается, а параметр принимается по константной ссылке и т.д.
А что будет, если мы напишем такое, слегка надуманное лямбда-выражение внутри метода класса:
Несмотря на все наши ожидания, код не будет скомпилирован, так как компилятор не сможет захватить m_val и m_power: эти переменные вне области видимости. Вот что говорит на это Visual Studio:
Как же быть? Чтобы получить доступ к членам класса, в capture-list нужно поместить this:
Данная программа делает именно то, чего мы ожидали:
Следует заметить, что this можно захватить только по значению, и если вы попытаетесь произвести захват по ссылке, компилятор выдаст ошибку. Даже если вы в коде из Листинга 12 напишете [&] вместо [this], то this будет все равно захвачен по значению.
Прочее
Помимо всего вышеперечисленного, в заголовке лямбда-выражения можно указать throw-list — список исключений, которые лямбда может сгенерировать. Например, такая лямбда не может генерировать исключения:
А такая генерирует только bad_alloc:
Естественно, если его не указывать, то лямбда может генерировать любое исключение.
К счастью, в финальном варианте стандарта throw-спецификации объявлены устаревшими. Вместо этого оставили ключевое слово noexcept, которое говорит, что функция не должна генерировать исключение вообще.
Повторное использование лямбда-выражений. Генерация лямбда-выражений.
Все вышеперечисленное довольно удобно, но основная мощь лямбда-выражений приходится на то, что мы можем сохранить лямбду в переменной или передавать как параметр в функцию. В Boost для этого есть класс Function, который, если я не ошибаюсь, войдет в новый стандарт STL (возможно, в немного измененном виде). На данный момент уже можно поюзать фичи из обновленного STL, однако, пока что эти фичи находятся в подпространстве имен std::tr1.
Возможность сохранения лямбда-выражений позволяет нам не только повторно использовать лямбды, но и писать функции, которые генерируют лямбда-выражения, и даже лямбды, которые генерируют лямбды.
Рассмотрим следующий пример:
Данная программа выводит:
Рассмотрим подробнее. Вначале у нас инициализируется вектор с помощью generate_n(). Тут всё просто. Далее мы создаем переменную traceLambda типа function (то есть функция, принимающая int и возвращающая void) и присваиваем ей лямбда-выражение, которое выводит на консоль значение и пробел. Далее мы используем только что сохраненную лямбду для вывода всех элементов вектора.
После этого мы видим немаленькое объявление lambdaGen, которая является лямбда-выражением, принимающим один параметр int и возвращающим другую лямбду, принимающую int и возвращающую int.
Следом за этим мы ко всем элементам вектора применяем transform(), в качестве мутационной функции для которого указываем lambdaGen(2). Фактически lambdaGen(2) возвращает другую лямбду, которая прибавляет к переданному параметру число 2 и возвращает результат. Этот код, естественно, немного надуманный, ибо то же самое можно было записать как
однако в качестве примера довольно показательно.
Затем мы снова выводим значения всех элементов вектора, используя для этого сохраненную ранее лямбду traceLambda.
Кроме того что ключевое слово auto весьма полезно при работе с циклами вида
его очень удобно использовать с лямбда-выражениями. Теперь код из Листинга 13 можно переписать так:
Пожалуй, на этом я закончу описание лямбда-выражений. Если будут вопросы, поправки или замечания, с удовольствием выслушаю.
ETA (20.02.2012): Оказалось, что для кого-то эта статья до сих пор актуальна, поэтому поправил подсветку синтаксиса и подкорректировал информацию про throw-списки в объявлении лямбд. Помимо непосредственно лямбда-выражений другие фичи из нового стандарта С++11 (например, списки инициализации контейнеров) решил не добавлять, так что статья осталась практически в первозданном виде.
В C++ 11 и более поздних версиях лямбда-выражение, часто называемое лямбда– — это удобный способ определения объекта анонимной функции ( замыкания) непосредственно в расположении, где оно вызывается или передается в качестве аргумента функции. Обычно лямбда-выражения используются для инкапсуляции нескольких строк кода, передаваемых алгоритмам или асинхронным функциям. В этой статье определяются лямбда-выражения и их сравнение с другими методами программирования. Он описывает их преимущества и предоставляет некоторые основные примеры.
Похожие статьи
Части лямбда-выражения
В стандарте ISO C++ демонстрируется простое лямбда-выражение, передаваемое функции std::sort() в качестве третьего аргумента:
На следующем рисунке показана структура лямбда-выражения:
предложение Capture (также известное как оператор лямбда-выражения в спецификации C++).
список параметров Используемых. (Также называется лямбда-объявлением)
изменяемая спецификация Используемых.
Спецификация Exception Используемых.
замыкающий-возвращаемый тип Используемых.
Предложение Capture
Лямбда-выражение может добавлять новые переменные в тексте (в C++ 14), а также получать доступ к переменным из окружающей области или записыватьих. Лямбда-выражение начинается с предложения Capture. Он указывает, какие переменные фиксируются, а также указывает, является ли запись по значению или по ссылке. Доступ к переменным с префиксом амперсанда ( & ) осуществляется по ссылке и к переменным, к которым нет доступа по значению.
Пустое предложение фиксации ( [ ] ) показывает, что тело лямбда-выражения не осуществляет доступ к переменным во внешней области видимости.
Можно использовать режим захвата по умолчанию, чтобы указать, как фиксировать все внешние переменные, упоминаемые в теле лямбда-выражения: [&] означает, что все переменные, на которые вы ссылаетесь, захватываются по ссылке, а [=] значит, они записываются по значению. Можно сначала использовать режим фиксации по умолчанию, а затем применить для определенных переменных другой режим. Например, если тело лямбда-выражения осуществляет доступ к внешней переменной total по ссылке, а к внешней переменной factor по значению, следующие предложения фиксации эквивалентны:
При использовании записи по умолчанию фиксируются только те переменные, которые упоминаются в теле лямбда-выражения.
Если предложение Capture включает запись-Default & , то ни один идентификатор в записи этого предложения записи не может иметь форму &identifier . Аналогично, если предложение Capture включает запись по умолчанию = , то ни один из этих предложений не может иметь форму =identifier . Идентификатор или this не может использоваться в предложении Capture более одного раза. В следующем фрагменте кода показаны некоторые примеры.
Захват, за которым следует многоточие, — это расширение пакета, как показано в следующем примере шаблона Variadic :
Чтобы использовать лямбда-выражения в теле функции члена класса, передайте this указатель в предложение Capture, чтобы предоставить доступ к функциям и членам данных включающего класса.
Visual Studio 2017 версии 15,3 и более поздних версий (доступно в /std:c++17 режиме и более поздних версиях): this указатель может быть записан по значению путем указания *this в предложении capture. Захват по значению копирует весь замыкание на каждый узел вызова, где вызывается лямбда-выражение. (Замыканием является объект анонимной функции, инкапсулирующий лямбда-выражение.) Захват по значению полезен, когда лямбда выполняется в параллельных или асинхронных операциях. Это особенно полезно на некоторых аппаратных архитектурах, таких как NUMA.
Пример, демонстрирующий использование лямбда-выражений с функциями членов класса, см. в разделе "пример: использование лямбда-выражения в методе" в примерах лямбда-выражений.
При использовании предложения Capture рекомендуется учитывать такие моменты, особенно при использовании лямбда-выражений с многопоточностью:
Захваты ссылок можно использовать для изменения переменных вне, но захваты значений не могут. ( mutable позволяет изменять копии, но не оригиналы.)
Захват ссылок отражает обновления переменных вне, но не фиксирует значения.
Фиксация ссылки вводит зависимость от времени существования, тогда как фиксация значения не обладает зависимостями от времени существования. Это особенно важно при асинхронном выполнении лямбда-выражения. Если вы захватываете локальную по ссылке в асинхронном лямбда-выражении, это локально может быть легко пропала в момент выполнения лямбда-выражения. Код может вызвать нарушение прав доступа во время выполнения.
Обобщенная фиксация (C++14)
В C++14 вы можете объявлять и инициализировать новые переменные в предложении фиксации. Для этого не требуется, чтобы эти переменные существовали во внешней области видимости лямбда-функции. Инициализация может быть выражена в качестве любого произвольного выражения. Тип новой переменной определяется типом, который создается выражением. Эта функция позволяет собирать переменные только для перемещения (например, std::unique_ptr ) из окружающей области и использовать их в лямбда-выражении.
Список параметров
Лямбда-выражения могут записывать переменные и принимать входные параметры. Список параметров (лямбда-декларатор в стандартном синтаксисе) является необязательным и в большинстве аспектов напоминает список параметров для функции.
В C++ 14, если тип параметра является универсальным, можно использовать auto ключевое слово в качестве спецификатора типа. Это ключевое слово указывает компилятору создать оператор вызова функции в качестве шаблона. Каждый экземпляр auto в списке параметров эквивалентен отдельному параметру типа.
Поскольку список параметров является необязательным, можно опустить пустые скобки, если аргументы не передаются в лямбда-выражение и его лямбда-декларатор не содержит спецификацию Exception, завершающего-Return-Typeили mutable .
Изменяемая спецификация
Как правило, оператор вызова функции лямбда-выражения является константой по значению, но использование mutable ключевого слова отменяет это. Он не создает изменяемых элементов данных. mutable Спецификация позволяет тексту лямбда-выражения изменять переменные, захваченные по значению. В некоторых примерах, приведенных далее в этой статье, показано, как использовать mutable .
Спецификация исключений
Можно использовать noexcept спецификацию исключения, чтобы указать, что лямбда-выражение не создает никаких исключений. Как и в случае с обычными функциями, компилятор Microsoft C++ создает предупреждение C4297 , если лямбда-выражение объявляет noexcept спецификацию исключения, а тело лямбда-выражения создает исключение, как показано ниже:
Дополнительные сведения см. в разделе спецификации исключений (throw).
Возвращаемый тип
Возвращаемый тип лямбда-выражения выводится автоматически. Не обязательно использовать ключевое слово, auto если не указан завершающий возвращаемый тип. Замыкающий возвращаемый тип напоминает часть функции, возвращающей возвращаемый тип, и функцию-член. Однако тип возвращаемого значения следует списку параметров, и необходимо включить ключевое слово -> элемента trailing-return-type перед типом возвращаемого значения.
Можно опустить часть возвращаемого типа лямбда-выражения, если тело лямбды содержит только один оператор return. Или, если выражение не возвращает значение. Если тело лямбда-выражения содержит один оператор return, компилятор выводит тип возвращаемого значения из типа возвращаемого выражения. В противном случае компилятор выводит тип возвращаемого значения как void . Рассмотрим следующие примеры фрагментов кода, иллюстрирующих этот принцип:
Лямбда-выражение может создавать другое лямбда-выражение в качестве своего возвращаемого значения. Дополнительные сведения см. в разделе "лямбда-выражения более высокого порядка" в примерах лямбда-выражений.
Тело лямбды
Тело лямбда-выражения является составным оператором. Он может содержать все, что разрешено в теле обычной функции или функции-члена. Тело обычной функции и лямбда-выражения может осуществлять доступ к следующим типам переменных:
Фиксированные переменные из внешней области видимости (см. выше).
Локально объявленные переменные.
Члены данных класса, объявленные внутри класса и this захваченные.
Любая переменная, имеющая статическую длительность хранения, например глобальные переменные.
В следующем примере содержится лямбда-выражение, которое явно фиксирует переменную n по значению и неявно фиксирует переменную m по ссылке.
Поскольку переменная n фиксируется по значению, ее значение после вызова лямбда-выражения остается равным 0 . mutable Спецификацию n можно изменить в лямбда-выражении.
Лямбда-выражение может записывать только переменные с автоматическим длительностью хранения. Однако можно использовать переменные со статической длительностью хранения в теле лямбда-выражения. В следующем примере функция generate и лямбда-выражение используются для присвоения значения каждому элементу объекта vector . Лямбда-выражение изменяет статическую переменную для получения значения следующего элемента.
Дополнительные сведения см. в разделе Generate.
В следующем примере кода используется функция из предыдущего примера и добавляется пример лямбда-выражения, использующего алгоритм generate_n стандартной библиотеки C++. Это лямбда-выражение назначает элемент объекта vector сумме предыдущих двух элементов. mutable Ключевое слово используется, чтобы тело лямбда-выражения может изменить свои копии внешних переменных x и y , которое захватывает лямбда-выражение по значению. Поскольку лямбда-выражение захватывает исходные переменные x и y по значению, их значения остаются равными 1 после выполнения лямбда-выражения.
Дополнительные сведения см. в разделе generate_n.
constexpr лямбда-выражения
Visual Studio 2017 версии 15,3 и более поздних версий (доступно в /std:c++17 режиме и более поздних версиях): лямбда-выражение можно объявить как constexpr (или использовать его в константном выражении), если инициализация каждого захваченного или введенного элемента данных разрешена в константном выражении.
Лямбда-выражение неявно constexpr , если его результат удовлетворяет требованиям constexpr функции:
Если лямбда-выражение неявно или неявное constexpr , то преобразование в указатель функции создает constexpr функцию:
Специально для систем Майкрософт
Лямбда-выражения не поддерживаются в следующих управляемых сущностях среды CLR: ref class , ref struct , value class или value struct .
Если вы используете модификатор, зависящий от Майкрософт, например __declspec , его можно вставить в лямбда-выражение сразу после parameter-declaration-clause . Например:
Чтобы определить, поддерживается ли определенный модификатор лямбда-выражениями, см. статью об модификаторе в разделе модификаторы, относящиеся к Microsoft .
Visual Studio поддерживает стандартную лямбда-функцию c++ 11 и лямбда-выражения без отслеживания состояния. Лямбда без отслеживания состояния преобразуется в указатель функции, который использует произвольное соглашение о вызовах.
Лямбда-выражение используется для создания анонимной функции. Используйте оператор объявления лямбда-выражения для отделения списка параметров лямбда-выражения от исполняемого кода. Лямбда-выражение может иметь одну из двух следующих форм:
Лямбда выражения, имеющая выражение в качестве текста:
Лямбда оператора, имеющая блок операторов в качестве текста:
Чтобы создать лямбда-выражение, необходимо указать входные параметры (если они есть) с левой стороны лямбда-оператора и блок выражений или операторов с другой стороны.
Лямбда-выражение может быть преобразовано в тип делегата. Тип делегата, в который может быть преобразовано лямбда-выражение, определяется типами его параметров и возвращаемым значением. Если лямбда-выражение не возвращает значение, оно может быть преобразовано в один из типов делегата Action ; в противном случае его можно преобразовать в один из типов делегатов Func . Например, лямбда-выражение, которое имеет два параметра и не возвращает значение, можно преобразовать в делегат Action . Лямбда-выражение, которое имеет два параметра и возвращает значение, можно преобразовать в делегат Func . В следующем примере лямбда-выражение x => x * x , которое указывает параметр с именем x и возвращает значение x в квадрате, присваивается переменной типа делегата:
Лямбда-выражения можно также преобразовать в типы дерева выражения, как показано в следующем примере:
При использовании синтаксиса на основе методов для вызова метода Enumerable.Select в классе System.Linq.Enumerable (например, в LINQ to Objects и LINQ to XML) параметром является тип делегата System.Func . При вызове метода Queryable.Select в классе System.Linq.Queryable (например, в LINQ to SQL) типом параметра является тип дерева выражения Expression> . В обоих случаях можно использовать одно и то же лямбда-выражение для указания значения параметра. Поэтому оба вызова Select выглядят одинаково, хотя на самом деле объект, созданный из лямбда-выражения, имеет другой тип.
Выражения-лямбды
Лямбда-выражение с выражением в правой => части оператора называется => . Выражения-лямбды возвращают результат выражения и принимают следующую основную форму.
Лямбды операторов
Лямбда-инструкция напоминает лямбда-выражение, за исключением того, что инструкции заключаются в фигурные скобки:
Тело лямбды оператора может состоять из любого количества операторов; однако на практике обычно используется не более двух-трех.
Лямбда-инструкции нельзя использовать для создания деревьев выражений.
Если лямбда-выражение имеет только один входной параметр, круглые скобки необязательны:
Два и более входных параметра разделяются запятыми:
Иногда компилятор не может вывести типы входных параметров. Вы можете указать типы данных в явном виде, как показано в следующем примере:
Для входных параметров все типы нужно задать либо в явном, либо в неявном виде. В противном случае компилятор выдает ошибку CS0748.
Параметры пустой переменной лямбда-выражения полезны, если вы используете лямбда-выражение для указания обработчика событий.
Если только один входной параметр имеет имя _ , для обеспечения обратной совместимости _ рассматривается как имя этого параметра в лямбда-выражении.
Асинхронные лямбда-выражения
С помощью ключевых слов async и await можно легко создавать лямбда-выражения и операторы, включающие асинхронную обработку. Например, в следующем примере Windows Forms содержится обработчик событий, который вызывает асинхронный метод ExampleMethodAsync и ожидает его.
Такой же обработчик событий можно добавить с помощью асинхронного лямбда-выражения. Чтобы добавить этот обработчик, поставьте модификатор async перед списком параметров лямбда-выражения, как показано в следующем примере:
Дополнительные сведения о создании и использовании асинхронных методов см. в разделе Асинхронное программирование с использованием ключевых слов Async и Await.
Лямбда-выражения и кортежи
Кортеж определяется путем заключения в скобки списка его компонентов с разделителями-запятыми. В следующем примере кортеж с тремя компонентами используется для передачи последовательности чисел в лямбда-выражение. Оно удваивает каждое значение и возвращает кортеж с тремя компонентами, содержащий результат операций умножения.
Как правило, поля кортежи именуются как Item1 , Item2 и т. д. Тем не менее кортеж с именованными компонентами можно определить, как показано в следующем примере:
Лямбда-выражения со стандартными операторами запросов
Экземпляр этого делегата можно создать как Func , где int — входной параметр, а bool — возвращаемое значение. Возвращаемое значение всегда указывается в последнем параметре типа. Например, Func определяет делегат с двумя входными параметрами, int и string , и типом возвращаемого значения bool . Следующий делегат Func при вызове возвращает логическое значение, которое показывает, равен ли входной параметр 5:
В этом примере используется стандартный оператор запроса Count:
Компилятор может вывести тип входного параметра ввода; но его также можно определить явным образом. Данное лямбда-выражение подсчитывает указанные целые значения ( n ), которые при делении на два дают остаток 1.
В следующем примере кода показано, как создать последовательность, которая содержит все элементы массива numbers , предшествующие 9, так как это первое число последовательности, не удовлетворяющее условию:
В следующем примере показано, как указать несколько входных параметров путем их заключения в скобки. Этот метод возвращает все элементы в массиве numbers до того числа, значение которого меньше его порядкового номера в массиве:
Лямбда-выражения не используются непосредственно в выражениях запросов, но их можно использовать в вызовах методов в выражениях запросов, как показано в следующем примере:
Определение типа в лямбда-выражениях
Общие правила определения типа для лямбда-выражений формулируются следующим образом:
- лямбда-выражение должно содержать то же число параметров, что и тип делегата;
- каждый входной параметр в лямбда-выражении должен быть неявно преобразуемым в соответствующий параметр делегата;
- возвращаемое значение лямбда-выражения (если таковое имеется) должно быть неявно преобразуемым в возвращаемый тип делегата.
Естественный тип лямбда-выражения
Лямбда-выражение в самом себе не имеет типа, так как система общих типов не имеет встроенного понятия "лямбда-выражение". Однако иногда бывает удобно говорить о неформальном "типе" лямбда-выражения. Под неофициальным термином "тип" понимается тип делегата или тип Expression, в который преобразуется лямбда-выражение.
Компилятор может определить parse как Func . Компилятор использует доступный делегат Func или Action , если он существует. Если нет, компилятор синтезирует тип делегата. Например, тип делегата синтезируется, если лямбда-выражение имеет параметры ref . Если лямбда-выражение имеет естественный тип, его можно присвоить менее явному типу, например System.Object или System.Delegate:
Группы методов (то есть имена методов без списков параметров) с ровно одной перегрузкой имеют естественный тип:
Не у всех лямбда-выражений есть естественный тип. Рассмотрим следующее объявление:
Компилятор не может определить тип параметра для s . Если компилятор не может определить естественный тип, необходимо объявить тип:
Явный тип возвращаемого значения
Как правило, тип возвращаемого значения лямбда-выражения является очевидным и легко выводится. Для некоторых выражений это не работает:
Атрибуты
Кроме того, вы можете добавить атрибуты во входные параметры или возвращаемое значение, как показано в следующем примере:
Как показано в предыдущих примерах, при добавлении атрибутов в лямбда-выражение или его параметры вам нужно заключить входные параметры в скобки.
Лямбда-выражения вызываются через базовый тип делегата. Это отличается от методов и локальных функций. Метод делегата Invoke не проверяет атрибуты в лямбда-выражении. При вызове лямбда-выражения атрибуты не оказывают никакого влияния. Атрибуты лямбда-выражений полезны для анализа кода и могут быть обнаружены с помощью отражения. Одно из последствий этого решения — невозможность применить System.Diagnostics.ConditionalAttribute к лямбда-выражению.
Запись внешних переменных и области видимости переменной в лямбда-выражениях
Лямбда-выражения могут ссылаться на внешние переменные. Это переменные в области метода, в котором определено лямбда-выражение, или области типа, который содержит лямбда-выражение. Переменные, полученные таким способом, сохраняются для использования в лямбда-выражениях, даже если бы в ином случае они оказались за границами области действия и уничтожились сборщиком мусора. Внешняя переменная должна быть определенным образом присвоена, прежде чем она сможет использоваться в лямбда-выражениях. В следующем примере демонстрируются эти правила.
Следующие правила применимы к области действия переменной в лямбда-выражениях.
- Захваченная переменная не будет уничтожена сборщиком мусора до тех пор, пока делегат, который на нее ссылается, не перейдет в статус подлежащего уничтожению при сборке мусора.
- Переменные, представленные в лямбда-выражении, невидимы в заключающем методе.
- Лямбда-выражение не может непосредственно захватывать параметры in, ref или out из заключающего метода.
- Оператор return в лямбда-выражении не вызывает возврат значения заключающим методом.
- Лямбда-выражение не может содержать операторы goto, break или continue, если целевой объект этого оператора перехода находится за пределами блока лямбда-выражения. Если целевой объект находится внутри блока, использование оператора перехода за пределами лямбда-выражения также будет ошибкой.
Статическое лямбда-выражение не может сохранять локальные переменные или состояние экземпляров из охватывающих областей, но может ссылаться на статические элементы и определения констант.
В этой статье демонстрируется синтаксис и структурные элементы лямбда-выражений. Описание лямбда-выражений см. в разделе лямбда-выражения.
Объекты функций и лямбда-выражения
При написании кода вы, вероятно, используете указатели функций и объекты функций для решения проблем и выполнения вычислений, особенно при использовании алгоритмов стандартной библиотеки C++. У объектов-функций и указателей на функции есть как преимущества, так и недостатки. Например, указатели на функции отличаются минимальными требованиями к синтаксису, но не сохраняют состояние в области видимости. Объекты-функции, в свою очередь, могут сохранять состояние, но требуют дополнительного синтаксиса в определении класса.
Лямбда-выражение сочетает преимущества указателей на функции и объектов-функций, избегая их недостатков. Как и объект функции, лямбда-выражение является гибким и может поддерживать состояние, но в отличие от объекта функции, его синтаксис Compact не требует явного определения класса. С помощью лямбда-выражений можно написать код, который более простым и менее подверженным появлению ошибок, чем код для соответствующего объекта функции.
В следующих примерах сравнивается использование лямбда-выражения и объекта функции. В первом примере лямбда-выражение используется для вывода на консоль независимо от того, четным или нечетным является каждый элемент в объекте vector . Во втором примере для выполнения той же задачи используется объект функции.
Пример 1: использование лямбда-выражения
Комментарии
В примере третий аргумент функции for_each является лямбда-выражением. Часть [&evenCount] указывает предложение захвата выражения, (int n) определяет список параметров, а оставшаяся часть определяет тело выражения.
Пример 2: использование объекта-функции
Иногда лямбда-выражение может быть слишком громоздким для значительного расширения из состояния, показанного в предыдущем примере. В следующем примере вместо лямбда-выражения используется объект функции, а также функция for_each для получения тех же результатов, что и в примере 1. Оба примера хранят количество четных чисел в объекте vector . Для поддержания состояния операции класс FunctorClass хранит переменную m_evenCount по ссылке как переменную-член. Для выполнения операции FunctorClass реализует оператор вызова функции, оператор (). Компилятор Microsoft C++ создает код, сравнимый по размеру и производительности, с лямбда-кодом в примере 1. Для несложной проблемы, такой как в этом примере, более простая конструкция лямбда-выражения, возможно, лучше, чем конструкция объекта-функции. Однако если вы считаете, что в будущем потребуется значительно расширить функциональность, используйте конструкцию объекта-функции, чтобы упростить обслуживание кода.
Дополнительные сведения об операторе ()см. в разделе вызов функции. Дополнительные сведения о функции for_each см. в разделе for_each.
Лямбда-выражения являются одним из наиболее мощных дополнений в C++11 и продолжают развиваться с каждым новым стандартом языка. В этой статье мы пройдемся по их истории и посмотрим на эволюцию этой важной части современного C++.
Вторая часть доступна по ссылке:
Lambdas: From C++11 to C++20, Part 2
Вступление
Я решил взять код у Томаса (с его разрешения!), описать его и создать отдельную статью.
Мы начнем с изучения C++03 и с необходимости в компактных локальных функциональных выражениях. Затем мы перейдем к C++11 и C++14. Во второй части серии мы увидим изменения в C++17 и даже взглянем на то, что произойдет в C++ 20.
С самого начала STL std::algorithms , такие как std::sort , могли принимать любой вызываемый объект и вызывать его для элементов контейнера. Однако в C++03 это предполагало только указатели на функции и функторы.
Но проблема заключалась в том, что вы должны были написать отдельную функцию или функтор в другой области видимости, а не в области видимости вызова алгоритма.
В качестве потенциального решения вы могли бы подумать о написании локального класса функторов — поскольку C++ всегда поддерживает этот синтаксис. Но это не работает…
Посмотрите на этот код:
Попробуйте скомпилировать его с -std=c++98 , и вы увидите следующую ошибку в GCC:
Если мы посмотрим на N3337 — окончательный вариант C++11, то увидим отдельный раздел для лямбд: [expr.prim.lambda].
Далее к C++11
Вот базовый пример кода, который также показывает соответствующий объект локального функтора:
Вы также можете проверить CppInsights, который показывает, как компилятор расширяет код:
Посмотрите на этот пример:
В этом примере компилятор преобразует:
Во что-то похожее на это (упрощенная форма):
Некоторые определения, прежде чем мы начнем:
Вычисление лямбда-выражения приводит к временному prvalue. Этот временный объект называется объектом-замыканием (closure object).
Тип лямбда-выражения (который также является типом объекта-замыкания) является уникальным безымянным non-union типом класса, который называется типом замыкания (closure type).
Несколько примеров лямбда-выражений:
Поскольку компилятор генерирует уникальное имя для каждой лямбды, узнать его заранее не представляется возможным.
Более того [expr.prim.lambda]:
Тип замыкания, связанный с лямбда-выражением, имеет удаленный ([dcl.fct.def.delete]) конструктор по умолчанию и удаленный оператор присваивания.
Поэтому вы не можете написать:
Это приведет к следующей ошибке в GCC:
Оператор вызова
По умолчанию это встроенный константный метод. Вы можете изменить его, указав mutable после объявления параметров:
Захватив переменную, вы создаете член-копию этой переменной в типе замыкания. Затем внутри тела лямбды вы можете получить к нему доступ.
- [&] — захват по ссылке, все переменные в автоматическом хранилище объявлены в области охвата
- [=] — захват по значению, значение копируется
- [x, & y] — явно захватывает x по значению, а y по ссылке
Вы можете поиграться с полным примером здесь: @Wandbox
Хотя указание [=] или [&] может быть удобно — поскольку оно захватывает все переменные в автоматическом хранилище, более очевидно захватывать переменные явно. Таким образом, компилятор может предупредить вас о нежелательных эффектах (см., например, примечания о глобальных и статических переменных)
И важная цитата:
По умолчанию operator() типа замыкания является константным, и вы не можете изменять захваченные переменные внутри тела лямбда-выражения.
Если вы хотите изменить это поведение, вам нужно добавить ключевое слово mutable после списка параметров:
В приведенном выше примере мы можем изменить значения x и y… но это только копии x и y из прилагаемой области видимости.
Захват глобальных переменных
Если у вас есть глобальное значение, а затем вы используете [=] в лямбде, вы можете подумать, что глобальное значение также захвачено по значению… но это не так.
Поиграть с кодом можно здесь: @Wandbox
Захватываются только переменные в автоматическом хранилище. GCC может даже выдать следующее предупреждение:
Это предупреждение появится только в том случае, если вы явно захватите глобальную переменную, поэтому, если вы используете [=] , компилятор вам не поможет.
Компилятор Clang более полезен, так как генерирует ошибку:
Захват статических переменных
Захват статических переменных аналогичен захвату глобальных:
Поиграть с кодом можно здесь: @Wandbox
И снова, предупреждение появится, только если вы явно захватите статическую переменную, поэтому, если вы используете [=] , компилятор вам не поможет.
Захват члена класса
Знаете ли вы, что произойдет после выполнения следующего кода:
Код объявляет объект Baz, а затем вызывает foo() . Обратите внимание, что foo() возвращает лямбду (хранящуюся в std::function ), которая захватывает член класса.
Поскольку мы используем временные объекты, мы не можем быть уверены, что произойдет, при вызове f1 и f2. Это проблема висячих ссылок, которая порождает неопределенное поведение.
Опять же, если вы укажете захват явно ([s]):
Компилятор предотвратит вашу ошибку:
Move-able-only объекты
Если у вас есть объект, который может быть только перемещен (например, unique_ptr), то вы не можете поместить его в лямбду в качестве захваченной переменной. Захват по значению не работает, поэтому вы можете захватывать только по ссылке… однако это не передаст его вам во владение, и, вероятно, это не то, что вы хотели.
Сохранение констант
Если вы захватываете константную переменную, то константность сохраняется:
Возвращаемый тип
В C++11 вы можете пропустить trailing возвращаемый тип лямбды, и тогда компилятор выведет его за вас.
Первоначально вывод возвращаемого типа значения был ограничен лямбдами, содержащими один оператор return, но это ограничение было быстро снято, поскольку не было проблем с реализацией более удобной версии.
Таким образом, начиная с C++11, компилятор может вывести тип возвращаемого значения, если все операторы return могут быть преобразованы в один и тот же тип.
Если все операторы return возвращают выражение и типы возвращаемых выражений после преобразования lvalue-to-rvalue (7.1 [conv.lval]), array-to-pointer (7.2 [conv.array]) и function-to-pointer (7.3 [conv.func]) такое же, как у общего типа;
Поиграться с кодом можно здесь: @Wandbox
В вышеприведенной лямбде есть два оператора return , но все они указывают на double , поэтому компилятор может вывести тип.
IIFE — Немедленно вызываемые выражения (Immediately Invoked Function Expression)
В наших примерах я определял лямбду, а затем вызвал ее, используя объект замыкания… но ее также можно вызывать немедленно:
Такое выражение может быть полезно при сложной инициализации константных объектов.
Преобразование в указатель на функцию
Тип замыкания для лямбда-выражения без захвата имеет открытую невиртуальную неявную функцию преобразования константы в указатель на функцию, имеющую тот же параметр и возвращаемые типы, что и оператор вызова функции типа замыкания. Значение, возвращаемое этой функцией преобразования, должно быть адресом функции, которая при вызове имеет тот же эффект, что и вызов оператора функции типа сходного с типом замыкания.
Другими словами, вы можете преобразовывать лямбды без захватов в указатель на функцию.
Поиграться с кодом можно здесь: @Wandbox
Улучшения в C++14
C++14 добавил два значительных улучшения в лямбда-выражения:
- Захваты с инициализатором
- Общие лямбды
Возвращаемый тип
Вывод типа возвращаемого значения лямбда-выражения был обновлен, чтобы соответствовать правилам автоматического вывода для функций.
Возвращаемый тип лямбды — auto, который заменяется trailing возвращаемым типом, если он предоставляется и/или выводится из операторов возврата, как описано в [dcl.spec.auto].
Захваты с инициализатором
Короче говоря, мы можем создать новую переменную-член типа замыкания и затем использовать ее внутри лямбда-выражения.
Это может решить несколько проблем, например, с типами, доступными только для перемещения.
Перемещение
Теперь мы можем переместить объект в член типа замыкания:
Оптимизация
Другая идея состоит в том, чтобы использовать его как потенциальную технику оптимизации. Вместо того, чтобы вычислять какое-то значение каждый раз, когда мы вызываем лямбду, мы можем вычислить его один раз в инициализаторе:
Захват переменной-члена
Инициализатор также можно использовать для захвата переменной-члена. Затем мы можем получить копию переменной-члена и не беспокоиться о висячих ссылках.
Поиграться с кодом можно здесь: @Wandbox
В foo() мы захватываем переменную-член, копируя ее в тип замыкания. Кроме того, мы используем auto для вывода всего метода (ранее, в C++11 мы могли использовать std::function ).
Обобщенные лямбда-выражения
Еще одно существенное улучшение — это обобщенная лямбда.
Начиная с C++14 можно написать:
Это эквивалентно использованию объявления шаблона в операторе вызова типа замыкания:
Такая обобщенная лямбда может быть очень полезна, когда трудно вывести тип.
В этой статье мы начали с первых дней лямбда-выражений в C++03 и C++11 и перешли к улучшенной версии в C++14.
Вы увидели, как создавать лямбду, какова основная структура этого выражения, что такое список захвата и многое другое.
В следующей части статьи мы перейдем к C++17 и познакомимся с будущими фичами C++20.
Вторая часть доступна здесь:
Читайте также: