Что означает коэффициент лямбда
Что такое коэффициент теплопроводности
Коэффициент теплопроводности — количество теплоты, передаваемое за единицу времени через единицу площади изотермической поверхности при температурном градиенте, равном единице.
Из СП 61.13330.2012
Здесь использованы следующие понятия:
Коэффициент — относительная величина, определяющая свойство какого-нибудь процесса или устройства.
Теплопроводность — свойство передавать теплоту от нагретых участков к более холодным.
Изотермическая поверхность — поверхность, температура которой одинакова во всех точках.
Температурный градиент — перепад температур.
По сути, это расчетный коэффициент, который показывает, сколько тепла проводит материал. Коэффициент теплопроводности обозначается символом λ (лямбда).
Для чего нужен коэффициент теплопроводности
Когда вы видите, что коэффициент тепловодности одного материала при 10 °С равен 0,034 Вт/мК, а другого 0,036 Вт/мК, при тех же условиях. Что это означает?
Благодаря коэффициенту теплопроводности вы можете сравнить, какой материал передает больше теплоты, а какой меньше. Чем меньше теплопроводность материала, тем лучшими теплоизоляционными свойствами он обладает.
Для примера сравните коэффициент теплопроводности материалов ALMALEN при 10 °С с другими вспененными полиэтиленами. Он имеет наименьшую теплопроводность в своем классе: от 0,032 Вт/мК до 0,034 Вт/мК.
А если пойти дальше, то коэффициент теплопроводности даст понимание, как изменяется количество передаваемого тепла через один и тот же материал в зависимости от температуры на поверхности изолируемого объекта. Количество передаваемого материалом тепла за промежуток времени называется тепловым потоком.
Тепловой поток — количество теплоты, проходящее через образец в единицу времени.
Из ГОСТ 7076-99
Что значит λ10, λ20, λ100 и так далее
λ10 — это коэффициент теплопроводности, полученный в результате испытаний при среднеарифметическом значении температуры теплоизоляции 10 °С. Среднеарифметическое значение температуры теплоизоляции — сумма температур на изолируемой поверхности и внешней поверхности теплоизоляции, разделенная пополам.
λ100 означает, что испытания проведены при среднеарифметическом значении температуры теплоизоляции 100 °С.
Как правильно сравнивать коэффициент теплопроводности разных материалов
Существуют различные методы определения коэффициента теплопроводности. При сравнении материалов необходимо всегда обращать внимание на сопоставимость и применимость таких методов. То есть необходимо сравнивать коэффициенты теплопроводности, взятые при одной и той же температуре и определенные по одному и тому же стандарту.
Коэффициент теплопроводности одного и того же материала, измеренный при меньшей температуре, будет всегда иметь меньшее значение и выглядеть якобы предпочтительнее.
Теплопроводность строительных материалов стала популярной темой в последние годы. Это связано с тем, что люди стали чаще задумываться о том, как сэкономить на отоплении дома зимой, либо сделать их более экологичными (если они отапливаются на угле, мазуте или другом неэкологичном топливе).
Полагаем, многие из вас уже слышали, что одни материалы хорошо проводят тепло, а другие — не очень. Соответственно из одних дома получаются сразу теплыми, а из других — их обязательно нужно утеплять. Но как же все это считают? По каким критериям и формулам? Об этом мы расскажем вам в данной статье.
Коэффициент теплопроводности Лямбда. Что это такое?
Коэффициент λ (лямбда) — это, пожалуй, наиболее важный параметр всех теплоизоляционных материалов. Его значение указывает на то, сколько тепла материал может пропускать через себя. То есть его показатель теплопроводности.
Чем ниже значение коэффициента λ (лямбда), тем меньше проводимость материала и, следовательно, он лучше изолирован от тепловых потерь. Это означает, что при одинаковых условиях больше тепла будет проходить через вещество с большей теплопроводностью.
Как же высчитывается этот коэффициент? Согласно второму закону термодинамики, тепло всегда уходит в область более низкой температуры. Для тела в форме теплопроводного кубоида в стационарных условиях количество передаваемого тепла зависит от вещества, пропорционально поперечному сечению тела, разности температур и времени теплопередачи.
Таким образом формула расчет будет выглядеть так:
- λ (лямбда) — коэффициент теплопроводности;
- ΔQ — количество тепла, протекающего через тело;
- t — время;
- L — длина тела;
- S — площадь поперечного сечения корпуса;
- ΔT — разность температур в направлении теплопроводности;
- d — толщина перегородки.
За единицу измерения теплопроводности принимается система СИ — [Вт / (м · К)]. Она выражает количество теплового потока через единицу поверхности материала заданной толщины, если разница температур между двумя его сторонами составляет 1 Кельвин. Измеряют все эти показатели в специальных строительных лабораториях.
От чего зависит теплопроводность?
Итак, как мы уже убедились, коэффициент теплопроводности λ (лямбда) характеризует интенсивность теплопередачи через конкретный материал.
Так, например, наиболее теплопроводными являются металлы, а самыми слабыми — газы. Еще все проводники электричества, такие как медь, алюминий, золото или серебро, также хорошо пропускают через себя тепло, в то время как электрические изоляторы (дерево, пластик, резина) наоборот задерживают его.
Что может повлиять на этот показатель, кроме самого материала? Например, температура. Теплопроводность изоляционных материалов увеличивается с повышением температуры, а у металлов — напротив, уменьшается. Еще может повлиять наличие примесей. Сплавы разнородных металлов обычно имеют более низкую теплопроводность, чем их легирующие элементы.
В целом, теплопроводность веществ зависит, в основном, от их структуры, пористости, и прежде всего от их плотности. Поэтому, если производитель заявляет о низком значении лямбда при низкой плотности материала, — эта информация, как правило, не имеет ничего общего с действительностью и просто рекламный ход.
Значения теплопроводности для различных материалов
Сравнить, насколько тот или иной материал может пропускать тепло, вы можете воспользовавшись данной таблицей:
Теплопроводность [Вт / (м · К)]
Войлок, маты и плиты из минеральной ваты
0,16 — 0,3 (сосна и ель), 0,22 — 0,4 (дуб)
Н ержавеющая сталь
Применение коэффициента теплопроводности в строительстве
В строительстве действует одно простое правило — коэффициенты теплопроводности изоляционных материалов должны быть как можно ниже. Все потому, что чем меньше значение λ (лямбда), тем меньше можно сделать толщину изоляционного слоя, чтобы обеспечить конкретное значение коэффициента теплопередачи через стены или перегородки.
В настоящее время производители теплоизоляционных материалов (пенополистирол, графитовые плиты или минеральная вата) стремятся минимизировать толщину изделия за счет уменьшения коэффициента λ (лямбда), например, для полистирола он составляет 0,032-0,045 по сравнению с 0,15-1,31 у кирпича.
Что касается строительных материалов, то при их производстве коэффициент теплопроводности не имеет столь большого значения, однако в последние годы наблюдается тенденция к производству строительных материалов с низким показателем λ (например, керамических блоков, структурных изоляционных панелей, блоков из ячеистого бетона). Такие материалы позволяют построить однослойную стену (без утеплителя) или с минимально возможной толщиной утеплительного слоя.
Важно: коэффициент теплопроводности лямбда зависит от плотности материала, поэтому при покупке, к примеру, пенополистирола, обратите внимание на вес продукта. Если вес слишком мал, значит плиты не имеют заявленной теплоизоляции. Добавим, что производитель обязан указывать заявленное значение коэффициента теплопроводности на каждой упаковке.
Какой же строительный материал самый теплый?
В настоящее время это пенополиуретан (ППУ) и его производные, а также минеральная (базальтовая, каменная) вата. Они уже зарекомендовали себя как эффективные теплоизоляторы и сегодня широко применяются в утеплении домов.
Для наглядности о том, насколько эффективны эти материалы, покажем вам следующую иллюстрацию. На ней отображено какой толщины материала достаточно, чтобы удерживать тепло в стене дома:
А как же воздух и газообразные вещества? — спросите вы. Ведь у них коэффициент Лямбда еще меньше? Это верно, Но если мы имеем дело с газами и жидкостями, помимо теплопроводности, здесь надо также учитывать и перемещение тепла внутри них — то есть конвекции (непрерывного движения воздуха, когда более теплый воздух поднимается вверх, а более холодный — опускается).
Подобное явление имеет место в пористых материалах, поэтому они имеют более высокие значения теплопроводности, чем сплошные материалы. Все дело в том, что небольшие частички газа (воздух, углекислый газ) скрываются в пустотах таких материалов. Хотя такое может случится и с другими материалами — в случае если воздушные поры в них будут слишком большими, в них может также начать происходить конвекция.
Разница между теплопроводностью и теплопередачей
Помимо коэффициента теплопроводности Лямбда существует также коэффициент теплопередачи U . Они звучат похоже, но обозначают совершенно разные вещи.
Так, если коэффициент теплопроводности является характеристикой определенного материала, то коэффициент теплопередачи U определяет степень теплоизоляции стены или перегородки. Проще говоря — коэффициент теплопроводности является исходным и напрямую влияет на значение коэффициента теплоотдачи U.
Если вам интересно получить больше информации на эту тему, а также узнать: какими материалами лучше всего утеплить ваш дом, в чем отличия между разными типами утеплителей, мы советуем прочитать эту статью.
Не забудьте добавить сайт Недвио в Закладки. Рассказываем о строительстве, ремонте, загородной недвижимости интересно, с пользой и понятным языком.
Крамера и коэффициентом "лямбда". [c.552]
Мы рассмотрим статистики, обычно используемые для оценки статистической значимости и тесноты связи переменных, в таблице сопряженности. Статистическая значимость наблюдаемой связи обычно измеряется критерием Теснота связи важна с практической точки зрения. Обычно она имеет значение, если связь статистически значимая. Тесноту связи можно измерить коэффициентом корреляции фи, коэффициентом сопряженности Крамера и коэффициентом "лямбда". Эти статистики ниже описаны детальнее. [c.575]
Таким образом, связь не очень сильна. В этом случае V = о Так всегда происходит для таблицы Другой обычно рассчитываемой статистикой является коэффициент "лямбда". [c.578]
Мера в процентах улучшения прогнозирования значения зависимой переменной при данном значении независимой переменной. Значения коэффициента "лямбда" лежат в пределах от 0 до [c.578]
Значения коэффициента "лямбда" лежат в пределах от 0 до 1. Значение "лямбда", равное О, означает, что никакого улучшения в прогнозировании не наблюдается. Значение 1 указывает на то, что прогноз может быть сделан без ошибки. Это происходит тогда, когда каждая категория независимой переменной связана с одной категорией зависимой [c.579]
Симметричный коэффициент "лямбда" не дает предположения о какая из переменных зависимая. Он измеряет общее улучшение прогнозирования, когда прогноз уже сделан в обоих направлениях. [c.579]
Если нулевая гипотеза отклонена, то определите тесноту связи, используя статистики коэффициент сопряженности, Крамера, коэффициент "лямбда" или другие статистики). [c.580]
Л (лямбда) - коэффициент Оукена [c.830]
Коэффициент "лямбда" используется в том случае, когда переменные измерены с помощью номинальной шкалы, коэффициент (asymmetri lambda) показывает выраженное в процентах улучшение при прогнозировании значения зависимой переменной при данном значении независимой переменной, [c.578]
Асимметрический коэффициент "лямбда" подсчитывают для каждой из зависимых переменных. Также рассчитывают симметричный коэффициент (symmetri lambda) — средним значением двух асимметричных значений. [c.579]
Симметричный коэффициент "лямбда" не делает предположения о том, какая из переменных зависимая. Он измеряет прогнозирования, когда прогноз уже выполнен в обоих направлениях [14]. Значение асимметричного коэффициента "лямбда" в табл. 15.3, если в качестве переменной взять Internet, равно 0,333. Это указывает на то, что знание пола нашу возможность прогнозирования на 0,333, т.е. имеет место улучшение прогнозирования на 0,33%. Симметричный коэффициент "лямбда" также равен 0,33%. [c.579]
Часто, чтобы лучше уяснить суть связи переменных, вводят третью переменную. Статистика позволяет проверить статистическую значимость наблюдаемой в таблице, s o-i-i пряженности. С помощьюкоэффициента сопряженности, V -коэффициент Крамера и коэффициента "лямбда" определяют силу связи между переменными. [c.598]
Бессмысленно интерпретировать результаты анализа, если определенные дискрими-не являются статистически значимыми. Поэтому выполнить статистическую проверку нулевой гипотезы о равенстве средних всех функций во всех группах генеральной совокупности. В программе SPSS эта проверка базируется на коэффициенте лямбда (X) Уилкса. Если одновременно проверяют несколько [c.695]
Измерители линейной чувствительности к движению финансовых переменных используются под различными обозначениями. На рынке инструментов с фиксированным доходом чувствительность к движению процентных ставок измеряется дюрацией. На рынке акций чувствительность к фактору рынка в цепом (например, фондовому индексу) называется систематическим риском или коэффициентом бета. На рынке производных инструментов чувствительность
Коэффициент лямбда для апрельских 1992 г. опционов колл, для каждой из цен исполнения [c.121]
Лямбда (X) измеряет чувствительность цены опциона к изменениям волатильности цены акции и равна производной с по вола-тильности акций. Участники торгов, располагающие конфиденциальной информацией, способной влиять на рыночные курсы, стара- [c.126]
Классификация выручки. Самый простой способ оценки лямбды — это использование доли выручки фирмы, полученной в определенной стране, и сравнение ее с долей выручки средней фирмы в стране. [c.269]
Таким образом, фирма, которая получает лишь 40% своей выручки в Индонезии, в то время как средняя индонезийская фирма получает 80% выручки в своей стране, будет иметь лямбду, равную 0,5 для индонезийского суверенного риска. Тем не менее, заметим, что если оставшиеся 60% фирма получает в Таиланде, то нам следовало бы оце- [c.269]
Л (лямбда) - коэффициент Оукена [c.830]
В литературе помимо термина вега иногда используют термины каппа, лямбда, сигма, омега, зета. [c.221]
Крамера и коэффициентом "лямбда". [c.552]
Мы рассмотрим статистики, обычно используемые для оценки статистической значимости и тесноты связи переменных, в таблице сопряженности. Статистическая значимость наблюдаемой связи обычно измеряется критерием Теснота связи важна с практической точки зрения. Обычно она имеет значение, если связь статистически значимая. Тесноту связи можно измерить коэффициентом корреляции фи, коэффициентом сопряженности Крамера и коэффициентом "лямбда". Эти статистики ниже описаны детальнее. [c.575]
Таким образом, связь не очень сильна. В этом случае V = о Так всегда происходит для таблицы Другой обычно рассчитываемой статистикой является коэффициент "лямбда". [c.578]
Мера в процентах улучшения прогнозирования значения зависимой переменной при данном значении независимой переменной. Значения коэффициента "лямбда" лежат в пределах от 0 до [c.578]
Значения коэффициента "лямбда" лежат в пределах от 0 до 1. Значение "лямбда", равное О, означает, что никакого улучшения в прогнозировании не наблюдается. Значение 1 указывает на то, что прогноз может быть сделан без ошибки. Это происходит тогда, когда каждая категория независимой переменной связана с одной категорией зависимой [c.579]
Симметричный коэффициент "лямбда" не дает предположения о какая из переменных зависимая. Он измеряет общее улучшение прогнозирования, когда прогноз уже сделан в обоих направлениях. [c.579]
Если нулевая гипотеза отклонена, то определите тесноту связи, используя статистики коэффициент сопряженности, Крамера, коэффициент "лямбда" или другие статистики). [c.580]
Lambda — лямбда . Ожидаемая надбавка к прибыли (сверх безрисковой процентной ставки) на единицу чувствительности к некоторому стандартному фактору. Также чувствительность цены опциона к изменениям его неустойчивости. [c.980]
Измерение степени подверженности суверенному рисну (лямбда). В главе 7 представлены концепция подверженности суверенному риску и понятие лямбда как мера подверженности компании суверенному риску. В этом разделе мы бы хотели с интуитивной точки зрения обсудить, какие факторы определяют эту подверженность и как наилучшим образом оценить лямбду. Воздействие на компанию суверенного риска зависит почти от всех аспектов ее деятельности, начиная с того, где расположены ее фабрики и кто ее клиенты и заканчивая тем, в какой валюте заключаются контракты и насколько успешно фирма справляется с риском валютного обмена. Однако значительная часть этих данных относится к внутренней информации, которая недоступна при проведении оценки фирмы сторонними аналитиками. На практике, в таких случаях мы можем оценить лямбду, основываясь на одном из следующих подходов. [c.269]
Регрессия и государственные облигации. Второй подход к оценке лямбды связан с выведением регрессий доходности акций для каждой фирмы на формирующемся рынке — в сопоставлении с доходностью государственных облигаций, выпущенных данной страной. Например, в Бразилии это предполагало бы составление регрессии доходности по каждой бразильской акции в сопоставлении с доходностью бразильской государственной облигации. Наклон линии регрессии должен измерять, насколько чувствительна акция к изменениям в суверенном риске (поскольку доходы по государственным облигациям являются прямой мерой суверенного риска) и, таким образом, этот наклон обеспечивает измерение лямбды. Например, если предположить, что регрессия доходности акций компании Embraer в сопоставлении с доходностью бразильских суверенных облигаций ( -bond) дает наклон в 0,30, а так как средний наклон для бразильских акций равен 0,75, то лямбда будет равна 0,40 (0,30/0,75). [c.270]
Из равенства (12.41) следует, что применение обычного метода наименьших квадратов к наблюдениям yt приведет, в общем случае, к смещенным оценкам параметров /3. Если же а и = 0, т. е. когда механизм выбора и степень участия независимы, смещение отсутствует. Величину (p(z t i]I (z tl B (12.41) обозначают A(zj7) и называют лямбда Хекмана (He kman lambda). [c.344]
Измерители линейной чувствительности к движению финансовых переменных используются под различными обозначениями. На рынке инструментов с фиксированным доходом чувствительность к движению процентных ставок измеряется дюрацией. На рынке акций чувствительность к фактору рынка в цепом (например, фондовому индексу) называется систематическим риском или коэффициентом бета. На рынке производных инструментов чувствительность
Кислородный датчик – устройство, предназначенное для фиксирования количества оставшегося кислорода в отработавших газах двигателя автомобиля. Он расположен в выпускной системе вблизи катализатора. На основе данных, полученных кислородником, электронный блок управления двигателем (ЭБУ) корректирует расчет оптимальной пропорции топливовоздушной смеси. Коэффициент избытка воздуха в ее составе обозначается в автомобилестроении греческой буквой лямбда (λ), благодаря чему датчик получил второе название – лямбда-зонд.
Коэффициент избытка воздуха λ
Прежде чем разбирать конструкцию датчика кислорода и принцип его работы, необходимо определиться с таким важным параметром, как коэффициент избытка воздуха топливовоздушной смеси: что это такое, на что влияет и зачем его измеряет датчик.
В теории работы ДВС существует такое понятие как стехиометрическое отношение – это идеальная пропорция воздуха и топлива, при которой происходит полное сгорание топлива в камере сгорания цилиндра двигателя. Это очень важный параметр, на основании которого рассчитывается топливоподача и режимы работы двигателя. Оно равняется 14,7 кг воздуха к 1 кг топлива (14,7:1). Естественно, такое количество топливовоздушной смеси не поступает в цилиндр в один момент времени, это всего лишь пропорция, которая пересчитывается под реальные условия.
Коэффициент избытка воздуха (λ) – это отношение действительного количества воздуха, поступившего в двигатель, к теоретически необходимому (стехиометрическому) для полного сгорания топлива. Говоря простым языком, это “на сколько больше (меньше) воздуха поступило в цилиндр, чем должно было бы”.
В зависимости от значения λ различают три вида топливовоздушной смеси:
- λ = 1 – стехиометрическая смесь;
- λ < 1 – “богатая” смесь (избыток – топливо; недостаток – воздух);
- λ > 1 – “бедная” смесь (избыток – воздух; недостаток – топливо).
Современные двигатели могут работать на всех трех типах смеси, в зависимости от текущих задач (экономия топлива, интенсивное ускорение, снижение концентрации вредных веществ в отработавших газах). С точки зрения оптимальных значений мощности двигателя, коэффициент лямбда должен иметь значение около 0,9 (“богатая” смесь), минимальный расход топлива будет соответствовать стехиометрической смеси (λ = 1). Наилучшие результаты по очистке отработавших газов будут также наблюдаться при λ = 1, поскольку эффективная работа каталитического нейтрализатора происходит при стехиометрическом составе топливовоздушной смеси.
Назначение датчиков кислорода
Стандартно в современных автомобилях используется два датчика кислорода (для рядного двигателя). Один перед катализатором (верхний лямбда-зонд), а второй после него (нижний лямбда-зонд). Различий в конструкции верхнего и нижнего датчиков нет, они могут быть одинаковыми, но выполняют разные функции.
Верхний или передний кислородный датчик определяет содержание оставшегося кислорода в отработавших газах. По сигналу с данного датчика блок управления двигателем “понимает”, на каком типе топливовоздушной смеси работает двигатель (стехиометрической, богатой или бедной). В зависимости от показаний кислородника и требуемого режима работы, ЭБУ корректирует количество топлива, подаваемого в цилиндры. Как правило, топливоподача корректируется в сторону стехиометрической смеси. Следует отметить, что при прогреве двигателя сигналы с датчика игнорируются ЭБУ двигателя до достижения им рабочей температуры. Нижний или задний лямбда-зонд используется для дополнительной корректировки состава смеси и контроля исправности работы каталитического нейтрализатора.
Конструкция и принцип работы кислородного датчика
Существует несколько видов лямбда-зондов, применяемых на современных автомобилях. Рассмотрим конструкцию и принцип работы наиболее популярного из них – датчика кислорода на основе диоксида циркония (ZrO2). Датчик состоит из следующих основных элементов:
- Наружный электрод – осуществляет контакт с выхлопными газами.
- Внутренний электрод – контактирует с атмосферой.
- Нагревательный элемент – используется для подогрева кислородного датчика и более быстрого вывода его на рабочую температуру (около 300 °C).
- Твердый электролит – расположен между двумя электродами (диоксид циркония).
- Корпус.
- Защитный кожух наконечника – имеет специальные отверстия (перфорацию) для проникновения отработавших газов.
Внешний и внутренний электроды покрыты платиновым напылением. Принцип работы такого лямбда зонда основан на возникновении разности потенциалов между слоями платины (электроды), которые чувствительны к кислороду. Она возникает при нагревании электролита, когда через него происходит движение ионов кислорода от атмосферного воздуха и выхлопных газов. Напряжение, возникающее на электродах датчика, зависит от концентрации кислорода в отработавших газах. Чем она выше, тем ниже напряжение. Диапазон напряжений сигнала кислородного датчика находится в пределах от 100 до 900 мВ. Сигнал имеет синусоидальную форму, у которой выделяются три области: от 100 до 450 мВ – бедная смесь, от 450 до 900 мВ – богатая смесь, значение 450 мВ соответствует стехиометрическому составу топливовоздушной смеси.
Ресурс кислородника и его неисправности
Лямбда-зонд – один из наиболее быстро изнашиваемых датчиков. Это связано с тем, что он постоянно контактирует с отработавшими газами и его ресурс напрямую зависит от качества топлива и исправности двигателя. Например, циркониевый кислородник имеет ресурс порядка 70-130 тысяч километров пробега.
Поскольку работа обоих кислородных датчиков (верхнего и нижнего) контролируется системой бортовой диагностики OBD-II, при выходе из строя любого из них будет зафиксирована соответствующая ошибка, а на панели приборов загорится контрольная лампа неисправности “Check Engine”. Диагностировать неисправность в данном случае можно с помощью специального диагностического сканера. Из бюджетных вариантов стоит обратить внимание на Scan Tool Pro Black Edition.
Данный сканер корейского производства отличается от аналогов высоким качеством сборки и возможностью диагностики всех узлов и агрегатов автомобиля, а не только двигателя. Также он способен отслеживать показания всех датчиков (в том числе и кислородного) в режиме реального времени. Сканер совместим со всеми популярными диагностическими программами и, зная допустимые по вольтажу значения, можно судить об исправности датчика.
При исправной работе кислородного датчика характеристика сигнала представляет собой правильную синусоиду, демонстрирующую частоту переключений не менее 8 раз в течение 10 секунд. Если датчик вышел из строя, то форма сигнала будет отличаться от эталонной, либо его отклик на изменение состава смеси существенно замедлится.
Основные неисправности кислородного датчика:
- износ в процессе эксплуатации (“старение” датчика);
- обрыв электрической цепи нагревательного элемента;
- загрязнение.
Все эти виды проблем могут быть спровоцированы использованием некачественного топлива, перегревом, добавлением различных присадок, попаданием в зону работы датчика масел и чистящих средств.
Признаки неисправности кислородника:
- Индикация сигнальной лампы неисправности на приборной панели.
- Потеря мощности.
- Слабый отклик на педаль газа.
- Неровная работа двигателя на холостых оборотах.
Виды лямбда-зондов
Помимо циркониевых используются также титановые и широкополосные датчики кислорода.
- Титановые. Этот вид кислородников имеет чувствительный элемент из диоксида титана. Рабочая температура такого датчика начинается от 700 °C. Титановые лямбда-зонды не требуют наличия атмосферного воздуха, поскольку принцип их работы основан на изменении выходного напряжения, в зависимости от концентрации кислорода в выхлопе.
- Широкополосный лямбда-зонд представляет собой усовершенствованную модель. Он состоит из цикрониевого датчика и закачивающего элемента. Первый измеряет концентрацию кислорода в отработавших газах, фиксируя напряжение, вызванное разницей потенциалов. Далее происходит сравнение показания с эталонной величиной (450 мВ), и, в случае отклонения, подается ток, провоцирующий закачивание ионов кислорода из выхлопа. Это происходит до тех пор, пока напряжение не станет равным заданному.
Лямбда-зонд является очень важным элементом системы управления двигателем, а его неисправность может привести к сложностям в управлении автомобилем и стать причиной повышенного износа остальных деталей двигателя. А поскольку он не подлежит ремонту, его необходимо сразу заменить на новый.
Читайте также: