Замена верхней опоры двигателя вольво х90
Редкий современный мотор не опирается под капотом на гидравлические подушки, дабы минимально беспокоить своими вибрациями водителя и пассажиров. Чем хороши такие опоры, когда они появилась в автопроме, как эволюционируют и… когда исчезнут?
Резиновая подушка крепления двигателя долгие десятилетия оставалась одной из самых консервативных деталей любого автомобиля, а ее эволюции были крайне малозаметны. И в наши дни по дорогам ездит все еще немало машин (УАЗы, Волги, Москвичи), чьи опорные подушки моторов представляют собой простейший монолитный резиновый брусок или диск.
Однако в середине 80-х годов ХХ века европейские автопроизводители начали внедрять в свои модели резино-гидравлические опоры двигателей. Так, одним из первых автомобилей, примеривших гидроопору, был Mercedes-Benz W124. В отличие от чисто резиновых, они демпфировали колебания в более широком диапазоне частот и амплитуд, действуя по принципу амортизатора – гася вибрации за счет сопротивления жидкости, продавливаемой через калиброванные дросселирующие отверстия.
Никакой революции в автопроме резино-гидравлические опоры не вызвали – к периоду их появления инженеры давно научились хорошо просчитывать обычные резиновые подушки под конкретные двигатели с их особенностями распределения колебаний и вибраций, и работали они весьма эффективно. Но конструкции с гидравликой несколько более точно настраивались под характеристики двигателя, чем чисто резиновые. Одну резино-гидравлическую опору на двигатель (реже две) стали ставить, перераспределяя на нее нагрузки так, чтобы улучшить демпфирование и продлить жизнь соседним опорам с обычной структурой, из простой резины.
Устройство и диагностика
Несмотря на то, что жидкость в вышедшей из строя опоре обычно черная от резиновой пыли, гидравлическая часть опоры редко страдает от физического износа – как правило, первым сдается резиновый блок, теряя с возрастом упругость из-за частичных отслоений от металла, микроразрывов и трещин.
Важно понимать, что жидкость и вообще вся гидравлическая часть в резино-гидравлической опоре играет все же не ведущую роль, а вспомогательную. Массу двигателя, как в случае с обычными резиновыми опорами, держит мощный упругий резиновый элемент. И если жидкость по какой-то причине покинет опору (что иногда случается из-за прорыва эластичного дна или из-за утечки по завальцовке частей корпуса), то катастрофы не произойдет – разве что повысится уровень вибраций по кузову. И не факт, что даже во всем диапазоне оборотов – обычно дефект заметнее на холостых.
Однако затягивать с заменой опоры все же не стоит – усилившаяся амплитуда раскачки двигателя заставляет его при запуске или наборе оборотов под нагрузкой биться о неподвижные элементы подкапотного пространства, от чего могут пострадать разные патрубки, шланги, провода. Да и остальные, обычно еще вполне живые, опоры начинают интенсивно изнашиваться после смерти ведущей, гидравлической.
В принципе, при использовании опор от другой машины с двигателем сопоставимой мощности и массы подобные ухищрения в целом работоспособны и допустимы от безысходности. Разве что крайне нежелательно использовать на продольно расположенных моторах подушки от поперечно расположенных, и наоборот – нагрузки на сдвиг и сдавливание у них рассчитаны совершенно по-разному, и работают такие опоры при нештатной установке некорректно – либо не гасят вибрации, либо быстро разрушаются.
Пик развития и… грядущее исчезновение
При создании некоторых моделей авто высокого класса инженеры пошли еще дальше, добавив к резино-гидравлической опоре систему из двух-трех клапанов, управляемых по команде электроники импульсами тока, вакуумом или подводимым извне давлением масла в зависимости от оборотов и нагрузки на двигатель. В частности, подобная конструкция применяется на Lexus RX с 1998 года.
20 лет спустя внедрили опоры с бесступенчато-изменяемыми характеристиками – с ферромагнитной жидкостью и катушкой, создающей магнитное поле, которое меняет вязкость – тут пионером стал Porsche 911 GT3 2010 года. Оправданность таких радикальных усложнений в далеко не самом функционально важном узле машины – вопрос дискуссионный, но в некоторых случаях навороченные конструкции однозначно обоснованы. Например, в автомобилях, двигатели которых оснащаются системой отключения части цилиндров и скачкообразно меняют свои вибрационно-резонансные характеристики. Активные опоры могут менять свою упругость импульсно, с высокой частотой – синхронно с вибрацией двигателя, но в противофазе к ней – и гасить колебания, как наушники с шумоподавлением гасят внешний шум.
Интересно, что исследования в области разработки подобных активных гидроопор (с ферромагнитной жидкостью и синхронизацией изменения ее свойств с источником вибраций в реальном времени) проводились и в СССР с 80-х годов ХХ века – в частности, в Институте машиноведения им. Благонравова Российской академии наук. Правда, в отечественном автопроме ничего из тех разработок так и не было реализовано – системы активного подавления вибраций применялись в промышленности, в энергетике, в станкостроении.
Впрочем, наиболее сложные и дорогостоящие управляемые опоры автомобильных двигателей, похоже, достигли своего пика развития. И не потому, что идеи для более продвинутых решений исчерпаны, а по причине грядущего вытеснения двигателей внутреннего сгорания электрическими. В эпоху электромобилей сложным управляемым опорам с плавно изменяемыми характеристиками придется уйти в прошлое, поскольку идеально сбалансированный ротор электромотора не порождает такого количества разнонаправленных сил инерции первого и второго порядков и моментов от них, как классические ДВС, в которых движутся поршни, шатуны и коленвал.
Читайте также: