Система питания киа рио 3 схема
Элементы системы питания: 1 – топливный бак; 2 – адсорбер; 3 – крышка топливного модуля; 4 – трубка подвода паров топлива к адсорберу; 5 – трубка подвода паров топлива к клапану продувки адсорбера; 6 – наливная труба; 7 – вентиляционная трубка; 8 – трубка подвода воздуха к адсорберу; 9 – заливная горловина; 10 – воздушный фильтр; 11 – глушитель шума воздуха на впуске; 12 – воздуховод; 13 – шланг подвода воздуха к дроссельному узлу; 14 – клапан продувки адсорбера; 15 – дроссельный узел; 16 – впускной трубопровод; 17 – топливная рампа; 18 – форсунки.
Пробка заливной горловины.
Предохранительный клапан представляет собой пластмассовую трубку с подпружиненной пластиной (на фото пластина для наглядности приоткрыта).
Датчик указателя уровня топлива: поплавок; колодка проводов датчика; резистор; ползунок; рычаг поплавка.
Расположение предохранительного клапана в патрубке бака.
Топливный модуль: поплавок; стакан; топливный фильтр; крышка модуля; датчик указателя уровня топлива.
Топливный насос с трубкой подвода топлива к фильтру.
Топливная рампа с форсунками.
Форсунка с уплотнительными кольцами.
Регулятор давления топлива.
Элементы воздушного тракта: воздуховод; глушитель шума воздуха на впуске.
Расположение элементов системы улавливания паров топлива на топливном баке.
Расположение гравитационного клапана в крышке топливного модуля (показано на снятой крышке топливного модуля).
Элементы адсорбера: штуцер подвода воздуха; штуцер отвода паров топлива к электромагнитному клапану; штуцер подвода паров топлива из бака к адсорберу; корпус адсорбера.
Электромагнитный клапан продувки адсорбера.
Топливо подается из бака, установленного под днищем в районе заднего сиденья. Топливный бак состоит из двух сваренных между собой стальных штампованных частей.
С патрубками бака соединены наливная труба и вентиляционная трубка, выполненные из пластмассы. В верхней части наливной трубы выполнена горловина, которая крепится к кузову. Вентиляционная трубка служит для отвода воздуха, вытесняемого из бака при его заправке топливом. В пробке заливной горловины установлен клапан, препятствующий возникновению разрежения в баке.
В патрубке топливного бака, который соединяется с наливной трубой, установлен предохранительный клапан, предназначенный для предотвращения вытекания топлива через заливную горловину бака при опрокидывании автомобиля.
Клапан находится в закрытом состоянии и открывается только под давлением топлива при заправке бака.
Топливный модуль (включающий в себя топливный насос, регулятор давления топлива, топливный фильтр и датчик указателя уровня топлива) установлен в топливном баке. Для грубой очистки топлива на входе в топливный насос установлен сетчатый фильтр.
Для доступа к топливному модулю под подушкой заднего сиденья в днище автомобиля выполнен лючок.
Датчик указателя уровня топлива прикреплен к корпусу топливного модуля. Датчик представляет собой переменный резистор, сопротивление которого зависит от перемещения поплавка. Датчик управляет работой указателя уровня и сигнализатора минимального уровня топлива в баке.
Топливный насос расположен внутри корпуса топливного фильтра.
Насос электрический, вихревого типа. Он включается по команде ЭБУ при включении зажигания и подает топливо в магистраль под давлением (около 6,0 бар), превышающим рабочее давление в топливной рампе.
Топливо, проходя через насос, во время его работы смазывает и охлаждает насос. Поэтому запрещается включать насос даже на короткое время, если в баке нет топлива.
Производительность топливного насоса не менее 60 л/ч.
От насоса топливо под давлением подводится по гофрированной пластмассовой трубке к топливному фильтру, который входит в состав топливного модуля.
Топливный фильтр выполнен в пластмассовом корпусе с бумажным фильтрующим элементом и предназначен для очистки топлива от механических примесей с тонкостью очистки до 10 мкм. В топливную магистраль, соединяющую корпус фильтра с крышкой модуля, встроен регулятор давления (клапан), который поддерживает в топливной рампе давление, равное 3,2–3,4 бар. Это необходимо для точного дозирования топлива форсунками. Излишки топлива стравливаются в бак. Регулятор неразборный и при выходе из строя подлежит замене.
Из фильтра топливо по гофрированной пластмассовой трубке подается в крышку топливного модуля и оттуда по трубопроводу – к топливной рампе.
Топливная рампа представляет собой стальную трубу прямоугольного профиля, на которой установлены форсунки. Рампа прикреплена к головке блока цилиндров двумя болтами.
К левому торцу рампы крепится топливная трубка нагнетательной магистрали.
Топливо под давлением подается в полость рампы, а оттуда – через форсунки во впускные каналы головки блока цилиндров.
Форсунка представляет собой электромагнитный клапан, подающий топливо в канал головки блока цилиндров при подаче на него напряжения и запирающийся под действием возвратной пружины при обесточивании.
На выходе форсунки выполнен распылитель с четырьмя отверстиями, через которые топливо впрыскивается в канал головки блока цилиндров.
Управляет работой форсунок ЭБУ. Форсунки уплотняются в рампе и головке блока цилиндров резиновыми кольцами и фиксируются на рампе металлическими скобами.
При обрыве или замыкании обмотки, форсунку следует заменить.
Воздух подводится к дроссельному узлу двигателя через воздуховод с глушителем шума воздуха на впуске, воздушный фильтр и резиновый гофрированный шланг. Глушитель шума воздуха на впуске расположен под передним бампером, перед аркой левого переднего колеса.
Корпус воздушного фильтра расположен в левой передней части моторного отсека и прикреплен к площадке аккумуляторной батареи, левому брызговику и лонжерону.
Фильтрующий элемент воздушного фильтра – бумажный.
Дроссельный узел крепится к впускному трубопроводу и представляет собой корпус дроссельной заслонки, на котором установлен блок управления заслонкой. Заслонка открывается на требуемый угол по сигналу электронного блока управления двигателем. Во избежание обмерзания дроссельного узла при низкой температуре и высокой влажности окружающего воздуха, в узел встроен блок подогрева, через который циркулирует жидкость системы охлаждения.
Пройдя дроссельный узел, воздух поступает во впускной трубопровод, изготовленный из высокопрочной термостойкой пластмассы.
Из ресивера (общей полости воздуховода) воздух по четырем отдельным каналам подводится к впускным каналам головки блока цилиндров. Для того чтобы наполнение цилиндров двигателя воздухом было одинаковым, каналы впускного трубопровода выполнены приблизительно одной длины.
В состав системы питания входит система улавливания паров топлива, препятствующая попаданию паров топлива в атмосферу. В состав системы входят адсорбер, электромагнитный клапан продувки адсорбера, соединительные трубки и шланги.
Из бака пары топлива через гравитационный клапан, расположенный в крышке топливного модуля, по шлангу попадают в адсорбер (резервуар с активированным углем), где аккумулируются.
Адсорбер закреплен на топливном баке. Второй штуцер адсорбера соединен с атмосферой, а третий – с электромагнитным клапаном продувки адсорбера.
Гравитационный клапан предотвращает вытекание топлива из бака через элементы системы улавливания паров при опрокидывании автомобиля.
Электромагнитный клапан продувки адсорбера прикреплен с помощью кронштейна и резинового держателя к левому торцу головки блока цилиндров двигателя.
При неработающем двигателе электромагнитный клапан продувки закрыт, и в этом случае адсорбер не сообщается с задроссельным пространством дроссельного узла. ЭБУ, управляя электромагнитным клапаном, осуществляет продувку адсорбера после того, как двигатель проработает заданный период времени с момента перехода на режим управления топливоподачей по замкнутому контуру (управляющий датчик кислорода должен быть прогрет до необходимой температуры). Клапан сообщает полость адсорбера с впускным трубопроводом, и происходит продувка сорбента: пары бензина смешиваются с воздухом и подводятся через впускной трубопровод в цилиндры двигателя, где сгорают. Чем больше расход воздуха двигателем, тем больше длительность управляющих импульсов ЭБУ и тем интенсивнее продувка.
Элементы контроля и управления двигателем
Управление топливной системой осуществляется блоком управления двигателем ЕСМ (Engine Control Module)
Блок ЕСМ проводит регулировку угла опережения зажигания, определяет количество подаваемого в двигатель топлива, управляет системой снижения токсичности отработавших газов и частотой вращения коленчатого вала двигателя на холостом ходу, а также сцеплением компрессора кондиционера и т.д.
Блок ЕСМ изменяет режимы работы двигателя в зависимости от изменяющихся эксплуатационных режимов на основании сигналов от различных переключателей и датчиков.
Например, блок ЕСМ регулирует угол опережения зажигания на основании сигналов датчиков, которые реагируют на частоту вращения коленчатого вала, температуру охлаждающей жидкости, положение дроссельной заслонки, включенной в данный момент передачи, скорость автомобиля и т.д.
Блок ЕСМ регулирует частоту вращения коленчатого вала холостого хода на основании сигналов датчиков, которые реагируют на положение дроссельной заслонки, скорость автомобиля, включенной в данный момент передачи и т.д.
Датчик измерителя расхода воздуха (MAF – Mass Airflow Sensor)
Измеритель расхода воздуха обеспечивает самый прямой метод измерить нагрузку двигателя, так как он измеряет количество воздуха, поступающего в двигатель.
Поток воздуха поступает в двигатель через измеритель с нагретым и холодным проволочными элементами, образующими часть мостовой схемы.
Ток, проходящий через нагретый проволочный элемент, поддерживает его постоянную температуру на постоянном уровне, которая выше, чем температура поступающего в двигатель воздуха.
Масса воздуха определяется по силе тока необходимой для поддержания температуры проволочного элемента.
Чем больше поток воздуха и, естественно, его охлаждение, тем больше величина сигнала подаваемого на блок ЕСМ.
Датчик температуры охлаждающей жидкости
Датчик температуры охлаждающей жидкости контролирует температуру охлаждающей жидкости и на основании сигнала датчика блок ЕСМ вычисляет ширину импульса, подаваемого на форсунки, в результате чего изменяется количество топлива подаваемого в цилиндры двигателя, а также изменяет угол опережения зажигания.
На холодном двигателе блок ЕСМ работает в режиме открытой петли, в результате чего в цилиндры двигателя подается более богатая топливовоздушная смесь и увеличивается частота вращения холостого хода. Это продолжается до достижения двигателем нормальной рабочей температуры.
Датчик положения дроссельной заслонки (TP – Throttle Position)
Датчик положения дроссельной заслонки передает информацию, на основании которой блок ЕСМ определяет, когда дроссельная заслонка закрыта, полностью открыта или находится промежуточных положениях.
Датчик жестко соединен с валом дроссельной заслонки. В зависимости от положения дроссельной заслонки изменяется сопротивление датчика. Для питания датчика с блока ЕСМ на него подается напряжение 5 В.
Выходное напряжение датчика изменяется от 0,25 В при минимальном открытии дроссельной заслонки до 4,7 В при полном открытии дроссельной заслонки.
Датчик угла поворота коленчатого вала (CKP – Crankshaft Position Sensor)
Датчик угла поворота коленчатого вала передает блоку ЕСМ информацию о положении коленчатого вала. На основании информации выходного сигнала этого датчика и сигналом датчика положения распределительного вала блок ЕСМ определяет угол опережения зажигания и цилиндр, в который необходимо подать топливо. При отсутствии выходных сигналов датчика двигатель не запустится.
Датчик положения распределительного вала (CMP – Camshaft Position Sensor)
Датчик положения распределительного вала вырабатывает импульсы, на основании которых блок ЕСМ идентифицирует первый цилиндр и время открытия форсунки.
Датчик детонации
Датчик детонации реагирует на высокочастотные колебания блока цилиндров и преобразовывает их в электрические сигналы, величина которых увеличивается при увеличении детонации. На основании этих сигналов блок ЕСМ смещает момент зажигания в сторону запаздывания, в результате чего устраняется детонация.
Датчик температуры поступающего в двигатель воздуха
Датчик температуры поступающего в двигатель воздуха представляет собой термистор, сопротивление которого изменяется в зависимости от температуры.
Блок ЕСМ учитывает сигнал датчика и корректирует ширину импульса, подаваемого на форсунки, в результате чего изменяется количество топлива подаваемого в цилиндры двигателя, а также изменяет угол опережения зажигания.
Датчик кислорода
В автомобиле установлены два датчика кислорода. В зависимости от содержания кислорода в отработавших газах датчик кислорода индуцирует напряжение от 0 до 1 В.
На основании этих данных блок управления двигателем изменяет время открытия форсунок и соотношение топлива в топливовоздушной смеси.
Для того, чтобы происходило полное сгорание горючей смеси и в отработавших газах отсутствовали вредные вещества на 14,7 весовых частей воздуха должна приходиться 1 часть топлива.
Оба датчика кислорода оборудованы обогревателями, которые поддерживают температуру датчиков в определенном интервале при работе двигателя на всех эксплуатационных режимах.
Поддержание определенной температуры датчика позволяет системе быстрее включиться в работу и работать в режиме холостого хода.
Передний датчик кислорода
Передний датчик кислорода расположен в выхлопной трубе за каталитическим нейтрализатором и передает выходной сигнал, на основании которого блок ЕСМ определяет содержание кислорода в отработавших газах. На основании этих данных блок управления двигателем изменяет время открытия форсунок.
В состав системы питания автомобиля KIA Rio входят детали и узлы следующих систем:
- подачи топлива, включающей в себя топливный бак, топливный модуль, трубопроводы и топливную рампу с форсунками;
- воздухоподачи, в которую входят воздушный фильтр, дроссельный узел;
- улавливания паров топлива, состоящей из адсорбера, клапана продувки адсорбера и соединительных трубопроводов.
Функциональное назначение системы подачи топлива – обеспечение подачи необходимого количества топлива в двигатель на всех рабочих режимах. Двигатель оборудован электронной системой управления с распределенным впрыском топлива. В системе распределенного впрыска функции смесеобразования и дозирования подачи топливовоздушной смеси в цилиндры двигателя разделены: воздух подается системой воздухоподачи, состоящей из дроссельного узла и регулятора холостого хода, а необходимое в каждый момент работы двигателя количество топлива впрыскивается форсунками в головку блока цилиндров. Такой способ управления дает возможность обеспечивать оптимальный состав горючей смеси в каждый конкретный момент работы двигателя, что позволяет получить максимальную мощность при минимально возможном расходе топлива и низкой токсичности отработавших газов. Управляет системой впрыска топлива (а также системой зажигания) электронный блок, непрерывно контролирующий с помощью соответствующих датчиков нагрузку двигателя, скорость движения автомобиля, тепловое состояние двигателя, оптимальность процесса сгорания в цилиндрах двигателя.
Особенностью системы впрыска автомобиля KIA Rio является синхронность срабатывания форсунок в соответствии с фазами газораспределения (блок управления двигателем получает информацию от датчика фазы). Блок управления включает форсунки последовательно, а не попарно, как в системах асинхронного впрыска. Каждая форсунка включается через 720 о поворота коленчатого вала. Однако на режимах пуска и динамических режимах работы двигателя используется асинхронный метод подачи топлива без синхронизации с вращением коленчатого вала.
Основным датчиком для обеспечения оптимального процесса сгорания является управляющий датчик концентрации кислорода в отработавших газах (лямбда-зонд). Он установлен в катколлекторе и совместно с блоком управления двигателем и форсунками образует контур управления составом топливовоздушной смеси, подаваемой в двигатель. По сигналам датчика блок управления двигателем определяет количество несгоревшего кислорода в отработавших газах и соответственно оценивает оптимальность состава топливовоздушной смеси, поступающей в цилиндры двигателя в каждый момент времени. Зафиксировав отклонение состава от оптимального 1:14 (топливо/воздух), обеспечивающего наиболее эффективную работу каталитического нейтрализатора отработавших газов, блок управления с помощью форсунок изменяет состав смеси.Поскольку датчик концентрации кислорода включен в цепь обратной связи блока управления двигателем, контур управления составом топливовоздушной смеси является замкнутым.
Особенность системы управления двигателем автомобиля KIA Rio состоит в наличии, помимо управляющего датчика, второго, диагностического датчика концентрации кислорода, установленного на выходе из каталитического нейтрализатора системы выпуска отработавших газов. По составу газов, прошедших через нейтрализатор, он определяет эффективность работы системы управления двигателем. Если блок управления двигателем по информации, полученной от диагностического датчика концентрации кислорода, фиксирует превышение нормы токсичности отработавших газов, не устраняемое тарировкой системы управления, то он включает в комбинации приборов сигнализатор неисправности двигателя и заносит в память код ошибки для последующей диагностики.
Топливный бак стальной, штампованный, установлен под полом кузова в его задней части и прикреплен двумя хомутами к кузову.
Для того чтобы пары топлива не попадали в атмосферу, бак соединен трубопроводом с адсорбером системы улавливания паров топлива.
Во фланцевое отверстие топливного бака установлен модуль топливного насоса. Из топливного модуля топливо подается в топливную рампу, закрепленную на головке блока цилиндров. Из топливной рампы топливо впрыскивается форсунками в отверстия в головке блока цилиндров.
В патрубок топливного бака для соединения его с наливной трубой вставлена специальная трубка, на конце которой установлен клапан, постоянно находящийся в закрытом состоянии и предотвращающий вытекание топлива при опрокидывании автомобиля.
Клапан закрывается под действием пружины, установленной под ним. Под давлением топлива, поступающего в бак при заправке, клапан открывается и пропускает топливо.
Топливопроводы системы питания представляют собой трубки, соединяющие между собой различные элементы системы.
ПРЕДУПРЕЖДЕНИЕ:
Шланги системы питания изготовлены по особой технологии из маслобензостойких материалов. Применение шлангов, отличающихся по конструкции от рекомендованных, может привести к отказу системы питания, а в некоторых случаях к пожару.
Топливный модуль включает в себя электрический насос, регулятор давления топлива, фильтры грубой и тонкой очистки топлива и датчик уровня топлива.
Топливный модуль обеспечивает подачу топлива и установлен в топливном баке, что снижает вероятность образования паровых пробок, так как топливо подается под давлением, а не за счет разрежения. Кроме этого улучшается смазывание и охлаждение деталей топливного насоса.
Топливный насос погружной, роторного типа, с электроприводом.
Регулятор давления топлива установлен в топливном модуле и предназначен для поддержания постоянного давления топлива в топливной рампе. Регулятор подключен в начало подающей магистрали (сразу же после топливного фильтра) и представляет собой перепускной клапан с пружиной, усилие которой строго калибровано.
Рис.1. Топливная рампа: 1- рампа; 2- форсунка; 3- фиксатор форсунки; 4- кронштейн крепления топливной рампы.
Топливная рампа 1 (рис.1) представляет собой пустотелую деталь с отверстиями для форсунок 2 и с кронштейнами 4 крепления к головке блока цилиндров. Форсунки уплотнены в отверстиях рампы и в отверстиях головки блока цилиндров резиновыми кольцами и закреплены пружинными фиксторами 3. Рампа в сборе с форсунками вставлена хвостовиками форсунок в отверстия головки блока цилиндров и закреплена двумя болтами.
Рис.2. Форсунка системы впрыска топлива: 1- верхнее уплотнительное кольцо; 2- штекерные выводы обмотки электромагнита; 3- нижнее уплотнительное кольцо.
Форсунки прикреплены к рампе, из которой к ним подается топливо, а своими распылителями входят в отверстия головки блока цилиндров. В отверстиях рампы и головки блока цилиндров форсунки уплотнены кольцами 1 и 3 (рис.2). Форсунка предназначена для дозированного впрыска топлива в цилиндр двигателя и представляет собой высокоточный электромеханический клапан. Топливо под давлением поступает из рампы по каналам внутри корпуса форсунки к запорному клапану. Пружина поджимает иглу запорного клапана к конусному отверстию пластины распылителя, удерживая клапан в закрытом положении. Напряжение, подаваемое от блока управления двигателем через штекерные выводы 2 на обмотку электромагнита форсунки, создает в ней магнитное поле, втягивающее сердечник вместе с иглой запорного клапана внутрь электромагнита. Конусное кольцевое отверстие в пластине распылителя открывается, и топливо впрыскивается через диффузор корпуса распылителя во впускной канал головки блока цилиндров и далее в цилиндр двигателя. После прекращения поступления электрического импульса пружина возвращает сердечник и иглу запорного клапана в исходное состояние – клапан запирается. Количество топлива, впрыскиваемое форсункой, зависит от длительности электрического импульса.
Воздушный фильтр установлен в левой части моторного отсека. Фильтр соединен воздухоподводящим рукавом с дроссельным узлом.
Фильтрующий элемент воздушного фильтра бумажный, плоский, с большой площадью фильтрующей поверхности.
Рис.3. Дроссельный узел: 1- корпус дроссельного узла; 2- дроссельная заслонка; 3- патрубки подачи и отвода охлаждающей жидкости для подогрева дроссельного узла.
Дроссельный узел представляет собой регулирующее устройство и служит для изменения количества основного воздуха, подаваемого во впускную систему двигателя. Он установлен на входном фланце впускной трубы. На входной патрубок дроссельного узла надет воздухоподводящий рукав, закрепленный хомутом и соединяющий дроссельный узел с воздушным фильтром.
В корпусе 1 (см. рис. 3) установлена поворачивающаяся на оси заслонка 2 с электроприводом. В корпус дроссельного узла встроены датчик положения дроссельной заслонки и регулятор холостого хода. Сам узел неразборный.
В воздушном фильтре нет устройства сезонной регулировки, поэтому дроссельный узел оборудован системой подогрева, предотвращающей обледенение дроссельной заслонки в холодное время года и соединенной с системой охлаждения двигателя шлангами.
В процессе эксплуатации дроссельный узел не требует обслуживания и регулировки, следите лишь за состоянием резиновых уплотнение, чтобы избежать подсоса воздуха.
Все рассматриваемые в настоящем Руководстве модели оборудованы электронной системой распределенного впрыска топлива (SFI). За счет использования в системе управления новейших технологических решений SFI обеспечивает оптимизацию компоновки воздушно-топливной смеси при любых условиях эксплуатации двигателя.
Топливо в системе питания находится под постоянным давлением и через инжекторы впрыскивается во впускные порты каждого из цилиндров двигателя. Дозировка подачи топлива осуществляется путем управления временем открывания электромагнитных клапанов инжекторов в соответствии с количеством нагнетаемого в двигатель воздуха, определяемым конкретными условиями функционирования. Продолжительность открывания инжекторов определяется параметрами формируемых модулем управления (ECM) электрических импульсов, что позволяет осуществлять весьма точную дозировку компонентов горючей смеси.
ECM определяет требуемую продолжительность времени открывания инжекторов на основании анализа непрерывно поступающих от информационных датчиков данных о количестве всасываемого в двигатель воздуха - термоанемометрический датчик измерения массы воздуха (MAF), текущих оборотах двигателя - датчик положения коленчатого вала (CKP), и положении дроссельных заслонок - TPS.
Помимо перечисленных функций система распределенного впрыска топлива осуществляет также контроль токсичности отработавших газов, оптимизацию соотношения расход топлива/эффективность отдачи двигателя, а также обеспечивает адекватные стартовые параметры и прогрев двигателя в холодную погоду, исходя из данных о температурах охлаждающей жидкости (датчик ECT) и всасываемого воздуха (датчик IAT).
Система подачи воздуха
Впускной воздушный тракт
Впускной воздушный тракт состоит из воздухозаборника, двух резонаторных камер, сборки воздухоочистителя и соединяющим его с корпусом дросселя воздуховодом. Первый резонатор помещается выше воздухоочистителя по потоку, при помощи отводного шланга соединен с задней частью воздухозаборника и эффективно способствует снижению уровня шумового фона, возникающего при всасывании воздуха в двигатель. Вторая резонаторная камера подключена к воздуховоду впускного воздушного тракта непосредственно впереди корпуса дросселя.
Конструкция впускного воздушного тракта бензинового двигателя
Прогоняемый через воздухоочиститель воздух поступает в корпус дросселя, откуда, в определяемом положением дроссельных заслонок (датчик TPS) количестве, по впускному трубопроводу подается к впускным портам цилиндров двигателя, где смешивается с впрыскиваемым через инжекторы топливом, формируя горючую смесь. Стабильность оборотов холостого хода обеспечивается за счет перепускания части воздушной массы в обход корпуса дросселя непосредственно во впускной трубопровод. Контроль количества перепускаемого воздуха осуществляется ECM посредством управления функционированием специального перепускного клапана стабилизации оборотов холостого хода (IAC).
Датчик температуры всасываемого воздуха (IAT)
Датчик IAT установлен на сборке воздухоочистителя и служит для измерения температуры всасываемого в двигатель воздуха. В основу конструкции датчика положен термистор, сопротивление которого обратно пропорционально температуре чувствительного элемента. Отслеживаемые датчиком параметры преобразуются в электрические сигналы и передаются на ECM, осуществляющий управление компоновкой воздушно-топливной смеси, а также моментами впрыска и воспламенения.
Датчик измерения массы воздуха (MAF)
Термоанемометрический датчик MAF установлен во впускном воздушном тракте непосредственно позади воздухоочистителя и выступает в качестве источника информации, поставляющего ECM данные о количестве всасываемого в двигатель воздуха. На основании анализа поступающей от датчика информации ECM осуществляет компоновку воздушно-топливной смеси.
Помещенные в корпус дросселя заслонки управляются от педали газа, в соответствии с положением которой, в большей или меньшей степени перекрывают проходные дроссельные отверстия, что позволяет регулировать расход поступающего в камеры сгорания двигателя воздуха. На холостых оборотах, когда педаль газа полностью отпущена, заслонки практически полностью перекрывают дроссель и основная масса воздуха (более половины) поступает во впускной трубопровод через специальный электромагнитный клапан стабилизации оборотов холостого хода (IAC) в обход корпуса дросселя. Использование клапана IAC позволяет также осуществлять контроль стабильности оборотов холостого хода вне зависимости от изменений текущей нагрузки на двигатель (например, при включении кондиционера воздуха или других энергоемких потребителей).
Конструкция корпуса дросселя
Датчик положения дроссельных заслонок (TPS)
TPS устанавливается на корпусе дросселя и механически соединен с осью дроссельных заслонок. Датчик вырабатывает и посылает ECM сигнальное напряжение, величина которого прямо пропорциональна степени открывания заслонок. Закрытому и открытому положениям заслонок соответствуют четко определенные значения напряжения.
Электромагнитный клапан стабилизации оборотов холостого хода (IAC)
Клапан IAC включен во впускной воздушный тракт впереди корпуса дросселя и осуществляет управление величиной расхода воздуха, перепускаемого в обход последнего при работе двигателя на холостых оборотах. Клапан срабатывает по сигналам ECM, позволяя последнему поддерживать обороты холостого хода двигателя на заданном уровне.
Конструкция клапана IAC
Система подачи топлива
Помещенный в бензобак погружной топливный насос обеспечивает подачу горючего под давлением к каждому из инжекторов топливной магистрали. Бензин подается от насоса к инжекторам по топливному тракту с включенным в него фильтром тонкой очистки. Специальный регулятор поддерживает давление топлива в магистрали на заданном оптимальном уровне. Через инжекторы топливо в необходимом количестве впрыскивается непосредственно в камеры сгорания каждого из цилиндров двигателя, где смешивается с воздухом и образует горючую смесь. Количество топлива и момент впрыска вычисляются модулем управления. Избыток горючего по возвратной линии поступает обратно в топливный бак.
Схема организации системы подачи топлива
Изготовленный из штампованной стали топливный бак объемом 60 л установлен под автомобилем, непосредственно перед задним мостом под сборкой заднего сиденья.
Бак оснащен защитным экраном, предохраняющим его от ударов камнями, и крепится под днищем автомобиля при помощи пяти болтов.
Конфигурация рабочего объема бака выбрана таким образом, чтобы топливозаборник бензонасоса оставался в погруженном положении при любом уровне заполнения бака, даже во время резкого маневрирования.
В заливную горловину бака встроен специальный односторонний клапан, предотвращающий проникновение топлива из рабочего объема бака обратно в горловину при движении по бездорожью и резком маневрировании.
Помните, что правильное (до срабатывания трещотки храповика) затягивание крышки заливной горловины является гарантией поддержания требуемого избыточного давления в топливном тракте.
Не забывайте время от времени загонять автомобиль на эстакаду и внимательно осматривать топливный бак и подведенные к нему линии на предмет выявления механических повреждений.
Топливный насос объединен в единую сборку с датчиком запаса топлива. Насос имеет роторную конструкцию и помещен внутрь топливного бака, что позволяет в существенной мере снизить уровень производимого им при работе шумового фона.
Управление функционированием топливного насоса осуществляет ECM. При выработке модулем управления соответствующей команды происходит активация реле топливного насоса, после чего электромотор начинает вращаться, приводя в движение ротор насосной сборки. Засасываемое через сетчатый фильтр топливозаборника горючее по соединительным линиям поступает в топливную магистраль и под напором подается на инжекторы. Накачанное насосом давление в топливном тракте поддерживается на постоянном уровне при помощи специального регулятора. С целью предотвращения падения давления топлива при отключении бензонасоса в насосную сборку включен специальный запорный клапан.
Избыток топлива по возвратной линии отводится обратно в топливный бак.
Регулятор давления топлива
Регулятор давления установлен с подведенного к инжекторам конца линии подачи топлива и состоит из двух разделенных диафрагмой камер: топливной и пружинной. Топливная камера соединена с линией подачи топлива, пружинная - с впускным трубопроводом. При увеличении глубины разрежения во впускном трубопроводе оттягивание диафрагмы приводит к открыванию подведенной к топливной камере регулятора возвратной линии, - в результате давление в топливной магистрали снижается. Снижение глубины разрежения в трубопроводе приводит к отжиманию диафрагмы пружиной и увеличению подающего давления. Описанный механизм позволяет поддерживать разницу между давлением впрыска и разрежением во впускном трубопроводе на постоянном уровне, составляющем 290 кПа.
В системе распределенного впрыска используются инжекторы с верхней подачей топлива. Схема подключения инжекторов обеспечивает охлаждение их потоком топлива. Инжекторы такой конструкции отличаются компактными размерами, высокой термостойкостью, пониженным шумовым фоном и простотой в обслуживании.
Продолжительность открывания электромагнитного игольчатого клапана инжектора определяется длиной вырабатываемого ECM управляющего импульса. Ввиду того, что сечение сопла инжектора, величина открывания клапана и давление подачи топлива поддерживаются постоянными, количество впрыскиваемого в камеру сгорания топлива определяется исключительно продолжительностью времени открывания, соответствующего длине управляющего импульса.
Датчик запаса топлива
Датчик объединен в единую сборку с топливным насосом и состоит из закрепленного на рычаге поплавка и потенциометра.
Изменение уровня топлива отслеживается потенциометром по положению поплавка, соответствующее показание выводится на вмонтированный в комбинацию приборов измеритель.
Соединительные линии топливного тракта
Подача горючего от бензонасоса к топливной магистрали и возврат его в топливный бак осуществляется по металлическим трубками и шлангам линий подачи и возврата топлива. Линии посредством фиксаторов крепятся к днищу автомобиля. И должны регулярно проверяться на наличие механических повреждений.
Помимо подающего и возвратного бензопроводов к числу соединительных линий тракта системы питания следует также отнести линии отвода топливных испарений, по которым скапливающиеся в топливном баке во время стоянки пары топлива отводятся в специальный помещающийся в двигательном отсеке угольный адсорбер. При выжимании педали газа после прогрева двигателя до нормальной рабочей температуры по команде ECM осуществляется продувка адсорбера с выводом скопившегося в нем топлива во впускной трубопровод с последующим сжиганием его в нормальном рабочем цикле двигателя.
Фильтр тонкой очистки
Фильтр тонкой очистки включен в состав линии подачи топлива.
Корпус топливного фильтра способен выдерживать достаточно высокие температурные, вибрационные и ударные нагрузки. Внутрь корпуса вложен бумажный фильтрующий элемент, обеспечивающий очистку подаваемого в топливную магистраль горючего от посторонних частиц, не улавливаемых сеткой топливозаборника бензонасоса и способных вывести из строя инжекторы.
Рекомендации по экономии расхода топлива
Существенное влияние на расход топлива оказывает стиль вождения автомобиля. Приведенные ниже рекомендации позволят владельцу добиться экономии расхода топлива при получении адекватной отдачи от двигателя.
5.0 Топливная система
Наименование A3 SOHC A5 DOHC Частота вращения коленчатого вала двигателя на холостом ходу, мин –1 750±50 Угол опережения зажигания, ° до ВМТ 8±5 8±5 (6± 5 для Европы*) Диаметр диффузора дроссельного узла, мм 50 Сопротивление воздушного к.
5.2 Элементы топливной системы
Элементы контроля и управления двигателем Управление топливной системой осуществляется блоком управления двигателем ЕСМ (Engine Control Module). Блок ЕСМ проводит регулировку угла опережения зажигания, определяет количество подаваемого в двигатель топлива, управляет системой снижения токсичнос.
5.3 Угол опережения зажигания
ПОРЯДОК ВЫПОЛНЕНИЯ 1. Затяните стояночный тормоз. 2. Пустите двигатель и прогрейте его до рабочей температуры. 3. Выключите все потребители электрической энергии. 4. Подсоедините к высоковольтному проводу первого цилиндра датчик стробоскопа. 5. По совмещению меток на шк.
5.4 Частота вращения холостого хода
ПОРЯДОК ВЫПОЛНЕНИЯ 1. Затяните стояночный тормоз. 2. Пустите двигатель и прогрейте его до рабочей температуры. 3. Выключите все потребители электрической энергии. 4. Подсоедините индуктивный тахометр к высоковольтному проводу первого цилиндра или к контакту "О" диагностичес.
5.5 Датчик измерителя расхода воздуха
Снятие ПОРЯДОК ВЫПОЛНЕНИЯ 1. Отсоедините разъем от датчика расхода воздуха. Предупреждение Не бросайте и не ударяйте датчик, так как это приведет к его повреждению. 2. Ослабьте хомуты крепления впускного воздушного патрубка с двух сторон датчика расхода воздуха. 3. Отсо.
5.6 Датчик детонации
Проверка ПОРЯДОК ВЫПОЛНЕНИЯ 1. Отсоедините электрический разъем датчика детонации и снимите датчик детонации. Закрепите датчик детонации в тисках и подсоедините вольтметр между клеммами 1 и 2. 2. Молотком резко ударьте по тискам и наблюдайте за показаниями вольтметра. 3. Про.
5.7 Датчик положения дроссельной заслонки
Проверка сопротивления ПОРЯДОК ВЫПОЛНЕНИЯ 1. Отсоедините разъем от датчика положения дроссельной заслонки. 2. Подсоедините омметр между контактами 1 и 2 разъема. 3. Проверьте, что сопротивление датчика увеличивается пропорционально углу поворота дроссельной заслонки. Соп.
5.8 Проверка главного реле
ПОРЯДОК ВЫПОЛНЕНИЯ 1. Снимите крышку с главного блока предохранителей и реле. 2. Прижмите палец к главному реле. 3. Проверьте, что при включении зажигания реле щелкает. 4. Проверьте, что при выключении зажигания реле также щелкает. 5. Снимите реле и дополнительными пров.
5.9 Проверка реле топливного насоса
Предупреждение Топливная система остается под давлением, даже после выключения двигателя, поэтому перед отсоединением трубопроводов необходимо снять давление в топливной системе. ПОРЯДОК ВЫПОЛНЕНИЯ 1. Послушайте, щелкает ли реле топливного насоса при включении зажигания. 2. .
5.10 Проверка напряжения переднего и заднего обогреваемых датчиков кислорода
ПОРЯДОК ВЫПОЛНЕНИЯ 1. Пустите двигатель и прогрейте его до рабочей температуры. 2. Оставьте двигатель работать на частоте вращения холостого хода. 3. Подсоедините вольтметр между контактами 1 (провод LG/R) и массой. 4. Несколько раз увеличьте и уменьшите частоту вращения дв.
5.11 Проверка переднего и заднего обогреваемых датчиков кислорода
ПОРЯДОК ВЫПОЛНЕНИЯ 1. Выключите зажигание. 2. Отсоедините разъем датчика кислорода. 3. Подсоедините омметр между контактами 1 и 3 и измерьте сопротивление. Сопротивление: 3–7 Ом при 20°С 4. В противном случае, замените датчик кислорода. Момент затяжки: 30–49 Н•м 5.
5.12 Снятие давления в топливной системе
Предупреждение Топливная система остается под давлением, даже после выключения двигателя, поэтому перед отсоединением трубопроводов необходимо снять давление в топливной системе. ПОРЯДОК ВЫПОЛНЕНИЯ 1. Пустите двигатель. 2. Отсоедините разъем питания топливного насоса, располо.
5.13 Топливопроводы
Предупреждение Бензин взрывоопасен, поэтому при работе с элементами топливной системы обеспечьте нормальную вентиляцию рабочего места, не пользуйтесь огнем, искрящими устройствами, открытыми пожароопасными световыми приборами и не курите. При разъединении быстросъемных соединений т.
5.14 Активизация топливной системы
После снятия давления в топливной системе, топливная система должна быть активизирована для того, чтобы избежать длительного проворачивания стартером при пуске двигателя. ПОРЯДОК ВЫПОЛНЕНИЯ 1. Дополнительным проводом соедините клеммы FUEL PUMP (топливный насос) и В+ диагностическог.
5.15 Проверка остаточного давления в топливной системе
ПОРЯДОК ВЫПОЛНЕНИЯ 1. Отсоедините провод от отрицательной клеммы аккумуляторной батареи. Предупреждение Топливная система остается под давлением, даже после выключения двигателя, поэтому перед отсоединением трубопроводов необходимо снять давление в топливной системе. 2. Сн.
5.16 Проверка топливных трубопроводов
ПОРЯДОК ВЫПОЛНЕНИЯ 1. Отсоедините провод от отрицательной клеммы аккумуляторной батареи. 2. Снимите давление в топливной системе. 3. Поднимите автомобиль. 4. Подсоедините измерительный прибор ОК2А1 131 001 А около топливного фильтра. 5. Подсоедините провод к отрицательн.
5.17 Проверка топливных форсунок
ПОРЯДОК ВЫПОЛНЕНИЯ 1. Пустите двигатель и прогрейте его до нормальной рабочей температуры. Оставьте двигатель работать на частоте вращения холостого хода. 2. Стетоскопом или отверткой послушайте звуки, создаваемые форсунками при их работе. Предупреждение Бензин взрывоопасен.
5.18 Быстросъемные соединения
Предупреждение Топливная система остается под давлением даже после выключения двигателя, поэтому перед отсоединением трубопроводов, необходимо снять давление в топливной системе. Соединение ПОРЯДОК ВЫПОЛНЕНИЯ 1. Надвиньте фланец быстросъемного соединения на трубу до четкой его.
5.19 Топливный насос
Проверка ПОРЯДОК ВЫПОЛНЕНИЯ 1. Дополнительным проводом соедините клеммы FUEL PUMP (топливный насос) и В+ диагностического разъема. 2. Снимите крышку с топливоналивной горловины топливного бака. 3. Включите зажигание. 4. Определите, работает ли топливный насос, прослушива.
5.20 Топливный бак
Последовательность снятия топливного бака 1 – труба топливоналивной горловины; 2 – топливный бак; 3 – топливный фильтр; 4 – лента; 5 – топливный насос; 6 – топливная трубка. Снятие ПОРЯДОК ВЫПОЛНЕНИЯ Предупреждение Бензин взрывоопасен, поэтому при работе с.
5.21 Проверка системы вентиляции картера (PCV)
ПОРЯДОК ВЫПОЛНЕНИЯ 1. Пустите двигатель и прогрейте его до рабочей температуры. 2. Оставьте двигатель работать с частотой вращения холостого хода. 3. Отсоедините шланг вентиляции картера от крышки головки блока цилиндров. 4. Пальцем закройте шланг вентиляции картера. 5. .
5.22 Проверка системы улавливания паров топлива
ПОРЯДОК ВЫПОЛНЕНИЯ 1. Пустите двигатель и прогрейте его до рабочей температуры. 2. Отсоедините вакуумный шланг от клапана улавливания паров топлива (EVAR) и продуйте его со стороны шланга. 3. Убедитесь, что отсутствует разрежение в канистре системы улавливания паров топлива, у.
5.23 Проверка клапана системы улавливания паров топлива
ПОРЯДОК ВЫПОЛНЕНИЯ 1. Отсоедините вакуумные шланги от клапана улавливания паров топлива (EVAR) и продуйте его. 2. Убедитесь, что воздух не проходит через клапан. 3. Отсоедините от клапана разъем и дополнительными проводами подсоедините клапан к аккумуляторной батарее, как пок.
5.24 Проверка клапана закрытия канистры
ПОРЯДОК ВЫПОЛНЕНИЯ 1. Измерьте сопротивление закрытия канистры с активированным углем. Сопротивление: 23–26 Ом при 20°C 2. Если сопротивление не соответствует требуемым значениям, замените клапан.
Читайте также: