Распиновка лямбда зонда мерседес w203
Расположенный в выпускном тракте двигателя l-зонд отслеживает содержание кислорода в потоке отработавших газов. При контакте молекул О 2 с чувствительным элементом зонда датчик вырабатывает амплитудный сигнал в диапазоне от 0.1 до 0.9 В, в зависимости от концентрации кислорода. Причем, значению 0.1 В соответствует высокое содержание О 2 (обедненная смесь), а значению 0.9 В - низкое (обогащенная смесь). РСМ непрерывно контролирует поступающий с кислородного датчика сигнал, в случае необходимости выдавая команды на корректировку состава воздушно-топливной смеси за счет изменения продолжительности открывания инжекторов впрыска. Оптимальное соотношение компонентов горючей смеси, гарантирующее минимальный расход топлива при наиболее эффективном функционировании каталитического преобразователя, составляет 14.7 частей воздуха на 1 часть топлива, - именно его модуль управления и старается постоянно поддерживать, ориентируясь на поступающую с l-зонда информацию. На рассматриваемых моделях автомобилей используются два кислородных датчика; первичный расположен в выпускном коллекторе двигателя, а вторичный - ниже каталитического преобразователя. Путем сравнения уровня содержания кислорода на участках выпускного тракта выше и ниже каталитического преобразователя РСМ определяет также эффективность функционирования последнего.
Следует отметить, что кислородный датчик способен вырабатывать сигнальное напряжение только будучи прогретым до нормальной рабочей температуры (около 320°С). Пока датчик находится в холодном состоянии, РСМ работает в режиме РАЗОМКНУТОГО КОНТУРА.
Если при прогретом до нормальной рабочей температуры и/или работающем в течение не менее двух минут двигателе кислородный датчик вырабатывает стабильный сигнал амплитудой ниже 0.45 В (при оборотах не менее 1500 в минуту), система самодиагностики заносит в память РСМ соответствующий код неисправности (Р0131 или Р0132). Соответствующий код заносится также в случае выявления неисправности в цепи нагревателя датчика (см. Раздел Система бортовой диагностики (OBD) - принцип функционирования и коды неисправностей).
В случае нарушения исправности функционирования l-зонда или его цепи РСМ переходит в режим разомкнутого контура, игнорируя поступающую от датчиков информацию и поддерживая состав воздушно-топливной смеси на некотором заданном уровне, обеспечивающем достаточную эффективность отдачи двигателя.
Исправность функционирования кислородного датчика зависит от выполнения совокупности некоторых определенных условий:
a) Электрические параметры: Стабильность вырабатываемого датчиком амплитудного сигнала низкого напряжения в большой степени зависит от качества контактных соединений цепи l-зонда, которое и следует проверять в первую очередь в случае возникновения проблем;
b) Подача наружного воздуха: Конструкция l-зонда предусматривает свободную циркуляцию наружного воздуха внутри датчика. При установке зонда всегда проверяйте проходимость воздушных каналов;
c) Рабочая температура: РСМ начинает реагировать на поступающую от l-зонда информацию только после того как датчик будет прогрет до нормальной рабочей температуры (около 320°С). Данный факт следует не упускать из виду при проверке исправности функционирования зонда;
d) Качество топлива: Исправное функционирование l-зонда становится возможным только при условии применения для заправки автомобиля НЕЭТИЛИРОВАННОГО топлива!
В дополнение к перечисленным в предыдущем параграфе условиям при обслуживании l-зонда следует соблюдать некоторые особые меры предосторожности:
a) Кислородный датчик оборудован намертво вмонтированным в него и оборудованным контактным штекером отрезком электропроводки, попытки отсоединения которого могут привести к необратимому выходу датчика из строя;
b) Старайтесь не допускать попадания в жалюзи датчика или его электрический разъем грязи и смазки;
c) Не используйте для очистки кислородного датчика никакие растворители;
d) Обращайтесь с l-зондом крайне бережно, не роняйте его и старайтесь не стряхивать;
e) Силиконовый защитный чехол должен одеваться на датчик строго определенным образом, чтобы не быть расплавленным и не нарушать исправность функционирования зонда.
старайтесь не прикасаться к разогретым поверхностями системы выпуска отработавших газов.
Всем доброго времени. Проблема в следующем есть МБ 210 провода на лямбде отсутствовали я решил приобрести другую лямбду когда подключил к разъему авто то обратил внимание на то что черный провод лямды идет на зеленый провод разъема авто а серый провод лямды идет на Черный провод белые идут на сине зеленый и коричневый
Разъем лямды разъем авто клемы ЭБУ
1 Белый 1 Сине зеленый 30
2 Белый 2 Коричневый Масса
3 Серый 3 Черный 34
4 Черный 4 Зеленый 35
Подскажите правильная ли это распиновка? Или мне подогнали не ту лямду? Ато боюсь так заводить авто.
- Город: РФ МО г. Реутов
- Автомобиль:
W124 E220 цель W209
У себя когда то заглядывал, если не путаю ничего провода контачили по цветам, но в даном случае уже ни как не получается. Проводка родная на ЭБУ? Или может уже прикрутили разъем под тазовскую лямбду? А что за разьм там на 210, у меня был 124.
- Город: курск
- Автомобиль:
W124, 230TE, 1990
У себя когда то заглядывал, если не путаю ничего провода контачили по цветам, но в даном случае уже ни как не получается. Проводка родная на ЭБУ? Или может уже прикрутили разъем под тазовскую лямбду? А что за разьм там на 210, у меня был 124.
W202, C180, 1995, Esprit
W123, 1981, М111, МКПП
W124, 230TE, 1990
- Город: Брянская обл.
- Автомобиль:
W124 2.0TD W210 2.9TD
У себя когда то заглядывал, если не путаю ничего провода контачили по цветам, но в даном случае уже ни как не получается. Проводка родная на ЭБУ? Или может уже прикрутили разъем под тазовскую лямбду? А что за разьм там на 210, у меня был 124.
- Город: Брянская обл.
- Автомобиль:
W124 2.0TD W210 2.9TD
просто на тех проводах что по тоньше достаточно померить напряжение при отключенной лямбде, относительно коричневого провода, на заведенной машине. том где 0в- на серый, где 0.3-1в на черный , белые провода- без разницы
Накрылся докатализаторный лямбда-зонд. Знакомый предложил на замену оригинальный A0015405117, при том что моей модели соответствует A0035427318.
Есть мнение, что большинство зондов взаимозаменяемы.
Подскажите, могу я поставить не "родной" зонд?
Могу я заменить нерабочий зонд до катализатора на исправный послекатализаторный? Насколько они взаимозаменяемы? (A0025400617)
Новый пользователь
Лямбда зонд
Всем привет! Люди, помогите новичку. Как подобрать нужный датчик? На диагностике приговорили лямбда-зонд, который после катализатора стоит. Предложили бошевский за 6000 или оригинал за 10000. Решил поискать сам, столкнулся с разнообразием кодов этих датчиков. Не знаю который нужен. ВИН WDB2030451A021494. Ошибка с диагностики - Р2023-004 component G3/1. Нашел датчик:0258006272 BOSCH (Германия) Лямбда-зонд MB W211, W203 это то что мне нужно или нет?
Заранее благодарю.
Новый пользователь
Yevgeniy
Известная личность
Crac66
Активный пользователь
Uram76
Пользователь
Вопрос про лямбд зонд
Скажите кто знает показания верхнего лямбда зонда на 271 моторе при разгоне ,подскажите в сервисе сами не знают.
костян55
Новый пользователь
Рикки
Пользователь
Добрый день.Никто случайно не ставил лябда зонд от других марок? У меня замыкает второй зонд ,который после ката стоит,на массу.Отсюда думаю большой расход топлива.Родной стоит 3-4 тысячи.Говорят что они все примерно одинаковые и можно ставить чуть ли не от десятки.WDB2030451F021464
Супермодератор
Serg2005
Легенда форума
Автотехцентр на Новорижском шоссе
Serg2005
Легенда форума
Автотехцентр на Новорижском шоссе
Mig25
Активный пользователь
Автотехцентр на Новорижском шоссе
принцип работы датчика на основе оксида циркония.
Керамический сердечник датчика кислорода начиная примернос 300 °C становится электропроводным для ионов кислорода.
Если на обеих сторонах керамического сердечника содержание кислорода различно, то благодаря особым свойствам керамического сердечника возникает напряжение на граничных поверхностях. Это напряжение является критерием для измерения остаточной доли кислорода в отработанных газах.
1 Керамический сердечник датчиков кислорода
2 Электроды на граничных поверхностях
3 Выпускная труба
стрелки черная: отработанные газы
белая: воздух окружающей среды
Вложения
Serg2005
Легенда форума
Mig25
Активный пользователь
принцип работы датчика на основе оксида циркония.
Керамический сердечник датчика кислорода начиная примернос 300 °C становится электропроводным для ионов кислорода.
Если на обеих сторонах керамического сердечника содержание кислорода различно, то благодаря особым свойствам керамического сердечника возникает напряжение на граничных поверхностях. Это напряжение является критерием для измерения остаточной доли кислорода в отработанных газах.
1 Керамический сердечник датчиков кислорода
2 Электроды на граничных поверхностях
3 Выпускная труба
стрелки черная: отработанные газы
белая: воздух окружающей среды
Автотехцентр на Новорижском шоссе
Mig25
Активный пользователь
- СО – окись углерода, угарный газ;
- СН – несгоревшие углеводороды;
- NOх – окислы азота.
Инженеры противопоставили этой опасной троице очень важное устройство, входящее в систему выпуска, – каталитический нейтрализатор отработавших газов. Иначе говоря, газы, пройдя через это устройство, из агрессивно-токсичных превращаются в сравнительно безопасные, нейтральные. Чтобы нейтрализатор мог эффективно «облагораживать» поступающие в него газы, содержание каждого компонента в них должно укладываться в довольно узкие рамки, соответствующие сгоранию в цилиндрах стехиометрической рабочей смеси топлива и воздуха. Напомним, что ее состав характеризуется так называемым коэффициентом избытка воздуха l (иногда – в советской литературе, например, – вместо l писали другую греческую букву – a). Если l больше 1,0 – смесь обедненная, бедная и т.д. И наоборот – смесь с l меньше 1,0 – обогащенная, богатая и т.д. Если воздуха ровно столько, сколько требуется для полного сгорания топлива, смесь называют стехиометрической – на рис. 1 это область значений l вблизи 1,0.
Рис. 1. Зависимость эффективности нейтрализатора от состава рабочей смеси в цилиндрах двигателя. Чтобы эффективность была не ниже 80%, колебания состава относительно оптимального не должны превышать 1%.
Но как обеспечить столь высокую точность и одновременно стабильность топливодозирования? Известно, что карбюраторные моторы при всей их простоте по этому пункту не проходят.
Цель была достигнута с появлением электронной системы автоматического регулирования с датчиком кислорода в отработавших газах – по-другому, лямбда-зондом. Этот датчик – важнейший элемент обратной связи в системе топливодозирования на современных автомобилях, позволяющей поддерживать стехиометрический состав на установившихся режимах работы двигателя с точностью до ±1%.
На современных европейских автомобилях чаще всего можно увидеть датчики кислорода двух типов. К первому отнесем датчики на основе диоксида циркония (циркониевые), ко второму – датчики на основе оксида титана (титановые). Циркониевый зонд показан схематично на рис. 2. Измерительный элемент, помещенный в поток отработавших газов, генерирует ЭДС, зависящую от их состава. Эту зависимость иллюстрирует рис. 3 – она имеет «триггерный» характер. Иначе говоря, ЭДС зонда чрезвычайно резко меняется вблизи значения l=1,0 рабочей смеси в цилиндре двигателя, реагируя даже на очень слабые колебания состава в сторону обогащения или обеднения. Собственно измерительный элемент – это трубочка с одним закрытым концом (пальчиковый тип – см. рис. 2) или пластинка (планарный тип). Принцип работы один, разница только в конструкции – в дальнейшем, чтобы не путаться, будем подразумевать пальчиковый тип.
Рис. 2. Схема циркониевого датчика кислорода: 1 – труба выпускной системы; 2 – корпус датчика; 3 – контактные площадки; 4 – керамический защитный слой; 5 – внешний и внутренний электроды; 6 – керамическая основа (ZrO2 и Y2O3). US – выходное напряжение.
Рис. 3. «Триггерный» характер зависимости напряжения зонда от коэффициента избытка воздуха в рабочей смеси. Вблизи значения коэффициента 1,0 напряжение зонда очень резко, почти скачком, меняется в пределах примерно 0,1–0,8 В.
Показанный на рис. 2 измерительный элемент (ИЭ) имеет напыление благородного металла – платины с внутренней и внешней сторон. Внутри же – «твердый электролит» (керамика) из смеси диоксида циркония ZrO2 и оксида иттрия Y2O3. Работает по принципу гальванического элемента с твердым электролитом: по достижении температуры 300–350°С керамика начинает проводить ионы кислорода. (Полезно помнить, что это минимально возможная температура функционирования ИЭ, тогда как при работе реального двигателя температура датчика около 600°С. Ограничена и максимальная рабочая температура – около 900–1000°С в зависимости от типа датчика, перегрев грозит его повреждением.)
Как же работает датчик кислорода? Очевидно, что при работе двигателя концентрация кислорода внутри выпускной системы и снаружи ее, в окружающем воздухе, совершенно разная. Вот эта разница и заставляет ионы кислорода двигаться в твердом электролите, в результате чего на электродах ИЭ появляется разность потенциалов – сигнал датчика кислорода.
Зависимость сигнала ИЭ от температуры показана на рис. 4: как видите, реакции на богатые и бедные смеси различаются очень сильно, но при падении температуры ниже 300°С разница постепенно уменьшается – эта зона уже нерабочая.
Рис. 4. Зависимость выходного сигнала зонда от температуры. Зона ниже 300°С – нерабочая: 1 – реакция на богатые смеси; 2 – реакция на бедные смеси.
Чтобы датчик после пуска двигателя быстрей прогревался, его размещают возможно ближе к мотору, но все же с учетом ограничений по максимальной температуре. Особенно «критична» длительная езда с полной мощностью двигателя.
Современные датчики кислорода – с электроподогревом, которым управляет электронный блок управления двигателем, меняя ток нагревателя. (Соответственно, ЭБУ контролирует и исправность цепи нагревателя, что очень важно.)
А теперь – несколько слов о титановых зондах. В их работе используется свойство оксида титана изменять свое сопротивление в зависимости от концентрации кислорода. Этому датчику связь с наружным воздухом не требуется. Рабочая температура значительно выше, чем у циркониевого, – начинается с 500°С. Выходная характеристика – на рис. 5. Привлекает то, что сигнал этого датчика можно сразу (обойдясь без усиления) привязать к используемому в ЭБУ уровню +5 В.
Рис. 5. Характеристика титанового датчика кислорода.
Здесь тоже резкий скачок напряжения выходного сигнала при колебаниях состава смеси около стехиометрического. Но в противовес циркониевому датчику низкий сигнал соответствует богатой смеси, а высокий – бедной.
Прошу подчеркнуть и подтвердить мне не опытному , где всетаки написано, что он нюхает снаружи воздух проводами?
Лямбда-зонд — это датчик, который определяет процентное содержание кислорода в выхлопных газах и передает эти сведения на электронный блок управления. На основе полученных данных ЭБУ регулирует состав топливно-воздушной смеси. В некоторых случаях кислородный датчик нуждается в замене, но его подключение на первый взгляд выглядит сложным. Рассмотрим, какие используются в датчике лямбда провода и как правильно их подсоединить.
Общие правила подключения
Начиная с 1999 года на автомобили, как правило, устанавливаются циркониевые либо титановые кислородные датчики, отвечающие определенным стандартам относительно расцветки проводов. Количество проводов – обычно четыре. Чуть ниже представлены таблицы для тех и других зондов. В подавляющем большинстве случаев для проверки вам потребуется первая таблица – для циркониевых датчиков, но изредка можно встретить и титановые.
Если при сверке выявлено, что сочетание цветов в одной из колонок таблицы соответствует цветам проводов лямбда-зонда вашего автомобиля, то это означает, что зонд конструктивно устроен именно так, и распиновку следует производить в соответствии с этими данными.
Сочетания цветов (циркониевые зонды)
Сочетания цветов (титановые зонды)
Совет по использованию таблицы:
- Проверьте провода датчика кислорода в своем авто.
- Сравните их цвета с колонками в таблицах.
- Если с одной из них цвета полностью совпадают, значит, у вас именно такая конструкция и от нее следует отталкиваться.
Например, ваш лямбда-зонд оснащен четырьмя проводами таких цветов: бежевый, фиолетовый и два коричневых. Такое же сочетание указано в четвертой колонке первой таблицы. Значит, у вас циркониевое устройство с такими же проводами и принципом работы. Далее смотрим первую колонку этой же таблицы и видим, что расположение проводов по схеме следующее: бежевый идет на массу (минус), фиолетовый отвечает за передачу сигнальных данных, а два коричневых нужны для работы нагревателя. Таким образом вы сможете безошибочно определить провода по их оттенкам.
Инструкция по подключению датчика кислорода
Данная инструкция носит ознакомительный характер. Настоятельно рекомендуется доверять такую ответственную процедуру специалисту сервисного центра, обладающего соответствующим опытом работы.
- Запомнить или записать расположение проводов датчика. Отсоединить штекер от электронной составляющей авто, не повредив и не разомкнув при этом провода самого зонда. Аккуратно вытащить старую лямбду.
- Подрезать проводку нового универсального датчика так, чтобы каждый следующий кабель был на 4 см короче предшествующего (начинать можно с какого угодно). Также укоротить кабели от разъема старого зонда.
- Поместить на каждый из проводов специальную изоляцию и водозащиту (широким концом водозащита обращена к точке соединения провода).
- Снять с каждого провода 8 мм изоляции кусачками, затем надеть контактное соединение и сжать конструкцию так, чтобы соединение было идеальным, а неизолированные провода не выступали. Начинать соединение следует с наиболее короткого провода, так проще.
- Передвинуть водозащиту с обоих концов проводки к соединению, полностью прикрыть место соединения изоляционной трубкой. Закрепить конструкцию при помощи горячего фена.
- Монтировать непосредственно сам датчик, сняв защитный колпак. Распиновка проводов лямбды поможет проложить новую проводку по цветам точно так, как лежала старая. Подключать и крепить проводку необходимо аккуратно, чтобы она не соприкасалась с нейтрализатором, коллектором или другими частями авто, которые нагреваются до высоких температур.
Своевременная замена лямбда-зонда очень важна. Если ЭБУ автомобиля не будет получать достоверную информацию об уровне кислорода в выхлопе, то станет работать на основе усредненных параметров, таким образом топливно-воздушная смесь не будет оптимальной — это отрицательно повлияет на состояние автомобиля.
Наш автосервис в Санкт-Петербурге специализируется на диагностике и ремонте выхлопных систем самых разных авто, от ВАЗ до иномарок. Гарантируем высокое качество ремонта и короткие сроки. Не рискуйте своей техникой — обращение к профессионалам сбережет много нервов, а в перспективе и денег, ведь самостоятельный ремонт по советам с форумов может привести только к более серьезным неисправностям.
Этот достаточно хрупкий прибор находится в очень агрессивной среде, поэтому его работу необходимо постоянно контролировать, так как при его поломке дальнейшее использование автомобиля невозможно. Периодическая проверка лямбда зонда станет гарантом стабильной работы автотранспортного средства.
Принцип действия лямбда зонда
Основной задачей лямбда зонда является определение химсостава выхлопных газов и уровня содержания в них молекул кислорода. Этот показатель должен колебаться в пределах от 0,1 до 0,3 процентов. Бесконтрольное превышение этого нормативного значения может привести к неприятным последствиям.
При стандартной сборке автомобиля, лямбда зонд монтируется в выпускном коллекторе в области соединения патрубков, однако, иногда бывают и другие вариации его установки. В принципе, иное расположение не влияет на рабочую производительность данного прибора.
Сегодня можно встретить несколько вариаций лямбда зонда: с двухканальной компоновкой и широкополосного типа. Первый вид чаще всего встречается на старых автомобилях, выпущенных в 80-е годы, а также на новых моделях эконом-класса. Датчик широкополосного типа присущ современным авто среднего и высшего класса. Такой датчик способен не только с точностью определить отклонение от нормы определенного элемента, но и своевременно сбалансировать правильное соотношение.
Благодаря усердной работе таких датчиков существенно повышается рабочий ресурс автомобиля, снижается топливный расход и повышается стабильность удержания оборотов холостого хода.
С точки зрения электротехнической стороны, стоит отметить тот момент, что датчик кислорода не способен создавать однородный сигнал, так как этому препятствует его расположение в коллекторной зоне, ведь в процессе достижения выхлопными газами прибора может пройти определенное количество рабочих циклов. Таким образом, можно сказать, что лямбда зонд реагирует скорее на дестабилизацию работы двигателя, о чем он собственно впоследствии и оповещает центральный блок и принимает соответствующие меры.
Основные признаки неисправности лямбда зонда
Основным признаком неисправности лямбда зонда служит изменение работы двигателя, так как после его поломки значительно ухудшается качество поступаемой топливной смеси в камеру сгорания. Топливная смесь, по сути, остается бесконтрольной, что недопустимо.
Причиной выхода из рабочего состояния лямбда зонда может быть следующее:
- разгерметизация корпуса;
- проникновение внешнего воздуха и выхлопных газов;
- перегрев датчика вследствие некачественной покраски двигателя или неправильной работы системы зажигания;
- моральный износ;
- неправильное или прерывающееся электропитание, которое ведет к основному блоку управления;
- механическое повреждение в следствие некорректной эксплуатации автомобиля.
Во всех вышеперечисленных случаях, кроме последнего, выход из строя происходит постепенно. Поэтому те автовладельцы, которые не знают как проверить лямбда зонд и где он вообще расположен, скорее всего, не сразу заметят неисправность. Однако, для опытных водителей определить причину изменения работы двигателя не составит никакого труда.
Постепенный выход из строя лямбда зонда можно разбить на несколько этапов. На начальной стадии датчик перестает нормально функционировать, то есть, в определенных рабочих моментах мотора устройство перестает генерировать сигнал, впоследствии чего дестабилизируется налаженность оборотов холостого хода.
Иными словами, они начинают колебаться в достаточно расширеном диапазоне, что в конечном итоге приводит к потере качества топливной смеси. При этом авто начинает беспричинно дергаться, также можно услышать нехарактерные работе двигателя хлопки и обязательно на панели приборов загорается сигнальная лампочка. Все эти аномальные явления сигнализируют автовладельцу о неправильной работе лямбда зонда.
На втором этапе датчик и вовсе перестает работать на не прогретом двигателе, при этом автомобиль будет всевозможными способами сигнализировать водителю о проблеме. В частности, произойдет ощутимый упадок мощности, замедленное реагирование при воздействии на педаль акселератора и все те же хлопки из-под капота, а также неоправданное дергание автомобиля. Однако, самым существенным и крайне опасным сигналом поломки лямбда зонда служит перегрев двигателя.
В случае полного игнорирования всех предшествующих сигналов свидетельствующих об ухудшении состояния лямбда зонда, его поломка неизбежна, что станет причиной большого количества проблем. В первую очередь пострадает возможность естественного движения, также значительно увеличится расход топлива и появится неприятный резкий запах с ярко выраженным оттенком токсичности из выхлопной трубы. В современных автоматизированных автомобилях в случае поломки кислородного датчика может попросту активизироваться аварийная блокировка, в результате которой последующее движение автомобиля становится невозможным. В таких случаях сможет помочь только экстренный вызов эвакуатора.
Однако, самым худшим вариантом развития событий является разгерметизация датчика, так как в этом случае движение автомобиля становится невозможным по причине высокой вероятности поломки двигателя и последующего дорогостоящего ремонта. Во время разгерметизации отработанные газы вместо выхода через выхлопную трубу, попадают в заборный канал атмосферного эталонного воздуха. Во время торможения двигателем лямбда зонд начинает фиксировать переизбыток молекул кислорода и экстренно подает большое количество отрицательных сигналов, чем полностью выводит из строя систему управления впрыском.
Основным признаком разгерметизации датчика является потеря мощности, особенно это ощущается во время скоростного движения, характерное постукивание из-под капота во время движения, которое сопровождается неприятными рывками и неприятный запах, который выбрасывается из выхлопа. Также о разгерметизации свидетельствует видимый осадок сажных образований на корпусе выпускных клапанов и в области свечей.
Как определить неисправность лямбда зонда рассказывается на видео:
Электронная проверка лямбда зонда
Узнать о состоянии лямбда зонда можно путем его проверки на профессиональном оборудовании. Для этого используется электронный осциллограф. Некоторые специалисты определяют работоспособность кислородного датчика при помощи мультиметра, однако, он способен только констатировать или же опровергнуть факт его поломки.
Проверяется устройство во время полноценной работы двигателя, так как в состоянии покоя датчик не сможет полностью передать картину своей работоспособности. В случае даже незначительного отхождения от нормы, лямбда зонд рекомендуется заменить.
Замена лямбда зонда
В большинстве случаев такая деталь, как лямбда зонд не подлежит ремонту, о чем свидетельствуют утверждения о невозможности произведения ремонта от многих автомобильных производителей. Однако, завышенная стоимость такого узла у официальных дилеров отбивает всякую охоту его приобретения. Оптимальным выходом из сложившейся ситуации может стать универсальный датчик, который стоит гораздо дешевле родного аналога и подходит практически всем автомобильным маркам. Также в качестве альтернативы можно приобрети датчик бывший в использовании, но с продолжительностью гарантийного периода или же полностью выпускной коллектор с установленным в него лямбда зондом.
Однако, бывают случаи, когда лямбда зонд функционирует с определенной погрешностью из-за сильного загрязнения в результате оседания на нем продуктов сгорания. Для того чтобы убедиться, что это действительно так, датчик необходимо проверить у специалистов. После того как проверка лямбда зонда состоялась и подтвержден факт его полной работоспособности, его нужно снять, почистить и установить обратно.
Для того чтобы демонтировать датчик уровня кислорода, необходимо прогреть его поверхность до 50 градусов. После снятия, с него снимается защитный колпачок и только после этого можно приступать к очистке. В качестве высокоэффективного очищающего средства рекомендуется использовать ортофосфорную кислоту, которая с легкостью справляется даже с самыми стойкими горючими отложениями. По окончании процедуры отмачивания, лямбда зонд ополаскивается в чистой воде, тщательно просушивается и устанавливается на место. При этом не стоит забывать о смазке резьбы специальным герметиком, который обеспечить полную герметичность.
Устройство автомобиля очень сложное, поэтому он нуждается в постоянной поддержке работоспособности и проведении своевременных профилактических работ. Поэтому в случае возникновения подозрений о неисправности лямбда зонда, необходимо незамедлительно произвести диагностику его работоспособности и в случае подтверждения факта выхода из строя, заменить лямбда зонд. Таким образом, все важнейшие функции транспортного средства будут сохранены на прежнем уровне, что станет гарантом отсутствия дальнейших проблем с двигателем и прочими важными элементами автомобиля.
Читайте также: