Есть ли эбу на дизеле
Всем доброго денечка. В общем заметил что мотор иногда очень плохо работает, просто ни с того ни с сего, то ли от погода то ли еще от чего то. Решил проверить шлейфы на ЭБУ и сам блок.
Шлейфы оказались целыми. А вот ЭБУ выглядит очень печально на первый взгляд…
На периодическую плохую работу ДВС грешу на блок…уж сильно меня смущают эти стыки промазанные не пойми чем.
Возможно ли замена ЭБУ, и какие критерии поиска должны быть?!
Буду рад Всем спасибо за помощь!
Renault Clio 2002, двигатель дизельный 1.5 л., 57 л. с., передний привод, механическая коробка передач — поломка
Машины в продаже
Renault Clio, 2004
Renault Clio, 2000
Renault Clio, 2003
Renault Clio, 2003
Комментарии 4
На сколько я знаю, просто так другой, даже с такой же конфигурацией, не подкинешь, нужно будет перепрошивать (снять конфигурацию с твоего компа и влить в новый). На ветке мегана 2 можешь почитать. Новый комп не примет ЦЭКБС, замок руля, ключи и так далее. Если думаешь заменять комп, то меняй комплектом всё или прошивай.
Попробуй разобрать, возможно попала влага?
Да, вариант хороший. Но, нужен запасной вариант на случай плохого исхода
По большому счету — просто вскрыть крышку и ничего не будет.
Возможно, до тебя туда уже лазили… .
Рассмотрим кратко некоторые системы с электронным управлением, которые выпускались после 1990 г.
Легковые автомобили и лёгкие грузовики используют для создания давления топлива следующие типы устройств:
В цилиндрах дизельных двигателей сжимается воздух до 30-50 bar и температурах 700-900 град. Топливо подаётся в конце такта сжатия и сразу начинает испаряться, перемешиваясь с воздухом образует топливовоздушную смесь. Подача топлива в цилиндры осуществляется по различным схемам. Современные дизельные двигатели имеют ТНВД с электронным управлением и электронные компоненты управления системой впрыска очень похожие на элементы бензиновых двигателей (некоторые взаимозаменяемы).
На рисунке приведен один из вариантов построения системы управления дизельным двигателем а\м ФОРД 2,5 л TCI.
Подобные системы использовали ЭБУ для регулирования момента начала впрыскивания и его длительность по сигналам датчика оборотов, положения иглы форсунки первого цилиндра, температуры двигателя, степени нажатия педали акселератора. На рисунке приведена электросхема системы управления двигателем.
Рис. Расположение элементов управления автомобиля ФОРД 2,5 л TCI.
Другой тип построения системы управления рассмотрим на примере а\м ОПЕЛЬ Астра G, 2,0 D DTi.
ЭБУ двигателем собирает информацию с датчиков, рассчитывает угол опережения и длительность впрыска и передаёт информацию в электронный блок управления насосом высокого давления (ТНВД). ЭБУ насосом расположен непосредственно на ТНВД и получает информацию о температуре топлива, оборотах и положении вала ТНВД от своих датчиков, рассчитывает цикловую подачу топлива и управляет процессом создания рабочего давления на форсунках. Форсунки механического типа и открываются от давления топлива. Из электросхсмы, приведённой на рисунке видно, что она почти не отличается от схем управления бензиновыми двигателями. Отсутствует только система зажигания и электронные форсунки.
Более сложной системой питания и управления является конструкция аккумуляторной системы. В таких системах функции создания высокого давления(ТНВД) и обеспечение длительности и момента впрыскивания(ЭБУ) разделены.
Для примера взята элсктросхема системы управления а\м ФОРД 2,0 TDCi.
На рисунке показана схема расположения элементов системы топливоподачи и управления а\м ФОРД.
Современные дизельные двигатели с непосредственным впрыском топлива имеют повышенную мощность и крутящий момент, низкую эмиссию выброса вредных веществ, низкий расход топлива. Всё это позволило поднять популярность легковых а\м, использующих дизельные двигатели. Достижение высоких показателей возможно только при использовании качественных топлив, в противном случае происходит быстрый износ элементов питания топливом и вместо экономии пользователь попадает на дорогостоящий ремонт ТНВД и др. элементов двигателя.
Одним из важнейших элементов практически всех современных двигателей является электронный блок управления. Это название довольно длинное, так что его сокращают до ЭБУ двигателя. Блок имеет сложное устройство, а его производством занимается ограниченное число фирм. По факту, они же владеют патентами и ограничивают деятельность других фирм, но это уже другой вопрос. Грамотному автолюбителю стоит разбираться в том, что представляет собой ЭБУ двигателя, какое место в структуре автомобильных систем он занимает, какие элементы ему подконтрольны и по каким причинам он может выйти из строя. Обо всем этом – в материале Avto.pro.
Важная ремарка
Сразу отметим, что под ЭБУ понимают вообще все встраиваемые системы, которые получают управляющие сигналы от одной или сразу нескольких систем и подсистем автомобиля. Звучит довольно сложно, так что попробуем разобраться. К примеру, в большинстве автотранспортных средств используются такие управляющие системы и подсистемы:
- Контроллер ЭСУД . Часто его называют просто контроллером системы управления ДВС;
- ECM . Тот самый модуль управления двигателем;
- ECU . Еще один электронный блок управления, однако этим сокращением принято обозначать основу всех электронных управляющих систем автомобиля.
И снова мы возвращаемся к термину ЭБУ и его, если можно так выразиться, универсальности. В действительно встроенных управляющих систем много: непосредственно электронных блок управления двигателем (является наиболее распространенным), центральный блок управления, главный электронный модуль, центральный модуль синхронизации, объединенный моторно-трансмиссионный блок управления, модуль управления подвеской, блок управления тормозной системой, контролер кузова. И это лишь часть возможных вариантов . Часто все системы объединяют под одним термином «компьютер автомобиля». Однако важно понимать, что:
- Электронная управляющая система состоит из множества блоков и модулей;
- Каждый блок и модуль является специализированным и не может взять на себя задачи другого блока и модуля.
Основным и наиболее часто встречающимся блоком управления является ЭБУ двигателя . Не совсем правильно будет называть его самым важным, но по факту он контролирует работу силового агрегата, а значит, от его работоспособности зависит очень многое. Например, он считывает и оптимизирует ряд важнейших параметров автомобиля: крутящий момент, состав выхлопных газов, мощность, расходник топлива. В тандеме с ЭБУ двигателя работает целая плеяда датчиков. Далее мы будем рассматривать именно ЭБУ двигателя, а обозначать его будем просто как ЭБУ. И еще раз напоминаем: электронных блоков много, однако в рамках данного материала для простоты мы будет обозначать управляющий элемент двигателя как ЭБУ.
Подробнее об устройстве ЭБУ
Электронный блок управления, иначе называемый контроллером, а в народе «мозгами» двигателя, устроен довольно сложно. Внешне это относительно небольшой блок с металлическим корпусом , но все самое интересное скрыто внутри. Блок управления включает в себя такие элементы:
- Процессорная часть, иначе называемая микроЭВМ;
- Элементы, формирующие сигналы, иначе входные и выходные формирователи;
- Источник питания;
- Многополюсный штекерный разъем.
Как читатель наверняка знает, ЭБУ работает в тандеме со множеством датчиков. Вот несколько примеров: датчик положения дроссельной заслонки, датчик массового расхода воздуха, датчик детонации. Практически всем этим датчикам посвящены отдельные материалы раздела « Полезные советы » на Avto.pro – советуем ознакомиться с ними. А мы продолжим разбор ЭБУ.
Как устроена процессорная часть
Основой процессорной части ЭБУ является однокристальная микроЭВМ (микро электронно-вычислительная машина). По сути, это есть тот самый «мозг» электронного блока управления двигателя. По современным меркам микроЭВМ устроен довольно просто. Дело в том, что ключевые его элементы входят в структуру, которая умещается на одном кристалле (чипе). Важным моментом в описании микроЭВМ является его разрядность . Разрядностью называют количество бит информации, оперировать с которыми будет микропроцессор. МикроЭВМ бывают 8- , 16- и 32-разрядными . Сами устройства включают в себя:
- Центральный процесс;
- Постоянное запоминающее устройство (сокр. ПЗУ);
- Аналогово-цифровой преобразователь (сокр. АЦП);
- Оперативное запоминающее устройство (сокр. ОЗУ);
- Порты ввода и вывода;
- Генератор тактовой частоты;
- Таймеры, иначе называемые счетчиками.
Можно провести параллель между современным компьютером и процессорной частью ЭБУ . По факту, в ЭБУ объединяется ряд компонентов, которые в системных блок персональных компьютеров и ноутбуков идут отдельно друг от друга, но объединяются материнской платой. Здесь есть интересные особенности, но их мы рассматривать не будем – автолюбителю важно понимать, что принципиальные схемы современных электронно-вычислительных машин очень похожи друг на друга.
Центральный процессор ЭБУ подбирает команды и данные из памяти и производит различные операции над этими данными. Кроме того, он управляет сигналами, проходящими через внутреннюю шину адреса и данных. Постоянное запоминающее устройство – это то место, где хранятся программы и данные. Информация имеет вид констант. Сама же программа записывается в виде машинных кодов микроЭВМ. Данные представляют собой калибровочные таблицы констант , участвующих в процессе расчетов. Данные из таблиц могут быть выбраны и в качестве управляющих параметров. Что интересно, данные в ПЗУ хранятся неограничено долго . Оперативное запоминающее устройство берет на себя задачу хранения данных, которые могут измениться. Например, промежуточных результатов вычислений или же значений, получаемых от датчиков. Хранить информацию ОЗУ может в течение ограниченного промежутка времени – она стирается после отключения питания.
Тандем центральный процессор – ПЗУ – ОЗУ является ключевым для ЭБУ. Если говорить по-простому, именно этот тандем выделяет данные и параметры, обсчитывает их, запоминает и отдает команды. К этому тандему также можно отнести так называемые энергонезависимые ОЗУ . Они питаются от аккумуляторной батареи напрямую. Такая память может записать данные и хранить их очень долго. Пока аккумулятор не потеряет накопленную энергию вследствие саморазряда, энергонезависимые ОЗУ продолжат хранить данные.
Важным элементом ЭБУ является аналогово-цифровой преобразователь. Дело в том, что однокристальные микроЭВМ могут работать только с цифровыми сигналам. В АЦП аналоговый сигнал преобразуется в цифровой код . Порты ввода и вывода, как несложно догадаться из их названия, служат для получения и считывания входных сигналов и передачи выходных сигналов и информации. Таймером же называют устройство, которое служит как для измерения интервалов времени , так и подсчета числа событий . Генератор тактовой частоты призван синхронизировать работы всей системы за счет выработки тактовых импульсов. От точности работы генератора будет зависеть точность измерения интервалов времени.
Как работают формирователи входных и выходных сигналов
- Аналоговые;
- Дискретные;
- Частотные.
Формирователи делятся на подтипы в зависимости от того, с какими сигналами они работают. Это связано с тем, что разные типы сигналов имеют различные параметры . Вот например:
- Аналоговые сигналы меняются во времени непрерывно. Примером является сигнал с датчика положения дроссельной заслонки. Непрерывно поступающие сигналы проходят через обработку в формирователи, а затем поступают к аналогово-цифровому преобразователю и к процессорной части ЭБУ;
- Дискретные сигналы меняются скачкообразно и являются прерывистыми. В качестве примера можно взять сигнал включения зажигания. Его изменения происходит резко, а сам сигнал поступает сначала в преобразователь, а затем напрямую в процессорную часть ЭБУ;
- Частотные сигналы наиболее интересны. Они не просто изменяют частоту – эти изменения сами по себе несут информацию о реальных изменениях величин, которые измеряет датчик. Соответственно, и обработка этих сигналов будет сложной. Сначала они ограничиваются по амплитуде, а затем поступают на вход таймера.
За формирование выходных сигналов ответственны специальные микросхемы, иначе называемые драйверами. Они усиливают сигналы по мощности, а также защищают выходы контроллера от замыканий и перегрузок . Драйверы часто называют «интеллектуальными», так как в случае работы в анормальном режиме они информирует центральный процессор о факте появления ошибки. Выходные формирователи делятся на подтипы по мощности сигнала, с которым они работают.
Неисправности устройства
В силу того, что ЭБУ является ключевым управляющим элементом силового агрегата, его неисправности сразу сказываются на работе агрегата и автолюбитель не сможет не заметить проблемы. Другое дело – проведение диагностики устройства. Зачастую проблема кроется не в самом блоке управления, а в проводке и конкретных датчиках. Причин, по которым сам ЭБУ может выйти из строя, довольно много. Вот наиболее частые:
- Короткое замыкание одного или нескольких соленоидов;
- Сильные механические воздействия или вибрации, результатами которых является появления трещин в плате ЭБУ и на местах спайки контактов;
- Перегрев электронного блока вследствие резких перепадов температур – от низких до высоких (такое иногда наблюдается в автомобилях, эксплуатируемых в условиях сильного холода);
- Попадание влаги в устройство и коррозияю
Существует и по-своему интересные способы навредить электронному блоку управления двигателя. Например, снять клеммы аккумулятора, перед этим не заглушив двигатель. То же произойдет при попытке «прикурить» автомобиль, не заглушив мотор. С некоторой вероятностью ЭБУ может выйти из строя, если при подключении аккумулятора перепутать клеммы и запустить мотор. Признаков, указывающие на выход ЭБУ из строя, много. Чаще всего встречаются такие:
- Перестал гореть Check Engine;
- Зажигание начало работать с частыми пропусками;
- Вентилятор охлаждения двигателя начал включаться произвольно;
- Отсутствует связь с устройством (можно понять по ходу диагностики сканером);
- Двигатель начал троить, перестал заводиться, сильно изменился выхлоп;
- Автомобиль реагируют на манипуляции с педалью газа неадекватно;
- Предохранительные элементы начали часто перегорать без видимых причин;
- Сигналы с датчиком начали поступать нерегулярно, или перестали поступать вовсе.
И это лишь часть возможных симптомов. Автолюбителям важно понимать, что перед диагностикой ЭБУ имеет смысл проверить другие компоненты электронной бортовой системы автомобиля . К примеру, если наблюдаются проблему с одним из датчиков, стоит проверить в первую очередь его, затем его проводку, а уже затем ЭБУ.
Самостоятельная диагностика
Определить некоторые неисправности ЭБУ можно и самостоятельно. Или, по крайней мере, понять, подает ли он «признаки жизни». Это также возможно благодаря системе самодиагностики, которую имеют практически все блоки управления. Если автолюбитель хочет произвести самостоятельную диагностику, ему понадобится специальный тестер или же компьютер с предустановленной программой . Ее будет несложно найти в интернете. Кроме того, понадобится адаптер. Вот что нужно сделать:
- Подключить адаптер к USB-порту компьютера и к выходу электронного блока;
- Включить зажигание (сам двигатель запускать не обязательно);
- Запустить предварительно скачанную и установленную диагностическую проверку на компьютере;
- Наблюдать за тем, как на экране появится сообщение о начале диагностики. Если его нет, проверьте надежность подключения;
- Перейти в раздел DTC (может иметь другое название в зависимости от программы) – он содержит коды всех неисправностей. Коды зашифрованы, а расшифровать их можно в той же программе или с помощью данных из технической документации к вашему автомобилю.
К несчастью, бывают случаи, когда компьютер не удается подключить к блоку. В этом случае автолюбителю понадобится осциллограф, кабель и специализированное программное обеспечение. Нужный софт найти несложно, а вот с осциллографом могут возникнуть проблемы. Далее, диагностику нужно будет продолжить уже при помощи тестера или же мультиметра. Автолюбителю придется внимательно изучить электрическую схему контроллера и производить замеры сопротивлений. Лучше всего обратиться к специалистам, но если у автолюбитель хорошо подкован в вопросам электротехники и имеет много времени для диагностики, выявить проблему он сможет и самостоятельно.
Вывод
ЭБУ двигателя – это, пожалуй, самый ответственный элемент бортовой электросистемы автомобили. Благодаря нему силовой агрегат имеет оптимальную производительность, состав выхлопа и высокую стабильность работы. Неисправности в работе ЭБУ возникают часто, но в большинстве случаев они обусловлены проблемой с каким-либо электрическим и электромеханическом элементом автомобиля. Если проблема кроется именно в ЭБУ, то нередко единственным способом ее решения является… дорогостоящая замена блока. Советуем обращаться к проверенным специалистам для диагностики, а уже потом строить планы по покупке необходимых запчастей и дальнейшей их установке.
Если Вам понравилась публикация, поделитесь новостью в социальных сетях и подписывайтесь на канал .
В дизельном двигателе топливо всегда впрыскивается непосредственно в камеру сгорания под давлением от 200 до 2200 бар. В зависимости от конструкции, в двигателях с непрямым впрыском топливо впрыскивается в форкамеру под относительно низким давлением (менее 350 бар). В системах прямого впрыска топлива, получивших наибольшее распространение, топливо впрыскивается в неразделенную камеру сгорания под высоким давлением (до более чем 2200 бар). Вот о том, как происходит управление работой дизельного двигателя, мы и поговорим в этой статье.
Управление работой дизельного двигателя
Конструктивные требования к работе дизельного двигателя
Вырабатываемая дизельным двигателем мощность Р определяется крутящим моментом на коленчатом вале, передаваемым сцеплению, и частотой вращения коленчатого вала. Крутящий момент на коленчатом вале равняется крутящему моменту, создаваемому в процессе сгорания топлива, за вычетом механических потерь на трение, газообмен и привод вспомогательных агрегатов. Крутящий момент создается в процессе силового цикла, и при наличии достаточного количества воздуха определятся следующими переменными: массой подаваемого топлива, моментом начала сгорания топлива, определяемым началом впрыска, и процессами впрыска и сгорания топлива.
Кроме того, максимальный, зависящий от частоты вращения коленчатого вала крутящий момент ограничен требованиями к ограничению дымности выхлопа, давлением в цилиндрах, тепловой нагрузкой различных компонентов и величиной механической нагрузки всей кинематической цепи привода.
Основная функция системы управления дизельным двигателем
Основной функцией системы управления двигателем является регулирование создаваемого двигателем крутящего момента или, при некоторых условиях, регулирование частоты вращения коленчатого вала в пределах допустимого диапазона (например, оборотов холостого хода).
В дизельном двигателе очистка отработавших газов и подавление шума осуществляются в значительной степени внутри самого двигателя, т.е. путем управления процессом сгорания топлива. Это, в свою очередь, осуществляется системой управления двигателем посредством управления следующими переменными:
- Заряд смеси в цилиндре;
- Объем заряда смеси, подаваемого во время такта впуска;
- Состав заряда смеси (рециркуляция отработавших газов);
- Движение заряда (завихрения на впуске);
- Момент начала впрыска;
- Давление впрыска;
- Распределение впрыска топлива (например, предварительный впрыск, разделенный впрыск топлива и т.д.).
До начала 1980-х годов управление впрыском топлива и зажиганием осуществлялось исключительно при помощи механических устройств. Например, в топливном насосе высокого давления количество подаваемого топлива регулируется в зависимости от нагрузки двигателя и частоты вращения коленчатого вала путем поворота плунжера насоса, имеющего спиральную канавку. В случае механического регулирования начало впрыска/подачи топлива регулируется при помощи центробежного регулятора (зависимого от скорости вращения). Также применялись гидравлические системы регулирования, в которых количество топлива менялось посредством регулирования давления в зависимости от нагрузки и частоты вращения коленчатого вала.
Точность регулирования
В настоящее время, в связи со строгими требованиями законодательства в отношении ограничения токсичности выбросов, требуется очень точное регулирование количества впрыскиваемого топлива и момента начала впрыска в зависимости от таких переменных, как температура, частота вращения коленчатого вала, нагрузка и высота над уровнем моря. Это может быть обеспечено только при помощи электронных систем управления. Сегодня электронные системы управления полностью вытеснили механические. Это единственный метод управления, позволяющий осуществлять непрерывный мониторинг функций системы впрыска топлива, влияющих на содержание вредных веществ в выбросах автомобиля. В некоторых случаях законодательство требует также наличия системы бортовой диагностики.
Регулирование количества впрыскиваемого топлива и момента начала впрыска осуществляется системами EDC (электронная система управления дизельным двигателем) при помощи электромагнитных клапанов высокого или низкого давления, или иных исполнительных устройств. Регулирование подачи топлива, т.е. количества топлива на один градус поворота коленчатого вала, может осуществляться косвенным образом, например, при помощи сервоклапана и регулирования величины подъема игольчатого клапана.
Электронная система управления дизельным двигателем
Электронная система управления дизельным двигателем позволяет осуществлять точную и дифференцированную модуляцию параметров процесса впрыска топлива. Это единственный способ удовлетворить самые разные требования, предъявляемые к современному дизельному двигателю.
Обзор электронной системы управления дизельным двигателем
Конструктивные требования
Снижение расхода топлива и содержания вредных веществ (NOx, СО, НС, твердых частиц) в отработавших газах с одновременным повышением эффективной мощности двигателя являются главными задачами, стоящими перед разработчиками дизельных двигателей. За последние годы это привело ко все большему распространению систем прямого впрыска топлива (DI), в которых давление впрыска значительно больше, чем в системах непрямого впрыска (IDI) с вихрекамерами или форкамерами. Кроме того, большое влияние оказывают возросшие требования к уровню комфорта современных автомобилей. Все более строгие требования предъявляются к уровню шума. В результате также значительно возросли требования, предъявляемые к системам управления двигателем и впрыска топлива, в частности в отношении:
- Высоких давлений впрыска;
- Формирования параметров;
- Предварительного и, при необходимости, последующего впрыска топлива;
- Регулирования количества впрыскиваемого топлива, давления наддувочного воздуха и момента начала впрыска, в зависимости от условий работы двигателя;
- Подачи дополнительного, зависимого от температуры, количества топлива при пуске двигателя;
- Независимого от нагрузки регулирования частоты вращения коленчатого вала при работе двигателя на холостом ходу;
- Регулируемой рециркуляции отработавших газов;
- Системы круиз-контроля;
- Высокой точности регулирования момента начала впрыска топлива и количества впрыскиваемого топлива на протяжении всего срока службы двигателя.
В обычных механических системах регулирования частоты вращения коленчатого вала используется ряд регулирующих устройств, назначением которых является адаптация к различным условиям работы двигателя. Тем не менее, такие системы ограничиваются простым контуром регулирования, и существует ряд важных переменных величин, которых они не могут учитывать или не могут достаточно быстро реагировать на их изменения. В связи с возросшими требованиями, относительно простые системы управления с использованием электрических исполнительных устройств развились в сложные электронные системы управления двигателем, способные обрабатывать большие объемы данных в режиме реального времени. Они могут составлять часть общей электронной системы управления автомобилем. Благодаря возросшей степени интеграции электронных компонентов, блоки управления чрезвычайно компактны.
Принципы действия системы ЕДС на дизельном двигателе
Электронная система управления дизельным двигателем (EDC) способна обеспечивать выполнение всех вышеуказанных требований, благодаря применению микропроцессоров.
В отличие от автомобилей с дизельными двигателями с обычным рядным или распределительным топливным насосом высокого давления, водитель автомобиля с EDC не оказывает прямого влияния на количество впрыскиваемого топлива при помощи педали акселератора и троса управления дроссельной заслонкой. Вместо этого количество впрыскиваемого топлива определяется рядом переменных величин. Это, например, команды водителя (положение педали подачи топлива), условия работы двигателя, температура двигателя, вмешательства других систем (например, системы управления тяговым усилием) и состав отработавших газов.
Момент начала впрыска также может регулироваться. Все это требует наличия всеобъемлющей концепции системы мониторинга, определяющей несоответствия и инициирующей соответствующие действия (например, ограничение крутящего момента или переход на аварийный режим в диапазоне оборотов холостого хода). Отсюда следует, что электронная система управления дизельным двигателем должна содержать большое количество контуров регулирования.
Электронная система управления дизельным двигателем может осуществлять обмен данными с другими электронными системами, такими как система регулирования тягового усилия (TCS), электронная система управления трансмиссией (ЕТС) или система курсовой устойчивости (ESP). Отсюда следует, что система управления двигателем может быть встроена в общую систему управления автомобилем, приобретая новые функции, такие как снижение крутящего момента двигателя во время переключения передач автоматической трансмиссией или регулирование крутящего момента для компенсации пробуксовки колес.
Система EDC полностью интегрирована в систему диагностики автомобиля. Она отвечает всем требованиям OBD (система бортовой диагностики) и E0BD (европейские нормы OBD).
Блоки системы управления дизельным двигателем
Датчики и генераторы управляющих сигналов определяют условия работы двигателя (например, частоту вращения коленчатого вала) и значения управляющих сигналов (например, положение выключателей). Они преобразуют физические переменные в электрические сигналы.
Блок управления двигателем обрабатывает сигналы датчиков и генераторов управляющих сигналов в соответствии с заложенными в нем алгоритмами вычислений (алгоритмами управления с обратной связью и без обратной связи). Посредством электрических выходных сигналов он осуществляет управление исполнительными механизмами. Кроме того, блок управления двигателем действует в качестве интерфейса с другими системами и с системой диагностики автомобиля.
Исполнительные механизмы (такие как электромагнитный клапан системы впрыска топлива) преобразуют электрические сигналы в механические параметры.
Обработка данных
Необходимая большая точность вместе с высокими динамическими качествами двигателя требуют высокой вычислительной мощности. Выходные сигналы подаются на выходные каскады, обеспечивающие достаточную электрическую мощность для приведения в действие исполнительных механизмов (например, клапанов высокого давления системы впрыска топлива, клапана системы рециркуляции отработавших газов или регулятора давления наддува). Кроме того, система осуществляет управление рядом вспомогательных компонентов (например, реле свечей накаливания и системой кондиционирования воздуха).
Отклонения характеристик сигналов определяются системой диагностики электромагнитных клапанов. Кроме того, блок управления осуществляет обмен сигналами и другими системами автомобиля через соответствующие интерфейсы. Блок управления двигателем производит мониторинг всей системы впрыска топлива, являющийся частью общей стратегии обеспечения безопасности.
короче дело обстоит так,- водила подкинул "мозги" с другой машины, все заработало. предупрежден о возможных скрытых косяках и возможности сжечь второй мозг,- проигнорировал. веду переговоры о возможности забрать мертвые мозги.
STING_Art
deddok
Вложения:
ГАЗ-3309_электрооборудование.rar
deddok
Вложения:
ошибки EDC7.rar
Руководство по эксплуатации Д 245 Е3 CRS.rar
За файлы спасибо!Но по этой ошибке там ничего нет,даже официалы утверждают,что нет такой ошибки.
Как можно проверить не имея осцилографа,подаётся ли управляющий импульс на форсунки?Может дело и не в электроннике.
deddok
Пока не будет нужного давления в рейке, импульсов на форсунки не будет. Почитайте форум, где то было.
Добавлено через 3 минуты
deddok
ILnaz23
deddok
RN3KU
deddok
Айдарка
doctoruga
deddok
andrey_sokolov
vecheslav
Максус
газ 69 рус
Ручная подкачка подсасывала?
Добавлено через 9 минут
Александр 1967
Ручная подкачка подсасывала?
Добавлено через 9 минут
Пользуюсь пока двумя приборами: АВТОАС -КАРГО - хороший охват. Стабилен. Камминс берёт. Все КАМАЗ, МАЗ. Прописывает коды форсунок, не все пока движки, но обещают. Связь по ЮСБ или Блютуз.
Всё индуктивное, форсунки датчики, смотрю АВТОАС-ЭКСПРЕСС - приноровиться, удобно.
По поводу автоас-скан можете проконсультировать, как я понял надо купить сам автоас-скан(7000р) и дополнительно програмный модуль ГАЗ(4000р) или это все независимо друг от друга
Добавлено через 6 минут
История ГАЗ3307 с Д245 мотором имеет продолжение, после того как завели, на следующий день потекла головка двигателя, перебрали. Поездила 1 неделю и при развороте задним ходом заглохла. Имеется куча ошибок, где присутствует датчик коленвала. Пробовал стереть ошибки с помощью диагностической кнопки, как написано в инструкции, не стирается не одной ошибки. Вопрос кто и как стирал ошибки на данном ЭБУ
газ 69 рус
газ 69 рус
Газончик
Xilwevic
И вот он нам преподнес сюрприз
Падает в аварийный режим.
Приехал данный чудо авто к нам на той неделе, тарахтит пердит куча ощибок. Посмотрели устранили и отправили. машин откатала три дня и в аврию больще 2200 не развивает.
Посмотрели пишет Р1662 невераня уставка дозатора топлива, а хв дозатор ставим новый дозатор, хер тоже саое, сбрасываем на рабочей машине появляется Р2951 нарушение режима управления дозатором тнвд - ошибка работы дозатора на хх.
1. Проверили от бака до тннд нашли утечку.
2. Посмотрели аварийный клапан не скидывает сухо
3. Кинули напрямую с бака на тннд хер
4. проверили установку тнвд в норме.
5. все основные параметры давление, скважность. ампераж в норме при не активной ошибке.
6. завтра проверим инжектора после этого даже и не знаю что делать.
Читайте также: