Лампочка тесла что это
Удивительное зрелище — плазменная лампа. Герметичная стеклянная колба с установленным внутри единственным высоковольтным электродом, окруженным инертным газом под почти атмосферным давлением.
Высокое напряжение (от 2000 до 5000 В) подается к электроду лампы от одного из выводов вторичной обмотки импульсного трансформатора, работающего на частоте 30-40 кГц, который установлен внутри пластикового корпуса лампы. Трансформатор плазменной лампы похож на строчный трансформатор, какой можно встретить в старом мониторе или телевизоре с электронно-лучевой трубкой.
Высокое напряжение ионизирует молекулы газа (обычно это неон) внутри колбы - получается плазма, отсюда и название светильника - «плазменная лампа». Множественные разряды, похожие на маленькие молнии, порождаются движущимися ионами газа.
Цвет этих молний, танцующих вокруг электрода внутри колбы, может быть различным, что зависит от вида газов, входящих в состав смеси, которой колба заполнена. Что касается длины молний, то она зависит от потенциала на электроде и от степени разряженности заполняющего колбу газа.
Как видите, здесь нет нити накаливания, поэтому срок службы подобных устройств ограничен лишь качеством электроники, установленной в основании лампы, а также аккуратностью ее владельца.
Потребление декоративных плазменных ламп зависит от размеров колбы и обычно не превышает 20 Вт. Наиболее распространенные сегодня на рынке сферические и конические плазменные лампы имеют габариты не более 30 см.
Встречаются плазменные лампы с ручками регулировки мощности, подаваемой на «танцующие молнии»: при наименьшей мощности внутри лампы формируется только одна тонкая светящаяся ниточка.
Если мощность постепенно повышать, то ниточка станет все ярче и ярче, наконец, когда одна ниточка окажется переполнена подаваемой через нее энергией, в этот момент появится вторая ниточка, и они станут отталкиваться друг от друга подобно одноименным электрическим зарядам.
Светящиеся нити тонки, так как окружающие их магнитные поля оказывают магнитогидродинамический эффект типа самофокусировки: собственное магнитное поле плазменного канала создают силу, действующую на его сжатие.
Изобретателем первого прототипа устройства, которое мы сегодня называем плазменной лампой, был ученый Никола Тесла (1856-1943), американский инженер-электрик, уроженец Австрийской империи.
В патенте США №514170 от 1894 года лампа хоть и названа «электрическим источником света», тем не менее принципиальное отличие от обычной лампы накаливания налицо. Тесла предложил принципиально новую лампу — лампу с одним электродом, которая бы питалась от высоковольтного резонансного трансформатора Тесла.
Популяризатором идеи плазменной лампы как декоративного светильника в форме шара (коммерческая идея «плазменный глобус») стал в 1970-е году изобретатель из Пенсильвании Джеймс Фалк (1954 г.р.).
В его время, в отличие от времен когда Тесла работал над своей лампой, уже появилась технология создания газовых смесей различного состава (на основе ксенона, неона и криптона), позволяющих получать в колбах плазму разнообразных цветов.
Свечение здесь создается благодаря коронному разряду в газе, практически обусловленному током через емкость в цепи лампа-воздух-земля. В качестве земли для высоковольтного источника светильника используется точка нулевого потенциала, доступная при питании устройства от розетки.
Считается, что когда человек прикасается пальцем к стеклу работающей лампы, то поток энергии идет через тело, как если бы оно имело сопротивление 1000 Ом и было включено последовательно с конденсатором емкостью 150 пф (стекло колбы выступает в роли диэлектрика). Человека не убивает, поскольку ток плазменной лампы достаточно высокочастотный.
Так или иначе, контактируя с плазменной лампой соблюдайте меры безопасности! Дело в том, что переменное электрическое поле действует не только в проводах высоковольтного источника лампы, но и за пределами колбы.
Расположенный вблизи лампы металлический предмет станет электризоваться переменным электрическим полем, и коснувшись такого предмета можно получить слабый удар током и даже ожег. Если же человек, прикасаясь к лампе, случайно окажется заземлен, например держась за батарею, он получит удар током.
Кроме того, вблизи работающей плазменной лампы не следует располагать никакие электронные устройства, ведь любая электроника боится индуцированных электрических токов, и легко выйдет из строя, попав в переменное электрическое поле высокой напряженности, источником которого выступает электрод внутри лампы.
В настоящее время мы не можем представить себе жизнь без техники. Действительно, сейчас у каждого в доме есть электричество, газ, но так ли часто мы задумываемся о том, какие же гениальные ученые все это изобрели? Великие химики, математики, физики, в число которых входит и изобретатель лампочки Никола Тесла, подарили этому миру новый образ благодаря своим открытиям. В статье вы прочтете об этом ученом.
Биография Николы Теслы
Великий изобретатель родился 10 июля 1856 года в Хорватии. Начальное образование получал сначала в Смилянах, затем, после переезда, продолжил обучение сначала в школе, потом - в гимназии Госпича. Далее будущий физик поступил в училище в Карловаце и жил у своей тети.
После окончания учебного заведения в 1873 году Тесла решает вернуться домой к семье, несмотря на то что в это время там была эпидемия холеры. Никола заражается и находится при смерти, но чудом выздоравливает. В будущем сам Тесла предполагал, что этому поспособствовало то, что отец разрешил ему заниматься инженерным делом. После болезни Никола стал видеть вспышки света, с которыми к нему на ум приходили его будущие изобретения. Он представлял их и мысленно тестировал, словно компьютер.
После выздоровления изобретатель должен был пойти на службу в Австро-Венгерскую армию, но родители, решив, что он еще недостаточно здоров, спрятали его в горах.
В 1875 году Никола поступил в Грацкое техническое училище и стал изучать электротехнику. Уже на первых курсах Тесла задумывался о несовершенстве машин постоянного тока, но подвергся критике профессора. На третьем курсе физик стал зависим от азартных игр. Он просаживал большие суммы денег до тех пор, пока его мать не стала брать средства в долг для него у знакомых. После этого он перестал играть.
Работа
С 1881 года Никола Тесла служит инженером в Центральном телеграфе Будапешта. Ему открывается возможность лицезреть некоторые изобретения, а также подумать над воплощением в реальность собственных идей. Именно здесь великий физик представил миру двухфазный электродвигатель переменного тока, названный затем его именем.
Изобретения Николы позволяли передавать энергию на огромные расстояния, питая приборы освещения, например, лампочки. Тесла, однако, уже через год переехал в Париж, чтобы работать у предпринимателя Томаса Эдисона. Его компания занималась строительством электрической станции на железнодорожном вокзале города Страсбурга, мэру которого позже Никола продемонстрирует работу изобретенного им асинхронного электродвигателя.
В 1884 году Тесла уезжает в Америку. Он был обижен тем, что ему не выплатили в Париже обещанную премию. Там он начинает работать инженером, ремонтирующим электродвигатели в очередной компании Эдисона.
Однако последнего начинают раздражать блестящие идеи великого физика. В результате этого между ними завязывается спор на миллион долларов. Николе удалось победить, но Эдисон свел все к шутке и деньги не выплатил. После этого Тесла уволился и стал безработным. Спасением для него стало знакомство с американским инженером Брауном Томпсоном, благодаря которому о юном физике стало узнавать больше людей.
Развитие деятельности
В 1888 году Тесла знакомится с американским промышленником и предпринимателем Джорджем Вестингаузом, который скупает у него большую часть изобретений, а затем приглашает на работу, но слышит отказ физика, не желающего ограничивать свою свободу.
До 1895 года Никола Тесла занимается исследованием магнитных полей. Также он получает приглашение от института электроинженеров выступить с лекцией, которая впоследствии имела небывалый успех.
В конце этого же года у Николы сгорела лаборатория со всеми изобретениями, но он утверждал, что сумеет все восстановить.
Личная жизнь
Несмотря на примечательную внешность, ум и удивительный характер, изобретатель никогда не был женат. По его мнению, ученый должен отказаться от личной жизни ради научных изобретений, потому что это несовместимо. Более того, у него никогда не было постоянного места жительства: он пребывал в отелях или на съемных квартирах.
Как Тесла зажигал лампочки
У Николы было много изобретений. Однако большинство знает его, потому что Тесла изобрел лампочку. Кроме того, он был удивительным человеком, который умел делать физические трюки. К таким относится и фокус с лампочкой. Тесла зажигал ее в руке посредством пропуска через себя тока высокого напряжения.
Никола является автором многих изобретений, без которых нельзя представить современный мир. В их числе двигатель переменного тока, катушка Теслы, радио, рентгеновские лучи, лампочка Тесла, лазер, плазменный шар и многое другое. Его гениальность и склад ума даже пугали некоторых людей.
Память
В честь Николы было поставлено несколько памятников в разных городах, его портрет изображался на денежных купюрах. Именем изобретателя лампочки Тесла названы улицы в некоторых населенных пунктах и даже кратер на Луне (в 1970 году), а также Сурчинский аэропорт в пригороде Белграда.
У Николы было много изобретений. Однако большинство знает его, потому что Тесла изобрел лампочку. Кроме того, он был удивительным человеком, который умел делать физические трюки. К таким относится и фокус с лампочкой. Тесла зажигал ее в руке посредством пропуска через себя тока высокого напряжения.
Никола является автором многих изобретений, без которых нельзя представить современный мир. В их числе двигатель переменного тока, катушка Теслы, радио, рентгеновские лучи, лампочка Тесла, лазер, плазменный шар и многое другое. Его гениальность и склад ума даже пугали некоторых людей.
Камера Вильсона
Также в «Лунариуме» можно понаблюдать за движением невидимых заряженных частиц при помощи камеры Вильсона. Этот прибор в 1927 году принес своему изобретателю шотландскому физику Чарлзу Вильсону Нобелевскую премию.
Камера Вильсона — это небольшая емкость прямоугольной формы со стеклянной крышкой и поршнем, наполненная парами спирта, эфира или воды. Принцип работы камеры прост и основан на явлении конденсации перенасыщенного пара: заряженная частица, попадая в камеру с паром, сталкивается с молекулами газа и приводит к их ионизации. Пар в камере конденсируется, и из капель конденсата выстраивается белая цепочка, по которой можно проследить траекторию движения частицы.
Камера Вильсона стала одним из первых приборов для регистрации движения частиц и долгое время была единственным инструментом для изучения космических лучей и ядерных излучений.
Работа
С 1881 года Никола Тесла служит инженером в Центральном телеграфе Будапешта. Ему открывается возможность лицезреть некоторые изобретения, а также подумать над воплощением в реальность собственных идей. Именно здесь великий физик представил миру двухфазный электродвигатель переменного тока, названный затем его именем.
Изобретения Николы позволяли передавать энергию на огромные расстояния, питая приборы освещения, например, лампочки. Тесла, однако, уже через год переехал в Париж, чтобы работать у предпринимателя Томаса Эдисона. Его компания занималась строительством электрической станции на железнодорожном вокзале города Страсбурга, мэру которого позже Никола продемонстрирует работу изобретенного им асинхронного электродвигателя.
В 1884 году Тесла уезжает в Америку. Он был обижен тем, что ему не выплатили в Париже обещанную премию. Там он начинает работать инженером, ремонтирующим электродвигатели в очередной компании Эдисона.
Однако последнего начинают раздражать блестящие идеи великого физика. В результате этого между ними завязывается спор на миллион долларов. Николе удалось победить, но Эдисон свел все к шутке и деньги не выплатил. После этого Тесла уволился и стал безработным. Спасением для него стало знакомство с американским инженером Брауном Томпсоном, благодаря которому о юном физике стало узнавать больше людей.
Вторая модель аппарата «Планетарий» и аппарат «Универсариум М9»
Первая модель аппарата «Планетарий» была создана в Германии в начале 20-х годов XX века на заводе Карла Цейса по проекту инженера Вальтера Бауэрсфельда. Небольшие по своим размерам приборы проецировали на куполообразный экран ограниченное число звезд и созвездий, планеты, туманности и Солнце с Луной. Позже более крупные аппараты расширили список небесных объектов — при помощи дополнительных проекторов стало возможным показывать Млечный Путь, демонстрировать восход и закат Солнца и целые фильмы. «Планетарий» служил универсальным прибором для показа звездного неба. Московский планетарий в 1929 году стал 13-м в мире, где была установлена «Модель II» этого аппарата.
Проектор последнего поколения «Универсариум М9» появился в планетарии после большой реконструкции в 2011 году. Шар, состоящий из двух полусфер, установлен сегодня в Большом звездном зале и предназначен для демонстрации полнокупольных фильмов. На полусферах «Универсариума» — проекторы звезд, созвездий и туманностей, которые можно увидеть невооруженным глазом. Новые технологии позволяют рассмотреть более девяти тысяч звезд, появляющихся на куполе-экране. При помощи всех проекторов «Универсариума» точно воссоздают звездное небо, лунные и солнечные затмения, полет комет и метеоритные дожди.
Особенности эксплуатации плазменного шара
Чтобы ваша «плазма» могла приносить вам радость и умиротворение на протяжении многих лет, за ней нужен правильный уход, который предполагает следующее:
- запрещается класть на лампу разнообразные металлические предметы. Часто, из любопытства, на сферу кладут монетки различного номинала. Даже небольшая монетка может послужить причиной удара током. При этом сама сфера может лопнуть и выпустить наружу уже не столь красивые и безопасные разряды;
- лампа должна подключаться к сети питания на 220 В. Также для ее питания можно использовать и USB-порт (если имеется такая возможность). Такой разъем можно подсоединить своими руками, если у вас имеется старая модель светильника;
- время работы лампы не должно превышать более двух часов. Иначе это может привести к перегреву, а это негативным образом скажется на прочности прозрачной колбы и в дальнейшем может привести к нарушению ее герметичности.
Как видите, правила более чем просты и понятны. Главное здесь следить, чтобы дети, которых плазменные разряды будут неизменно притягивать, не повредили сферу с газом и не выпустили «фейерверки» наружу.
Комплектация плазменного светильника
Современные лампы-шары, формирующие у себя внутри плазменные разряды, содержат в себе:
- сам плазменный светильник. У современных моделей должен иметься разъем для USB. У страх моделей такой разъем можно сделать своими руками, отрезав вилку для розетки и подсоединив к ней USB от старого шнура. Только перед проведением таких работ своими руками убедитесь в том, что USB разъем работает нормально;
- USB-кабель. Это обязательный элемент всех современных моделей;
- инструкция по эксплуатации. С помощью инструкции вы сможете выяснить все нюансы и тонкости работы прибора, возможность его починки своими руками, а также другие важные моменты, которые приводят производители.
Набор плазменной лампы
Покупая такой светильник, необходимо обязательно убедиться в исправности лампы (особенно прозрачной сферы). Ее прозрачная часть не должна быть повреждена, покрыта царапинами или трещинами. При их наличии обязательно требуйте замену продукции.
Обычно осветительный прибор имеет следующие технические характеристики:
- питание – 220 В (стандартное);
- мощность — 8 Вт;
- материалы изготовления: пластик, стекло и электронные компоненты.
Технические характеристики лампы должны быть указаны как на упаковке, так и в инструкции к ней.
Приобретая плазменный светильник нужно знать, что диаметр его сферической колбы может варьироваться в достаточно широком диапазоне (от 8 до 20 см).
Глобус Яна Гавелия
Одним из самых известных небесных глобусов, представляющих собой карту звездного неба, считается глобус польского астронома и конструктора телескопов XVII века Яна Гавелия. Самый известный его труд, дошедший до наших дней, — «Уранография», посмертно изданный атлас звездного неба, состоящий из 56 карт. Созвездия на картах Гавелий изображал в зеркально перевернутом виде — будто глядя на них из точки за пределами небесной сферы.
Его рисунки-гравюры и перевернутые карты стали основой для создания небесного глобуса с 54 созвездиями и 1564 звездами из собственного каталога астронома. Гавелий поместил на глобус как ранее известные Большую и Малую Медведицы, Козерога и Дракона, так и открытые самостоятельно созвездия Мухи, Ящерицы и Единорога.
Для Московского планетария глобус Яна Гавелия был изготовлен в 1983 году. Большой золотой шар, демонстрирующий все звезды и созвездия, известные астрономам XVII века, сегодня является главным украшением музея Урании.
Плазменный шар
Первый плазменный шар изобрел в 1894 году Никола Тесла. Конструкция под названием «Электрический источник света» выглядела как лампа, состоящая из стеклянной колбы с одним электродом. Современный вид плазменному шару придал ученый и изобретатель Джеймс Фалк, который в 1970-х годах создавал необычные светильники для музеев и частных коллекционеров.
Плазменный шар, или плазмабол, представляет собой конструкцию из стеклянной сферы с разреженным инертным газом и электродом внутри. Когда на электроды подается напряжение с частотой примерно 30 килогерц, начинается процесс ионизации газа и рождается плазма — яркие газовые разряды в виде молний.
Волшебство плазменного шара начинается во время прикосновения к прибору. Молнии, находящиеся внутри, сразу устремляются к месту, где находится рука человека — яркие ленты электричества притягиваются к телу, выступающему в этот момент проводником тока. Разряды могут быть разных цветов, если в шаре используют смесь нескольких газов. Во время работы плазменного шара воздух вокруг ионизируется — если поднести к шару люминесцентную лампу, она тоже будет светиться.
Увидеть плазмабол в действии можно в «Лунариуме».
Маятник Фуко
Идея продемонстрировать вращение Земли с помощью маятника принадлежит французскому астроному и физику Жану Бернару Леону Фуко. В 1851 году в парижском Пантеоне он показал эксперимент с металлическим шаром, подвешенным к вершине купола на стальную проволоку. Каждый раз, когда маятник совершал колебание, он оставлял новый след на песчаной дорожке у края ограждения. Через 32 часа маятник сделал полный оборот и вернулся в исходную точку, доказав факт вращения планеты вокруг собственной оси. За опыт с маятником Фуко вручили высшую награду Франции — орден Почетного Легиона.
Самый большой в России маятник Фуко установлен в «Лунариуме» Московского планетария. Шар весом в 50 килограммов, висящий на 16-метровой нити, раскачивают над лимбом-шкалой и оставляют колебаться в одной плоскости. На бортик у края ставят фигурку, которую позже шар должен будет задеть. Пока маятник колеблется, его основание продолжает свое вращение вместе с Землей, так что фигурка через какое-то время оказывается на пути шара, и он ее сбивает.
Особенности строения плазменного светильника
Плазменная лампа-шар представляет собой специфический светильник. Плафон светильника круглый и прозрачный, а внутри сферы происходит настоящая «магия». Из центра лампы к периферии прозрачного плафона отходят многочисленные плазменные разряды, которые завораживают своими яркими переливами и изгибами, которые не поддаются прогнозам и кажется, что они живут своей собственной жизнью. Можно сказать, что внешне такая лампа похожа на шар предсказаний цыганской гадалки, дающим наставления тем, кто может их прочесть.
Плазменная лампа в качестве ночника
Благодаря такому необычному и магическому внешнему виду такая вот «плазма» даст многое:
- придаст атмосферу загадочности и необычности;
- станет экзотическим дизайнерским элементом;
- светильник способен своей работой нормализовать психическую деятельность человека, снять стресс и усталость;
- да и в целом это станет оригинальной изюминкой интерьера, которую можно встретить далеко не в каждом доме или квартире.
Стоит отметить, что в отличие от стандартных осветительных приборов, плазменная лампа-шар станет необычным и оригинальным подарком на день рождения.
Итак, плазменная лампа представляет собой прозрачный шар на подставке, внутри которого бьются энергетические разряды. Они способны реагировать на прикосновения человека к прозрачной сфере или даже голосу.
Реакция лампы на прикосновение
При прикосновении к такой лампе разряды внутри нее начинают концентрироваться и «бить» в место, к которому притронулся палец. Это очень красивое зрелище, которое способно завораживать на долгие часы.
Этот предмет больше похож на элемент фантастического фильма, нежели на светильник. Для получения такого эффекта используются современные технологии, что позволяет добиться высокого качества данной осветительной продукции.
Лампа с разрядами и интерьер
Установка плазменного светильника в доме или квартире будет отличным решением по следующим причинам:
- лампа имеет компактные размеры и хорошо впишется как на полку, так и на журнальный столик;
- возможность декорирования внешнего вида прибора расширяет перечень стилей, в которые он сможет гармонично вписаться, не нарушив общий замысел;
- это отличный ночничок, который способен создать атмосферу таинственности и сказки;лампа способствует снятию раздражения, усталости и стрессов.
Плазменная лампа-шар и дети
Несмотря на то, что это очень красивый и практичный ночник, в детской размещение такого прибора не рекомендуется, так как из-за подвижных игр дети могут повредить его стеклянную часть и порезаться. Лучшим решением будет размещение лампы на специальной полке и выставление ее на стол для выполнения функции ночника уже в вечерние часы. Таким образом, вы и порадуете своего ребенка, и убережете его от травм.
Кроме детской, подобный светильник станет оригинальным решением для спальни или гостиной. Наиболее подходящими стилями для размещения такой лампы будет «хай-тек», «эклектика», «минимализм», «классика». При этом «хай-тек», как наиболее приближенный стиль к тесловским творениям, будет самым лучшим решением. В стиле «ретро» такая лампа также займет свое достойное место.
Интерьер в стиле хай-тек
А вот для других стилей (например, «ампир», «готика» и т.д.) необходимо дополнительная стилизация светильника.
Помните, цвет свечения разрядов стоит выбирать под цвет стен, потолка и мебели. Например, на фоне кофейных стен фиолетовые вспышки будут смотреться просто отлично.
Кроме этого плазменная лампа отлично впишется ориентальный дизайн, где превалируют темные цвета отделки стен, мебели, штор и занавесок.
Принцип работы плазменного шара
Плазменная лампа-шар в своей сердцевине имеет электрод, который и позволяет ей создавать плазменные разряды внутри прозрачной сферы. Принцип работы устройства заключается в следующем:
- высокое переменное напряжение, характеризующееся частотой примерно в 30 кГц, попадает на электрод;
- сфера лампы внутри содержит разреженный газ;
Вариант цвета плазменного разряда лампы
благодаря попаданию на электрод напряжения в парах газа и формируются плазменные разряды.
Сам светильник, работающий по такому принципу, будет потреблять мало электроэнергии (примерно 5-10 Вт). Поэтому если с ним правильно обращаться, то он прослужит десятилетия. О том, как за таким прибором следует следить, мы поговорим в следующем разделе.
Телескопы Галилео Галилея и Исаака Ньютона
Кто придумал телескоп, сказать сложно, даже дату его изобретения можно назвать лишь примерную — начало XVII века. В 1608 году голландский очковый мастер Иоганн Липперсгей представил «зрительную трубу» для разглядывания удаленных объектов. Получить патент он не сумел: выяснилось, что подобными трубами несколькими годами ранее уже обладали его соотечественники Захарий Янссен и Якоб Метиус. Кроме того, чертежи простейших телескопов с одной и двумя линзами были найдены в записях Леонардо да Винчи, сделанных за сто лет до этого. Гений Возрождения предполагал, что с помощью такого прибора можно будет рассмотреть Луну.
На практике первым оптический прибор направил в звездное небо Галилео Галилей, который в 1609 году создал свою версию оптической трубы с трехкратным увеличением. В трубе использовалась система двух линз, одна из которых собирала свет, а вторая — рассеивала. Великий итальянский ученый позже разработал метровый телескоп, дававший 32-кратное увеличение, но при этом значительно искажавший цвета. Название «телескоп» изобретению Галилея дал греческий математик Иоаннис Димисианос в 1611 году.
Более совершенную систему зеркальных телескопов-рефлекторов придумал Исаак Ньютон. Первый прибор, в котором главным светособирающим элементом стало вогнутое зеркало, английский физик построил в конце 1668 года. Телескоп Ньютона работал по следующей схеме: свет, попав в трубу на главное зеркало, направлялся на плоское диагональное зеркало, находящееся около фокуса. Оттуда он выходил за пределы трубы, и полученное изображение можно было рассмотреть через окуляр и даже сфотографировать. Рефлектор Ньютона точно передавал цвет, был намного легче устройства Галилея и мог отражать ультрафиолетовые лучи.
Небольшой телескоп-рефлектор Ньютона, воссозданную копию телескопа Галилея и многие современные модели телескопов можно увидеть в зале музея Урании.
Не так давно в ассортименте различных магазинов появились так называемые плазменные лампы, испускающие молнии по поверхности стеклянного шара. Эти светильники быстро обрели популярность, но мало кто знает, что эти приборы изобрёл Никола Тесла в 1910-х годах прошлого века. Для начала необходимо разобраться с внутренним устройством этого удивительного изобретения. На самом деле это обычный трансформатор особого типа. Он использует в своей работе резонанс, возникающий в так называемых стоячих магнитных волнах. На первичной обмотке совсем немного витков, он генерирует колеблющиеся искры, собирая энергию в конденсатор, а поэтому искрение происходит в определенный период времени. Вторичная обмотка работает на базе прямоточной катушки из проводов. Частота колебания пары контуров должна совпасть, что приведёт к появлению крайне высокого переменного тока большой частоты между двумя концами катушки на вторичной обмотке. Это и вызывает визуализацию в виде тех самых фиолетовых молний.
Резонансный трансформатор часто сравнивают с обычным маятником, где частота и амплитуда будут напрямую зависимы от того, с каким усилием толкается вся система. Раскачку можно делать при наличии свободных колебаний, что многократно повышает длину хода, а также увеличивает время полного угасания. С катушкой здесь происходит то же самое. Качается вторичная обмотка, а раскачивает её генератор. Синхронизация обеспечивается первичным контуром и генератором одновременно, что позволяет точно настроить систему в зависимости от поставленной задачи. В данный момент большинство людей знает это только в виде игрушки. Но на самом деле, эта система имеет реальное применение.
Использование катушки Тесла в реальности
Выходные значения напряжения часто может достигать невероятных значений в несколько миллионов вольт. Это уникальное явление в мире электричества, ведь подобные высокие токи редко характеризуются столь длительными волнами. Электрическая прочность воздушного пространства пробивается на огромное расстояние стабильными разрядами, а при большой мощности генератора длина может достигать многих метров. Подобные демонстрационные комнаты с этим чудом физики нашей планеты часто устанавливаются во многих университетах мира. Эти явления нашли отображение в знаменитой игрушке. Когда мы прикасаемся к шару, то молнии тянутся к нашим рукам, как к объекту со сравнительно большой проводимостью. Наша кровь и прочие жидкости организма переполнены солями и металлами, что делает нас отличным проводником.
Ещё в начале прошлого века данная схема использовалась для передачи сигналов на огромные расстояния, ведь у разрядов имеется также невидимая часть. Люди стали пытаться использовать их для передачи радиоволн на небольшие расстояния для передачи дистанционного управления, но такое применение было слишком опасным для здоровья людей. Затем проводились многочисленные опыты в сфере медицины. Так называемая дарсонвализация используется до сих пор, а сами приборы являются ничем иным, как генератором Тесла в самом маленьком размере. Ток щекочет кожу, но не проникает глубоко в тело. Тонизирующий эффект от такой обработки быстро нашёл применение в реальности, он используется для лечения кожных заболеваний, стимулирует рост волос, позволяет шлифовать шрамы, уменьшая размеры узелков.
Именно данный тип генераторов поджигает газоразрядные лампы. Вакуумные системы тестируются при помощи этих лучей на наличие трещин в корпусах. Молния обязательно будет тянуться в сторону дефекта.
Опасны ли лампы Тесла для людей?
Можно однозначно говорить, что опасность имеется, поэтому нужно соблюдать прилагаемую инструкцию на 100%. Нельзя браться за руки и трогать стекло лампы, а также пытаться прикасаться к шару мокрыми руками. Особенно мы настоятельно не рекомендуем изготавливать подобные схемы без должного опыта в домашних условиях. Вы можете вывести из строя многочисленные электроприборы в вашем доме, сжечь проводку. Но это не самые худшие последствия. Трансформаторы Тесла с напряжением в миллионы вольт при ошибке способны убить человека одним касанием. Эффект схож с попаданием молнии. Поэтому будьте крайне осторожны, особенно берегите детей. До 12 лет покупка подобных ламп настоятельно не рекомендуется. Также покупайте эти приборы только от известных производителей. Копии от китайских безымянных компаний часто бьют током до такой степени сильно, что на руках могут загораться волосы и рукава одежды, а также оплавляются ногти. Игрушка может принести большие неприятности, будьте бдительны.
10 июля празднуют 165 лет со дня рождения изобретателя, физика, инженера, чьи открытия позволили совершить вторую промышленную революцию. Что изобрёл Никола Тесла, почему ему долго не платили за работу, как функционируют его изобретения и почему они изменили мир, разбираемся вместе с преподавателем физики «Фоксфорда».
Александр Улитин,
В 2003 году Илон Маск основал Tesla Motors. Компания, названная в честь создателя асинхронного электродвигателя, использует технологию многофазных систем переменного тока. Никола Тесла впервые разработал и запатентовал её в 1883 году, дав научное описание явлению вращающегося магнитного поля.
Почему магнитное поле вращается
И наша планета, и магнитик на холодильнике обладает магнитным полем. Но мы можем его получить и искусственно. Для этого возьмём провод, сделаем из него рамку и пустим ток. Если ток будет постоянным, то и поле будет постоянным. Но если ток будет переменным и будет изменяться по синусоидальному закону, то и поле будет изменяться также. Теперь можно ещё усложнить и взять две рамки с переменным током и разместить их перпендикулярно друг другу. Если ток в обеих рамках будет одной частоты, но сдвинут по фазе, то мы получим вращающееся магнитное поле. Чем больше будет таких рамок, тем более гладким будет вращение.
Помимо двигателя, электромобили Tesla используют высокочастотные микропроцессоры для обработки сигналов, антенны для передачи и приёма радиосигналов, которые тоже придумал Тесла.
Кто такой Никола Тесла
💁 Краткий биографический экскурс
Никола Тесла родился 10 июля 1856 года в хорватском селе Смилян, входившем тогда в состав Австрийской империи.
Он получил хорошее начальное образование благодаря отцу-священнику. Его дальнейший путь в образовании был такой: нижняя реальная гимназия → Высшее реальное училище в Карловаце → университет в Граце (в настоящее время — Грацский технический университет) → Пражский университет.
🙅♂️ Помехи
«Мне с детства была предназначена стезя священника. Эта перспектива, как чёрная туча, висела надо мной. Получив аттестат зрелости, я оказался на распутье. Должен ли я ослушаться отца, проигнорировать полные любви пожелания матери или подчиниться судьбе? Эта мысль угнетала меня, и в будущее я смотрел со страхом. Я глубоко уважал своих родителей, поэтому решил заниматься духовными науками. Именно тогда разразилась ужасная эпидемия холеры, которая выкосила десятую часть населения. Вопреки не допускающим возражений приказам отца я помчался домой, и болезнь подкосила меня… Во время одного из приступов, когда все думали, что я умираю, в комнату стремительно вошёл мой отец… Как сейчас вижу его мертвенно-бледное лицо, когда он пытался ободрить меня тоном, противоречащим его заверениям».
«Ты поступишь в лучшее учебное заведение в Европе», — ответил он торжественно, и я понял, что он это сделает. С моей души спал тяжкий груз».
(Н. Тесла, «Речь по случаю вручения медали Эдисона» (18 мая 1917 года); Н. Тесла, «Личные воспоминания»; Н. Тесла, «Мои изобретения»)
Во время учёбы произошло два очень важных события: первое — Тесла проиграл в карты так, что его родителям пришлось брать деньги в долг, после этого он перестал играть навсегда. Второе — заметил несовершенства машин постоянного тока и задумался об использовании переменного тока в электродвигателях.
Что такое электрический ток
Электрический ток — это направленное, упорядоченное движение носителей электрического заряда. В металлах это электроны, в электролитах и газах — ионы, в полупроводниках — электроны и дырки.
🚶♂️ Никола к успеху шёл
Никола Тесла искал место, где работать будет действительно интересно. После университета он устроился инженером-электриком в правительственную телеграфную компанию в Будапеште. Осуществить там свои замыслы по созданию электродвигателя переменного тока Тесла не смог, поэтому в конце 1882 года перешёл в Континентальную компанию Эдисона в Париже.
Первая серьёзная задача на новом месте — сооружение электростанции для железнодорожного вокзала в Страсбурге. Там же он впервые продемонстрировал работу асинхронного двигателя. В 1884 году, закончив с электростанцией и ожидая крупного вознаграждения, Тесла вернулся в Париж и уволился, как только понял, что ему не заплатят.
Летом того же года изобретатель переехал в Нью-Йорк и устроился в компанию Томаса Эдисона инженером по ремонту электродвигателей и генераторов постоянного тока.
В чём разница между постоянным и переменным электрическим током
Разница в том, что переменный ток изменяется с течением времени по величине и направлению в электрической цепи. Если представить эти изменения на графике, то получится синусоида. Смещение такого графика вправо или влево называется фазой.
Эдисон холодно воспринимал новаторские идеи молодого изобретателя и в качестве шутки пообещал Тесле 50 000 долларов за улучшение электрической машины постоянного тока. Представив более двадцати идей, Тесла получил одобрение на каждое изменение, вновь не заработал ни цента и немедленно уволился.
После скандала изобретатель основал собственную компанию, связанную с вопросами электрического освещения, но сценарий повторился. Акционеры не стали платить за законченный проект дуговой лампы и предложили Тесле взять вознаграждение акциями. Из-за разногласий по оплате учёный оказался на улице и полгода занимался подсобными работами. По случайности во время рытья канав он познакомился с находившимся в подобном же положении инженером и изобретателем А. Брауном, который смог убедить своих знакомых оказать финансовую поддержку Тесле. Спустя несколько месяцев, в апреле 1887 года Тесла создал компанию Tesla Electric Company, которая начала заниматься обустройством уличного освещения новыми дуговыми лампами.
Что такое дуговая лампа
Дуговая лампа — это обозначение целого класса ламп, использующих электрическую дугу в качестве источника света. Сегодня такой принцип используется в люминесцентных лампах. Работают они так: внутри находится смесь инертного газа и паров ртути. Электрический ток, проходя через газообразное тело внутри лампы, возбуждает ультрафиолетовое излучение, которое попадает на люминофор, нанесённый на стенки лампы. Потом люминофор переизлучает поглощённое им УФ-излучение в видимый свет.
Офис открылся на Пятой авеню неподалёку от здания, занимаемого компанией Эдисона, и между изобретателями развязалась «Война токов» .
Несколько лет спустя американский промышленник Джордж Вестингауз выкупил (наконец-то за деньги!) у Теслы более 40 патентов. Вестингауз пригласил изобретателя на должность консультанта на заводах в Питтсбурге, где разрабатывались промышленные образцы машин переменного тока. Тесла не получал удовольствия от работы, считал, что она мешает появлению новых идей, и через год вернулся в лабораторию в Нью-Йорке.
🌟 И сквозь тернии к звёздам пришёл
Началась самая плодотворная часть жизни изобретателя. Во время изучения высокочастотных магнитных полей Тесла получил множество патентов на изобретения.
В 1895 году в лаборатории произошёл пожар, сгорели все наработки. Тесла заявил, что без труда восстановит свои открытия по памяти. Внезапную поддержку изобретателю оказала «Ниагарская энергетическая компания», выделив 100 000 долларов на новую лабораторию. В июне 1902 года Тесла перенёс свою лабораторию в Ворденклиф и приступил к строительству первой беспроводной телекоммуникационной башни для коммерческой телефонии и радиовещания через Атлантику.
В дополнение Тесла намеревался продемонстрировать передачу электроэнергии без проводов. Поскольку это могло обрушить рынок и предоставить всем желающим дешёвую электроэнергию, Дж. П. Морган, акционер первой в мире Ниагарской ГЭС и медных заводов, отказался от дальнейшего финансирования. Вдобавок истекло большинство патентов Теслы, а значит — остановилась выплата гонораров. Серьёзное сокращение бюджета остановило строительство башни Ворденклиф. До 1917 года башню не использовали. Опасаясь, что она станет маяком для германских кораблей, правительство США приняло решение о демонтаже башни. Из-за высокого качества строительства это удалось сделать только с помощью взрыва.
Данных о том, чем занимался Тесла после строительства башни, практически нет. За несколько лет до смерти он вышел покормить голубей и столкнулся с такси. Травма спины спровоцировала воспаление лёгких, и в 1943 году Тесла скончался.
Список открытий и изобретений Николы Теслы и где они применяются сейчас
За всю жизнь Никола Тесла получил более 700 патентов. Многие его разработки стали электрической догмой, но открытия и нововведения не ограничивались одной сферой. Например, Тесла придумал радио раньше Маркони и Попова и работал с рентгеновскими лучами до их официального открытия Вильгельмом Рентгеном.
⚡ Многофазный электрический ток
Что такое многофазный электрический ток
Если у нас есть несколько переменных токов, максимумы и минимумы которых смещены относительно друг друга, то мы получим многофазный электрический ток.
Многофазный электрический ток используют в асинхронных двигателях, а также в линиях электропередач для более экономичной передачи электроэнергии.
📶 Радиосвязь и мачтовая антенна для радиосвязи
Как работает антенна
Антенна может работать в двух режимах: либо как передатчик, либо как приёмник сигнала. Когда антенна работает в режиме приёма, электромагнитное поле падающей на антенну волны наводит токи на токопроводящих элементах конструкции антенны, создавая разность потенциалов, которую радиоприёмник преобразует в выходной сигнал, и мы можем услышать музыку. Если мы хотим передать сигнал, то происходит всё ровно наоборот: радиопередатчик образует переменный электрический ток, и вокруг антенны создаётся переменное магнитное поле, которое порождает вихревое электрическое поле и в результате образуется электромагнитная волна, которая уносится в пространство. [Картинка №5 устройство антенны]
Сегодня антенны используют повсеместно: от радиоприёмников и автомобилей до Wi-Fi-роутеров, телефонов и 5G-вышек.
🌩️ Трансформатор Тесла
Что такое трансформатор
Трансформатор — электромагнитное устройство, которое изменяет напряжение электрической системы, сохраняя частоту, за счёт электромагнитной индукции.
Катушка Теслы — это тоже трансформатор, но резонансный, способный производить высокое напряжение высокой частоты.
К сожалению, сейчас трансформатор Тесла используют только в качестве декоративных и развлекательных целей, так как выходное напряжение может достигать миллионов вольт, создавая многометровые молнии.
💡 Люминесцентные лампы
Такие лампы очень экономичные, они быстро заменили лампы накаливания. Но прогресс не стоит на месте, и сейчас мы всё чаще используем светодиодное освещение.
Прим. ред. Continental Edison Company — одна из крупнейших энергетических компаний в США с 1823 года.
Прим. ред. Edison Machine Works. Бывшая компания по производству динамо, больших электродвигателей и других компонентов электрического освещения, принадлежащая Томасу Эдисону
Не путать с Continental Edison Company.
Прим. ред. Серия событий, связанных с внедрением двух конкурирующих систем освещения. Первая система освещения улиц основывалась на дуговых лампах, работающих на переменном токе высокого напряжения (Н. Тесла); а вторая заключалась в крупномасштабном производстве компанией Томаса Эдисона ламп накаливания низкого напряжения на постоянном токе, предназначенных для применения в закрытых помещениях. Кстати, в 2017-м году вышел фильм «Война токов» с Бенедиктом Камбербэтчем в роли Томаса Эдисона и Николасом Холтом в роли Никола Тесла. Фильм как раз про эти события!
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter
Читайте также: