Система линейных уравнений имеет единственное решение если лямбда не равно
Найдите общее решение линейной системы в зависимости от значения параметра . При каких значениях система допускает решение с помощью обратной матрицы?
тогда систему можно записать в виде .
Приравнивая к нулю, найдем, что при и .
Если и , то матрица имеет обратную
и решение имеет вид .
Если аккуратно перемножить и упростить, получим .
Случаи и рассматриваются отдельно. Нужно просто подставить и решить как обычную систему линейных уравнений с числовыми коэффициентами без параметров, например, методом гаусса.
Можно не использовать обратную матрицу, а применить метод редукции гаусса к расширенной матрице, учитывая, что и ,
, .
Первая матрица называется Матрицей системы, вторая - Расширенной или Присойдиненной матрицей системы, третья - Столбцом свободных членов.
Система линейных уравнений называется Системой ступенчатого вида, если расширенная матрица системы есть матрица ступенчатого вида. Неизвестные с коэффициентами неравными нулю, которые стоят первыми в уравнениях системы ступенчатого вида называются Главными неизвестными, а остальные неизвестные называются Свободными.
Линейное уравнение, в котором все коэффициенты равны нулю, а свободный член не равен нулю, т. е. уравнение вида:
,
Не имеет решений. Действительно, если - решение этого уравнения, то получим противоречие с условием. Такое уравнение называем Противоречивым.
Пусть не все уравнения системы (1) нулевые. Тогда и расширенная матрица системы (1) ненулевая. По теореме 2 ее можно конечным числом элементарных преобразований и преобразований выбрасывания нулевой строки можно привести к матрице ступенчатого вида. Полученной матрице соответствует система линейных уравнений ступенчатого вида. Этим преобразованиям расширенной матрицы системы (1) соответствуют такие же преобразования системы линейных уравнений (1). По теореме 1 они переводят систему (1) в равносильную систему линейных уравнений, которая будет являются системой ступенчатого вида.
Таким образом мы доказали первую часть следующей теоремы.
Теорема 3. Любую систему линейных уравнений, содержащую ненулевое уравнение конечным числом элементарных преобразований и преобразований вычеркивания нулевого уравнения можно привести к равносильной ей системе ступенчатого вида. При этом возможны следующие три случая.
1. Если в полученной системе линейных уравнений ступенчатого вида есть противоречивое уравнение, то данная система не имеет решений.
2. Если в полученной системе линейных уравнений ступенчатого вида нет противоречивого уравнения и число уравнений в полученной системе равно числу неизвестных, то данная система имеет единственное решение.
3. Если в полученной системе линейных уравнений ступенчатого вида нет противоречивого уравнения и число уравнений в полученной системе меньше числа неизвестных, то данная система имеет бесконечно много решение.
Доказательство. Пусть дана система (1), содержащая ненулевое уравнение. По выше доказанному, она конечным числом элементарных преобразований она может быть преобразована к равносильной ей системе уравнений ступенчатого вида. Возможны случаи.
В полученной системе ступенчатого вида есть противоречивое уравнение. Тогда ни один набор чисел Не удовлетворяет системе, и система (1) не имеет решений.
В полученной системе ступенчатого вида нет противоречивого уравнения. Тогда в каждом из уравнений системы ступенчатого вида содержится главное неизвестное. Отсюда получаем, что число главных неизвестных, а тем более число всех неизвестных, не менее числа уравнений в системе ступенчатого вида. Тогда возможны под случаи:
В системе ступенчатого вида число уравнений равно числу неизвестных, т. е. система имеет вид:
(12)
Где Все неизвестные в системе являются главными. Из последнего уравнения находим единственное значение для неизвестного : . Подставляя найденное значение в предпоследнее уравнение, находим для неизвестного единственное значение и т. д. Наконец из первого уравнения по найденным значениям неизвестных из первого уравнения находим единственное значение неизвестного . Таким образом, система (12), а поэтому и система (1) имеет единственное решение.
В системе ступенчатого вида число уравнений меньше числа неизвестных. В этом случае матрица полученной системы имеет вид (11), а
Систему можно записать в виде:
(13)
Где В этой системе R главных неизвестных , все остальные Свободные (в системе они обзначены точками. Возьмем для свободных неизвестных произвольные значения. Тогда значения главных неизвестных найдутся однозначно из системы (13). Так как главные неизвестные можно выбрать бесконечным числом способов, то получим, что система (13), а поэтому и система (1) имеет бесконечно много решений.
Следствие. Если в системе однородных уравнений число неизвестных больше числа уравнений, то система имеет бесконечно много решений.
Действительно, система однородных уравнений всегда имеет нулевое решение , и при приведении ее к ступенчатому виду всегда получим систему, в которой число неизвестных больше числа уравнений.
Метод исследования и решения систем линейных уравнений, изложенный в доказательстве теорем 3 называется методом Гаусса.
Пример 1. Решить систему
Составим расширенную матрицу системы и приведем ее к ступенчатому виду:
.
Составим по полученной матрице ступенчатого вида систему линейных уравнений ступенчатого вида:
В полученной системе число уравнений равно числу неизвестных и полученная система имеет единственное решение, которое двигаясь вверх последовательно находим:
Решение системы .
Пример 2. Решить систему
Составим расширенную матрицу системы и приведем ее к ступенчатому виду:
Соответствующая система имеет противоречивое уравнение. Поэтому данная система не имеет решений.
Пример 3. Решить систему
Составим расширенную матрицу системы и приведем ее к ступенчатому виду:
Составим систему ступенчатого вида:
Пусть свободная неизвестная . Тогда находим
С помощью данной математической программы вы можете решить и исследовать систему линейных алгебраических уравнений (СЛАУ).
Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
- в виде десятичных дробей,
- в виде обыкновенных дробей,
- в виде периодических десятичных дробей.
Ввод дробного числа в виде десятичной дроби.
При вводе десятичной дроби, целую часть от дробной части можно отделять точкой или запятой :
Ввод: -2.34
Результат: \( -234 \)
Ввод: -1,15
Результат: \( -115 \)
Ввод дробного числа в виде обыкновенной дроби.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: $$ -\frac $$
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 5&8/3
Результат: $$ 5\frac $$
Помните, что на ноль делить нельзя!
Ввод дробного числа в виде периодической десятичной дроби.
В периодических десятичных дробях период заключается в скобки.
Ввод: 0,(72)
Результат: $$ \frac $$
RND CFracNum Fill RND int Fill Start MathJax
Сюда ввести строку с GET параметрами :
Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.
Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек.
Системы линейных алгебраических уравнений
Основные определения
Система \(m\) линейных алгебраических уравнений с \(n\) неизвестными (сокращенно СЛАУ) представляет собой систему вида
\( \left\< \begin a_x_1 + a_x_2 + \cdots + a_x_n = b_1 \\ a_x_1 + a_x_2 + \cdots + a_x_n = b_2 \\ \cdots \\ a_x_1 + a_x_2 + \cdots + a_x_n = b_m \end \right. \tag \)
Уравнения системы называют алгебраическими потому, что левая часть каждого из них есть многочлен от \(n\) переменных \( x_1 , \ldots x_n \), а линейными потому, что эти многочлены имеют первую степень.
Числа \(a_ \in \mathbb \) называют коэффициентами СЛАУ. Их нумеруют двумя индексами: номером уравнения \(i\) и номером неизвестного \(j\). Действительные числа \( b_1 , \ldots b_m \) называют свободными членами уравнений.
СЛАУ называют однородной, если \( b_1 = b_2 = \ldots = b_m = 0 \). Иначе её называют неоднородной.
Решением СЛАУ, да и вообще всякой системы уравнений, называют такой набор значений неизвестных \( x_1^\circ, \ldots , x_n^\circ \), при подстановке которых каждое уравнение системы превращается в тождество. Любое конкретное решение СЛАУ также называют её частным решением.
Решить СЛАУ — значит решить две задачи:
— выяснить, имеет ли СЛАУ решения;
— найти все решения, если они существуют.
СЛАУ называют совместной, если она имеет какие-либо решения. В противном случае её называют несовместной. Однородная СЛАУ всегда совместна, поскольку нулевой набор значений её неизвестных всегда является решением.
Если СЛАУ (1) имеет решение, и притом единственное, то её называют определенной, а если решение неединственное — то неопределенной. При \(m=n\), т.е. когда количество уравнений совпадает с количеством неизвестных, СЛАУ называют квадратной.
Формы записи СЛАУ
Кроме координатной формы (1) записи СЛАУ часто используют и другие её представления.
Рассматривая коэффициенты \(a_\) СЛАУ при одном неизвестном \(x_j\) как элементы столбца, а \(x_j\) как коэффициент, на который умножается столбец, из (1) получаем новую форму записи СЛАУ:
\( \begin a_ \\ a_ \\ \vdots \\ a_ \end x_1 + \begin a_ \\ a_ \\ \vdots \\ a_ \end x_2 + \ldots + \begin a_ \\ a_ \\ \vdots \\ a_ \end x_n = \begin b_1 \\ b_2 \\ \vdots \\ b_m \end \)
или, обозначая столбцы соответственно \( a_1 , \ldots , a_n , b \),
\( x_1 a_1 + x_2 a_2 + \ldots + x_n a_n = b \tag \)
Таким образом, решение СЛАУ (1) можно трактовать как представление столбца \(b\) в виде линейной комбинации столбцов \( a_1, \ldots, a_n \). Соотношение (2) называют векторной записью СЛАУ.
Поскольку \(A \;,\; X\) и \(B\) являются матрицами, то запись СЛАУ (1) в виде \(AX=B\) называют матричной. Если \(B=0\), то СЛАУ является однородной и в матричной записи имеет вид \(AX=0\).
Приведенные рассуждения показывают, что задачи :
а) решения СЛАУ (1)
б) представления столбца в виде линейной комбинации данных столбцов
в) решения матричных уравнений вида \(AX=B\)
являются просто различной формой записи одной и той же задачи.
Критерий совместности СЛАУ
"Триединство" форм записи СЛАУ позволяет легко получить критерий совместности СЛАУ. Напомним, что содержательный смысл это понятие имеет для неоднородных СЛАУ (однородные СЛАУ всегда совместны).
Матрицу
\( A = \begin a_ & a_ & \cdots & a_ \\ a_ & a_ & \cdots & a_ \\ \vdots & \vdots & \ddots & \vdots \\ a_ & a_ & \cdots & a_ \end \)
называют матрицей (коэффициентов) СЛАУ (1), а матрицу
\( (A|B) = \left( \begin
расширенной матрицей СЛАУ (1). Расширенная матрица полностью характеризует СЛАУ. Это означает, что по этой матрице однозначно (если сохранить обозначения для неизвестных) восстанавливается сама СЛАУ.
Теорема Кронекера-Капелли. Для совместности СЛАУ \(AX=B\) необходимо и достаточно, чтобы ранг её матрицы \(A\) был равен рангу её расширенной матрицы \( (A|B) \).
Формулы Крамера
Теорема. СЛАУ с квадратной невырожденной матрицей имеет решение, и притом единственное, которое определяется по формулам Крамера :
$$ x_i = \frac <|A|>\;,\quad i=\overline \tag $$
где \(\Delta_i\) — определитель матрицы, получающейся из матрицы \(A\) заменой \(i\)-го столбца на столбец свободных членов.
Следствие. Однородная СЛАУ с квадратной невырожденной матрицей имеет единственное решение — нулевое.
Если матрица СЛАУ не является квадратной невырожденной, то формулы Крамера не работают и приходится использовать другие методы нахождения решений.
Однородные системы
Следующая теорема описывает важнейшее свойство множества решений однородной системы \(m\) линейных алгебраических уравнений с \(n\) неизвестными.
Теорема. Если столбцы \( X^, X^, \ldots , X^ \) — решения однородной СЛАУ \(AX=0\), то любая их линейная комбинация также является решением этой системы.
Следствие. Если однородная СЛАУ имеет ненулевое решение, то она имеет бесконечно много решений.
Естественно попытаться найти такие решения \( X^, \ldots , X^ \) системы \(AX=0\), чтобы любое другое решение этой системы представлялось в виде их линейной комбинации и притом единственным образом. Оказывается, что это всегда возможно и приводит к следующему определению.
Определение. Любой набор из \(k=n-r\) линейно независимых столбцов, являющихся решениями однородной СЛАУ \(AX=0\), где \(n\) — количество неизвестных в системе, а \(r\) — ранг её матрицы \(A\), называют фундаментальной системой решений этой однородной СЛАУ.
При исследовании и решении однородных систем линейных алгебраических уравнений будем использовать следующую терминологию. Если в матрице \(A\) однородной СЛАУ \(AX=0\) фиксировать базисный минор, то ему соответствуют базисные столбцы и, следовательно, набор неизвестных, отвечающих этим столбцам. Указанные неизвестные называют базисными, или зависимыми, а остальные неизвестные — свободными, или независимыми.
Теорема. Пусть дана однородная СЛАУ \(AX=0\) с \(n\) неизвестными и \( \textA = r \). Тогда существует набор из \(k=n-r\) решений \( X^, \ldots , X^ \) этой СЛАУ, образующих фундаментальную систему решений.
Если в фундаментальной системе решений все значения независимых неизвестных равны нулю, кроме одного, которое равно единице, то такую систему решений называют фундаментальной нормальной системой решений.
Следствие. С помощью нормальной фундаментальной системы решений однородной СЛАУ множество всех решений можно описать формулой :
$$ X = c_1X^ + \ldots + c_kX^ $$
где постоянные \( c_i \;, \quad i=\overline \), принимают произвольные значения.
Следствие. Для существования ненулевого решения у однородной квадратной СЛАУ необходимо и достаточно, чтобы её матрица была вырождена.
Неоднородные системы
Рассмотрим произвольную СЛАУ \(AX=B\). Заменив столбец \(B\) свободных членов нулевым, получим однородную СЛАУ \(AX=0\), соответствующую неоднородной СЛАУ \(AX=B\). Справедливо следующее утверждение о структуре произвольного решения неоднородной СЛАУ.
Теорема. Пусть столбец \(X^\circ\) — некоторое решение СЛАУ \(AX=B\). Произвольный столбец \(X\) является решением этой СЛАУ тогда и только тогда, когда он имеет представление \(X = X^\circ + Y \), где \(Y\) — решение соответствующей однородной СЛАУ \(AY=0\).
Следствие. Пусть \(X'\) и \(X''\) — решения неоднородной системы \(AX=B\). Тогда их разность \( Y = X' - X'' \) является решением соответствующей однородной системы \(AY=0\).
Эта теорема сводит проблему решения СЛАУ к случаю однородной системы: чтобы описать все решения неоднородной СЛАУ, достаточно энать одно её решение (частное решение) и все решения соответствующей однородной СЛАУ.
Чтобы решить неоднородную систему, надо, во-первых, убедиться, что она совместна (например, по теореме Кронекера-Капелли), а во-вторых, найти частное решение \(X^\circ\) этой системы, чтобы свести её к однородной системе.
Теорема о структуре общего решения СЛАУ. Пусть \(X^\circ\) — частное решение СЛАУ \(AX=B\) и известна фундаментальная система решений \( X^, \ldots , X^ \) соответствующей однородной системы \(AX=0\). Тогда любое решение СЛАУ \(AX=B\) можно представить в виде $$ X = X^\circ + c_1 X^ + c_2 X^ + \ldots + c_k X^ $$
где \( c_i \in \mathbb \;, \quad i=\overline \).
Эту формулу называют общим решением СЛАУ.
Здесь а ij и b i (i = ; j = ) - заданные, а x j - неизвестные действительные числа. Используя понятие произведения матриц, можно переписать систему в виде:
à =
образованная путем приписывания справа к матрице A столбца свободных членов, называется расширенной матрицей системы.
Для множества М решений системы имеются три возможности:
Системы решаются одним из следующих способов:
Метод Гаусса
имеющую m строк и n столбцов. Ее называют матрица размером m на n. А(mхn). Выделим в этой матрице произвольные к строк и к столбцов. Они образуют квадратную матрицу B(kхk).
Минором К-ого порядка матрицы А называется определитель квадратной матрицы, получающейся из данной матрицы выделением произвольных к строк и к столбцов.
Сами элементы матрицы можно рассматривать как миноры первого порядка. Какие-то из миноров равны нулю, какие-то нет. Рангом матрицы называется наибольший из порядков ее миноров, отличных от нуля. Если ранг А обозначаемый r (A) равен r, то это означает, что в А имеется хотя бы один отличный от нуля минор порядка r, но всякий минор, порядка больше чем r, равен нулю.
Итак, процесс вычислений миноров прекращаем, поскольку миноров 4 порядка, не равных нулю нет, а минор 3-го порядка найден. Значит r(A)=3.
На втором шаге исключения мы не трогаем первое уравнение. Другие два уравнения содержат два неизвестных х 2 и х 3 и к ним можно применить ту же процедуру исключения. Для этого к третьему уравнению прибавляем второе, умноженное на 3.
Далее наши действия очевидны. Из третьего уравнения х 3 =-1, подставляя это значение во второе уравнение, получаем х 2 =-3 и наконец, из первого уравнения получаем х 1 =2. Этот простой процесс называется простой подстановкой. Таким образом, процесс решения системы линейных алгебраических уравнений по методу Гаусса состоит из двух этапов.
Без ограничения общности можно считать, что в нашей системе ведущий элемент a 11 0 первого шага (иначе просто переставим уравнение). На первом шаге мы просто исключим х 1 из всех уравнений, начиная со второго, для чего из второго уравнения почленно вычтем первое, умноженное на а 21 /а 11 , из третьего почленно вычтем первое, помноженное на а 31 /а 11 и т.д.
Тогда система заменится эквивалентной системой:
Коэффициенты при неизвестных и свободные члены в последних m-1 уравнениях системы, определяются формулами:
Таким образом, на первом шаге уничтожаются все коэффициенты, лежащие под первым ведущим элементом a 11 0.
Продолжая этот процесс и дальше, мы, наконец, на (m-1) шаге приведем исходную систему к треугольной системе.
Матрица этой системы имеет вид:
На этом прямой ход метода Гаусса заканчивается. Второй этап – обратный ход, заключается в решении треугольной системы. Из последнего уравнения находим x m. По найденному x m из (m-1) уравнения находим x m-1 . Затем по x m-1 и x m из (m-2) уравнения находим x m-2 . Процесс продолжаем, пока не найдем x 1 из первого уравнения.
Такая модификация метода называется методом Жордана-Гауcса.
Решение систем линейных алгебраических уравнений методом Жордана – Гаусса
1 шаг : а) первую строку не меняем б) из второй вычитаем первую, умноженную на 2 в) третью не меняем, т.к. там неизвестное х 1 и так отсутствует.
Формулы Крамера
Метод Крамера состоит в том, что мы последовательно находим главный определитель системы (5.3), т.е. определитель матрицы А.
и n вспомогательных определителей D i (i= ), которые получаются из определителя D заменой i-го столбца столбцом свободных членов.
D × x i = D i ( i = ), (5.4).
Из (5.4) следует правило Крамера, которое дает исчерпывающий ответ на вопрос о совместности системы (5.3): если главный определитель системы отличен от нуля, то система имеет единственное решение, определяемое по формулам:
Если главный определитель системы D и все вспомогательные определители D i = 0 (i= ), то система имеет бесчисленное множество решений. Если главный определитель системы D = 0, а хотя бы один вспомогательный определитель отличен от нуля, то система несовместна.
Решение. Главный определитель этой системы:
значит, система имеет единственное решение. Вычислим вспомогательные определители D i ( i = ), получающиеся из определителя D путем замены в нем столбца, состоящего из коэффициентов при x i, столбцом из свободных членов:
Читайте также: