Опишите график зависимости полезной мощности от тока стартера
Узнай первым о выходе нового полезного контента
© 2010 - 2021 Все права защищены. Любое копирование материала с нашего сайта строго запрещено без предварительного согласия со стороны администрации.
© 2010 - 2021 Все права защищены. Любое копирование материала с нашего сайта строго запрещено без предварительного согласия со стороны администрации.
Электромеханическими характеристиками называется зависимость основных параметров стартерного электродвигателя: напряжения, частоты вращения, момента, КПД, мощности, от тока стартера. Удобство использования электромеханических характеристик для анализа работы системы электростартерного пуска остью совмещать их с вольт-амперными характеристиками аккумуляторных батарей.
Принципиальная электрическая схема включения стартера представлена на рис.
33. Выходные характеристики системы электростартерного пуска двс.
34. Классическая батарейная система зажигания.
Принципиальная схема СЗ состоит:
- источник тока – АКБ; катушки зажигания (индукционной катушки), которая преобразует токи низкого напряжения в токи высокого напряжения. Между первичной и вторичной обмоткой существует автотрансформаторная связь;
- прерывателя, содержащего рычажок с подушечкой из текстолита, поворачивающийся около оси, контакты прерывателя, кулачок, имеющий число граней, равное числу цилиндров. Неподвижный контакт прерывателя присоединён к “массе”; подвижной контакт укреплён на конце рычажка. Если подушечка не касается кулачка, контакты замкнуты под действием пружины. Когда подушечка находит на грань кулачка, контакты размыкаются. Прерыватель управляет размыканием и замыканием контактов и моментом подачи искры;
- конденсатора первичной цепи (С1), подключённого параллельно контактам, который является составным составным элементом колебательного контура в первичной цепи после размыкания контактов;
- распределителя, включающего в себя бегунок, крышку, на которой расположены неподвижные боковые электроды и неподвижный центральный электрод, который подключается через высоковольтный провод к катушке зажигания. Боковые электроды через высоковольтные провода соединяются с соответствующими свечами зажигания. Высокое напряжение к бегунку подаётся через центральный электрод с помощью скользящего угольного контакта. На бегунке имеется электрод, который отделён воздушным зазором от боковых электродов. Бегунок распределителя и кулачок прерывателя находятся на одном валу, который приводится во вращение зубчатой передачей от распределительного вала двигателя с частотой, вдвое меньшей частоты вращения коленчатого вала.
- добавочного резистора (Rдоб), который уменьшает тепловые потери в катушке зажигания, даёт возможность усилить зажигание. (При пуске ДВС Rдоб шунтируется выключателем одновременно с выключением стартера.) Добавочный резистор изготовляют из нихрома или константана и наматывают на керамический изолятор.
35. Условия работы свечей зажигания. Маркировка.
Тепловые нагрузки. Температура газовой среды в камере сгорания двигателя колеблется от 70С (температура свежего заряда смеси) до 2000…2700С (максимальная температура цикла), а наружная часть свечи, находящаяся в подкапотном пространстве, омывается встречным потоком воздуха. В определённых случаях свеча может работать при температуре окружающей среды до -60С (в северных районах). Из-за неравномерного нагрева свечи возникают тепловые деформации и напряжения, которые усугубляются тем, что материалы её деталей имеют различные коэффициенты линейного расширения (металл, керамика).
Механические нагрузки. Давление в цилиндре двигателя достигает 5…6 Мпа. На поверхность свечи действует усилие, пропорциональное её площади (0,5…1,2 кН). Кроме того, свеча подвергается вибрационным нагрузкам от работающего ДВС. В процессе сборки изолятор свечи при завальцовке в корпусе и термоосадке подвергается усилию сжатия (25…30 кН). При ввёртывании свечи в головку цилиндра к её корпусу прилагается крутящий момент 40…60 Нм. В процессе эксплуатации этот показатель значительно увеличивается.
Электрические и химические нагрузки. Свеча находится под электрическим напряжением, приложенным к её электродам, равным пробивному напряжению искрового промежутка (20 кВ). Рабочая часть электродов подвергается воздействию электрической энергии в процессе искрообразования. Износ электродов дополнительно увеличивается из-за того, что в продуктах сгорания находятся вещества, которые вызывают их хим. коррозию.
Шунтирование свечи. Неполное сгорание топливной смеси ведёт к отложению токопроводящего нагара на поверхности теплового конуса, электродах и стенках камеры свечи. При этом напряжение, развиваемое во вторичной цепи СЗ, уменьшается и может оказаться равным или меньшим пробивного напряжения (нарушение искрообразования или полное его прекращение).
Тепловая характеристика. Тепло, подведенное к свече, отводится отводится от неё через различные элементы её конструкции (корпус,изолятор, центральный электрод) и поступающую в камеру сгорания горючую смесь. Доля теплоты, отводимая от свечи рабочей смесью, составляет 20%. Так как диапазон изменения температуры свечи для всех свечей практически одинаков, а тепловые условия работы её на различных двигателях существенно отличаются, свечи изготавливают с различной тепловой характеристикой (калильным числом). Критерием для оценки калильного числа служит отвлечённый показатель, пропорциональный среднему индикаторному давлению и соответствующий порогу калильного зажигания. ( Ряд калильных чисел: 8,11,14,17,20,23,26).
Нормальная работа свечи происходит при температуре теплового конуса изолятора в пределах от 400…500 до 850…900С. Нагар на конусе исчезает при нагреве его до температуры 400…500С. Эта температура называется температурой самоочищения свечи. Если температура деталей свечи превысит 850…900С может возникнуть преждевременное воспламенение смеси (калильное зажигание) во время процесса сжатия еще до момента появления искры.
Маркировка свечей содержит:
- обозначение резьбы на корпусе (А – резьба М141,25 или М – резьба М181,5);
- обозначение длины резьбовой части корпуса (Н – 11 мм, Д – 19 мм); длину резьбовой части корпуса (12 мм) не обозначают;
- обозначение выступания теплового конуса изолятора за торец корпуса – В; отсутствие выступания не обозначают;
- обозначение герметизации по соединению изолятор – центральный электрод термоцементом – Т; герметизацию иным герметиком не обозначают.
Пусковым током стартера автомобиля называется максимальное значение силы тока, который потребляется им во время запуска двигателя. Измеряется в амперах и, в зависимости от рассмотренных в статье факторов, может варьироваться в диапазоне 100-500 А. От чего зависит этот показатель, на что он влияет, как его правильно измерить и уменьшить – простыми и понятными словами рассказано в данном материале.
Базовые понятия
Для начала рассмотрим несколько базовых понятий, чтобы лучше понимать, что такое пусковой ток автомобильного стартера, и не путать эту величину с другими характеристиками.
Автомобильный стартер является ничем иным, как электродвигателем постоянного тока. Это означает, что он выполняет свою работу (крутит коленвал двигателя), потребляя электрическую энергию, накопленную в аккумуляторной батарее. Эта энергия характеризуется несколькими величинами – напряжением, силой тока и мощностью.
Напряжение, при котором работает нагруженный стартер легкового автомобиля, находится в диапазоне примерно 11-13 В. Что значит нагруженный? Если стартер снять с двигателя и подключить к источнику тока без какой-либо нагрузки, то он будет работать и при гораздо меньшем напряжении. Однако будучи установленным на автомобиле, при напряжении менее 11 В он, как правило, не работает. Это хорошо знакомо тем автолюбителям, у которых была изношенная или полностью разряженная АКБ.
Сила тока, который потребляется нагруженным стартером легкового автомобиля, варьируется в диапазоне 100-500 А. Здесь, как и в случае с напряжением, большую роль играет нагрузка. Если стартер подключить к источнику питания отдельно от двигателя, то тока он потреблять будет гораздо меньше. Из этого следует, что чем большая нагрузка на стартер, тем больше тока он будет потреблять.
Мощностью стартера называется величина, которая зависит от напряжения, при котором он работает, и силы тока, который им потребляется в конкретный момент времени. Так, например, если стартер вашего автомобиля при напряжении 12 В потребляет ток силой 150 А, то его мощность в данный момент составляет 12 × 150 = 1800 Вт.
Из этого всего можно вывести следующее, важное для автомобилистов, понятие. Что происходит, когда АКБ изношена или слабо заряжена? А происходит то, что при работе стартера напряжение на ней просаживается, например, до 10,5 В. Это означает, что, если стартер потребляет все те же 150 А, то его мощность при таких условиях уже не 1,8 кВт, а всего лишь 1,5 кВт. Соответственно, он крутит коленвал вяло, либо ему вообще не хватает мощности, чтобы сдвинуть его с места.
Кроме того, чем большая просадка напряжения происходит на клеммах АКБ, тем меньший пусковой ток она способна выдавать. Отсюда следует, что на наш стартер идет уже не 150 А, а вдвое-втрое меньше. Это приводит к резкому уменьшению мощности, которой оказывается недостаточно, чтобы провернуть коленчатый вал двигателя.
Для некоторых автолюбителей будет интересной еще одна характеристика стартера. Она показывает количество энергии, которое он израсходовал, пока запускал двигатель. Измерить ее можно в А*ч (ампер-часах), а как мы помним, именно в этих единицах указывается емкость АКБ. Это означает, что по пусковому току и времени работы стартера мы можем узнать, на сколько сильно он разрядил нашу батарею.
Но здесь следует понимать, что мы рассмотрели упрощенные условия. Так, при больших токах потребления АКБ садится немного больше, чем это можно рассчитать на бумаге. Кроме того, не всегда двигатель запускается с первого раза, и так далее. Из всего этого важно усвоить следующее. Если стартер не смог прокрутиться из-за ослабленной АКБ, то ему, скорее всего, хвалило не А*ч, как думают многие. Ему не хватило пускового тока, так как разряженная или испорченная батарея не в состоянии выдавать такие большие токи.
От чего зависит пусковой ток стартера?
На разных моделях легковых автомобилей пусковой ток стартера может значительно отличаться по своей величине. Разберем, от чего это зависит.
- Во-первых, от типа двигателя. Так, чтобы прокрутить на старте дизельный двигатель, требуется на порядок больше мощности, чем для бензинового мотора с таким же объемом. А как мы уже выяснили, чем большей мощности стартер, тем больше тока он потребляет для выполнения своей работы.
- Во-вторых, от объема двигателя. Чем он больше, тем тяжелее стартеру его запускать. Соответственно, для этого требуется больше мощности, а значит и пускового тока.
- В-третьих, пусковой ток на разных автомобилях зависит и от самого стартера – его модели, мощности и так далее. Все это подбирается производителем, исходя из первых двух факторов, а также ряда других нюансов.
Однако пусковые токи стартера могут отличаться не только на разных автомобилях, но и на абсолютно одинаковых. Более того, на одной и той же машине, например, вашей, при разных условиях пусковой ток может сильно разниться. От чего зависит его сила в этом случае?
В первую очередь, от технического состояния двигателя. Если в нем что-либо подклинивает, тяжело вращается и так далее – стартеру труднее все это сдвигать с места, а потому он будет потреблять больший пусковой ток.
Следующий фактор, влияющий на пусковые токи, это температура окружающей среды. Чем она ниже, тем гуще становится моторное масло, и тем тяжелее стартеру такой двигатель запустить.
Далее идет состояние самого стартера. Например, если в нем изношены или загрязнены втулки, выступающие в роли подшипников трения, вращаться ему тяжелее, и он будет потреблять больший ток.
Еще хуже обстоит ситуация, когда есть короткие замыкания в обмотках стартера. Здесь уже прекрасно показывает себя всем известный закон Ома. При локальных замыканиях электрическое сопротивление обмоток уменьшается, а по закону Ома (при одном и том же напряжении) это приводит к увеличению силы тока. При этом следует понимать, что мощность будет не увеличиваться, а наоборот, уменьшаться, так как используется не весь потенциал электродвигателя.
К аналогичному исходу приводят плохие контакты на клеммах, проводящих тот самый пусковой ток от АКБ к стартеру. Здесь работает все тот же закон. Чем хуже контакт, тем меньше сечение проводника на этом участке. А чем меньше сечение, тем больше электрическое сопротивление. А это значит, что и мощность стартера будет меньшей.
Итого, пусковой ток стартера зависит и от характеристик, и от технического состояния, и от сопротивлений, которые препятствуют его работе. Причем сопротивление может быть как механического характера, так и электрическим.
Зачем надо знать пусковой ток стартера?
В первую очередь для того, чтобы правильно подобрать аккумуляторную батарею, если старую пришло время заменить. Если на этот параметр не обратить внимание, погнавшись за привлекательной ценой или ампер-часами емкости, можно столкнуться с тем, что новая батарея не сможет нормально прокрутить ваш стартер, либо вообще не сдвинет его с места.
Как правило, на всех современных автомобильных аккумуляторных батареях эта характеристика указывается под видом максимального пускового тока. То есть, на первый взгляд, сложностей с выбором возникать не должно. Однако здесь есть несколько нюансов. Рассмотрим их.
Далее необходимо учитывать, что автомобиль не всегда эксплуатируется при одинаковых условиях и в идеальном техническом состоянии. Это означает, что батарею по пусковому току надо выбирать с запасом – чем больше, тем лучше.
Это что касается выбора батареи. Однако знать пусковой ток вашего стартера полезно и для других целей. В том числе, по повысившемуся энергопотреблению возможно своевременно выявить кое-какие проблемы с машиной. Если ток потребления стартера увеличился, то это может указывать на его износ, засорение, короткие замыкания в обмотках, плохой контакт и другие поломки. Устранив своевременно эти недостатки, вы уменьшите нагрузку и износ аккумуляторной батареи. Соответственно, прослужит она дольше, а двигатель будет запускаться легче даже несмотря на крепкие морозы.
Как измерить пусковой ток стартера?
В первую очередь, не повторяйте ошибку некоторых автолюбителей, которые однажды попытались измерить пусковой ток стартера при помощи мультиметра. Как они поступали. Мультиметр в режиме амперметра подключался в разрыв одной из клемм на АКБ. То есть, клемма снималась, один щуп прикладывался на батарею, второй – на отсоединенный провод. Далее запускался двигатель, но ток стартера таким способом никто не узнал.
А все потому, что мультиметры, которые есть у многих автолюбителей, не рассчитаны на измерение силы тока более 10-20 А. А стартер даже малолитражного автомобиля потребляет не менее 100 А. Соответственно, такой способ измерения всегда будет приводить к одному и тому же исходу – сгоранию мультиметра. Особенно опасны такие эксперименты с дешевыми приборами, у которых амперметр включен в систему без предохранителя.
Эта методика подходит только для измерения тока утечки АКБ, и должна выполняться исключительно при выключенном двигателе.
Для правильного измерения пускового тока стартера потребуется другой измерительный прибор, который называется токовые клещи. На таких девайсах имеются клещи, которые необходимо замкнуть вокруг провода, по которому течет ток, который мы хотим измерить. Когда работает стартер, то одинаковый ток течет что по минусовому, что по плюсовому проводах, отходящих от АКБ.
Измерения проводятся следующим образом. Аккумулятор необходимо предварительно полностью зарядить. Только так стартер сработает на полную мощность, и только так можно будет оценить потребляемый им ток. Далее на один из силовых проводов АКБ устанавливаются токовые клещи, а помощник включает стартер, поворачивая ключ зажигания. Пока стартер работает, по прибору фиксируются максимальные показатели.
Как уменьшить пусковой ток стартера?
Делать это очень полезно, в первую очередь, для АКБ. Ведь чем меньший ток будет потреблять стартер, тем она прослужит дольше. Также это значительно повысит шансы успешного запуска двигателя в морозы, да еще и при частично разряженной батарее.
Уменьшить пусковой ток стартера можно несколькими способами. Применять их желательно комплексно, и регулярно. Рассмотрим основные.
Для начала необходимо обеспечить нормальный контакт в местах соединения силовых проводов с АКБ и стартером. С контактных площадок и клемм надо удалить окислы и ржавчину, после чего надежно все закрепить на своих местах (если только стартер не будет сниматься для выполнения следующих шагов).
На пусковой ток также оказывают влияние токоведущие щетки и коллектор, к которому они прижимаются. Если на них имеется износ, сколы, царапины, трещины и другие дефекты – это замена. Коллектор необходимо очищать от графитового налета и пыли, которая забивается между его лепестками. Не используйте для этого острые металлические предметы и наждачную бумагу. Коллектор без проблем можно очистить до идеального состояния при помощи спирта и мягкой ветоши.
Для пущей уверенности можно проверить обмотки стартера на предмет коротких замыканий. Чтобы сделать это, понадобится мультиметр, включенный в режим измерения сопротивления. Эту величину можно измерить как на обмотках статора, так и на роторе. В обоих узлах сопротивление одинаковых обмоток должно быть примерно одинаковым. Если есть существенные отклонения или вообще обрыв, то такой стартер эксплуатировать нельзя. Его можно либо заменить, либо попробовать отдать на перемотку.
В завершение напомним, что состояние двигателя тоже влияет на пусковой ток стартера. Потому, если все его узлы поддерживаются в исправности и используется правильное моторное масло, максимальный пусковой ток стартера будет минимальным.
Cadillac Model 30 – первый в мире автомобиль с электрическим стартером и электрическими фарами
Более 100 лет от экспериментального прототипа до обязательного элемента каждого транспортного средства – такой путь прошел автомобильный стартер.
Основные функции
Устройство и принцип работы
Основные элементы стартера и их функции:
- электромотор приводит в движение всё устройство;
- втягивающее реле подводит бендикс к маховику коленвала, а после сцепления зубцов шестерен бендикса и коленвала замыкает контакты электромотора;
- бендикс передает момент вращения от электромотора на коленвал через маховик.
Электрическая схема подключения стартера
При повороте ключа зажигания в крайнее правое положение ток от аккумулятора начинает поступать на обмотку втягивающего реле.
Якорь втягивающего реле приводит в движение бендикс.
В крайнем выдвинутом положении бендикс входит в зацепление с маховиком, после чего замыкается контакт на электромотор.
Мотор приходит в движение, вращает бендикс, а он в свою очередь вращает коленвал через зацепление с маховиком.
Как только двигатель запускается и коленвал начинает вращаться быстрее, чем мотор стартера, бендикс отсоединяется от маховика и возвращается в исходное положение благодаря возвратной пружине. После этого можно повернуть ключ зажигания влево, и ток не будет подаваться на стартер.
Виды стартеров
Стартеры для легковых автомобилей различаются по типу конструкции.
- Безредукторный (простой) стартер имеет более простую конструкцию с бендиксом установленным непосредственно на валу якоря.
Такие стартеры применяются на маломощных бензиновых двигателях. Благодаря более простой конструкции они легче ремонтируются, быстрей срабатывают (сцепление бендикса и маховика происходит почти мгновенно), легче по весу и ниже по стоимости. Минусом этой конструкции является сравнительно небольшая мощность, из-за которой их не применяют для запуска мощных двигателей. Еще один недостаток – чувствительность к низким температурам.
- Редукторный стартер – конструкция, в которой вал якоря соединяется с бендиксом через планетарный редуктор.
Использование редуктора позволило усилить мощность и пусковой момент без увеличения размеров самого агрегата (редукторные стартеры почти в 2 раза легче, чем безредукторные), обеспечивает нормальный пуск даже при подсевшем аккумуляторе. Такая конструкция позволяет запускать мощные бензиновые и дизельные двигатели, в том числе на грузовиках и спецтехнике. Основной недостаток – наличие дополнительного узла, в котором могут возникать неисправности.
Технические характеристики
Как и любое электрооборудование автомобиля, стартер должен соответствовать остальным компонентам, с которыми он непосредственно связан. Это соответствие можно определить по техническим характеристикам, которые указывает производитель.
Напряжение питания (V) должно соответствовать номинальному напряжению аккумулятора. Для легковых автомобилей это 12V.
Мощность (кВт) – показатель максимального усилия, которое развивает стартер для прокручивания коленвала. Может составлять от 0,7 до 9 кВт.
Потребляемый ток (А) – это энергозатраты стартера. Определяется в режимах максимальной мощности, в заторможенном состоянии и на холостом ходу. Напрямую зависит от показателя тока холодной прокрутки аккумулятора.
Пусковая частота вращения (об/мин) зависит от характеристик двигателя. Запустить бензиновый мотор на порядок легче, чем дизельный. Частота вращения может составлять от 40-60 до 100-250 об/мин (для мощных дизелей).
Момент сопротивления проворачиванию (Нм) – это скорей характеристика двигателя, чем стартера. Обозначает усилие, необходимое для прокручивания коленвала. Исходя из этого показателя рассчитывается мощность и потребляемый ток стартера.
Направление вращения (влево или вправо) учитывается при выборе стартера с асимметричным креплением.
Количество зубцов шестерни бендикса (обычно от 8 до 13, чаще 9 или 10).
Передаточное отношение – зависимость между оборотами электромотора и бендикса. В безредукторных стартерах составляет 1:1, в редукторных – больше, до 1:4.
Линейные размеры, тип и количество отверстий под крепление, типы используемых клемм и разъемов и т.д.
Неисправности и их причины
Проблемы стартера возникают по разным причинам: это и механический износ деталей, от которого не застрахована ни одна техника, и человеческий фактор, и неисправности связанных со стартером элементов. При этом проблемы в стартере нарастают лавинообразно: даже маленькая неисправность быстро приводит к более серьезным. Но есть и хорошая новость: в некоторых случаях стартер можно отремонтировать, если заменить вышедшую из строя часть или ремкомплект.
Детали стартера, которые чаще всего выходят из строя
Помимо стартера, проблемы с запуском может давать аккумулятор, проводка, маховик коленвала, замок зажигания и заземление двигателя. Иногда вместо дорогостоящего ремонта достаточно просто очистить клеммы от слоя окислов, чтобы полностью устранить проблему.
Механическому износу подвержены в первую очередь втулки вала (в некоторых моделях вместо них устанавливаются подшипники). При этом начинается биение вала во время вращения, отчего быстро выходит из строя коллектор якоря, шестерня бендикса, редуктор и даже зубцы маховика.
Другие проблемы со стартером и их причины:
- Стартер никак не реагирует на поворот ключа зажигания. Причиной может быть замыкание обмотки тягового реле или заедание якоря втягивающего реле. В этом случае тяговое реле ремонтируется или заменяется. Другие причины – отсутствие тока от АКБ: разряженный аккумулятор, проблемы с клеммами и проводкой, проблемы с замком зажигания.
- Стартер работает, но коленвал не проворачивается. Причина, скорей всего, в износе шестерен бендикса, редуктора или маховика коленвала. Другая причина – неисправность обгонной муфты, которая отвечает за отсоединение бендикса от маховика после старта двигателя.
- Стартер работает медленно и коленвал проворачивает тоже медленно. Причины: износ щеток и, как следствие, плохой контакт с коллектором, подгорание или замыкание в коллекторе, замыкание в обмотках якоря или статора, обрывы обмотки. Другие причины – недостаточная мощность тока из-за недозаряженного аккумулятора или сильно окисленных клемм.
Результат износа токосъемного коллектора
- Посторонние звуки при работе стартера (скрип, скрежет) – износ шестерен.
- Стартер не отключается после запуска двигателя. Причина может быть в поломке возвратной пружины или заедании тягового реле. Другая причина – неисправность в замке зажигания.
От чего зависит пусковой ток?
Если посмотреть различных производителей, например страны Европы, США, Россия или Китай, то у всех этих батарей будет различный показатель пускового тока. Так, например если сравнить 55 Aч Китай и Европа, разница может быть на 30 – 40%! Но почему так?
Все дело в технологиях:
- Применение очищенного свинца, даже в простых кислотных АКБ приведет к быстрой зарядке и последующей разрядке, соответственно пусковые значения увеличиться.
- Большее количество пластин в таком же по габаритам корпусе.
- Большее количество электролита.
- Плюсовые пластины более пористые, что позволит больше накапливать заряда.
- Герметичные конструкции, не дают испаряться электролиту, что позволит батареи всегда держать нужный уровень, не оголяя пластины.
Конечно, можно добавить и качество сборки и порядочность производителя, все это дает большие результаты, нежели у конкурентов. Правда и стоят такие АКБ дороже.
Но на данный момент, есть и новые технологии — рекордсменами по отдачи пускового тока являются GEL и AGM аккумуляторы, у них ток отдачи может доходить до 1000 Ампер в 30 секунд, примерно в 3 – 4 раза больше, чем у обычных кислотных вариантов. Хотя у этих технологий также есть свои минусы и в первую очередь это цена.
Отчего сгорает стартер?
Зимой спрос на стартеры заметно повышается: на холоде запустить двигатель намного сложней, и у начинающих водителей (да и опытных тоже) стартеры буквально сгорают от чрезмерной нагрузки. Почему так происходит и как этого избежать?
Зима – не самое благоприятное время для автомобиля: аккумулятор разряжается быстрей, моторное масло загустевает, провернуть двигатель становится намного трудней, мотор, особенно дизельный, не запускается за секунду, как это было летом. И вся нагрузка падает на стартер и аккумулятор, которые в паре вынуждены бороться с трудностями. При запуске на стартер подается достаточно мощный ток, который в считаные секунды перегревает электрические обмотки и контакты. Если ток будет подаваться достаточно долго, от перегрева агрегат в буквальном смысле сгорает и ремонту уже не подлежит.
Вторая причина досрочной смерти стартера – присадки в дизтопливо, которые, опять-таки, используются зимой. В некоторых случаях примеси в топливе вызывают во время запуска детонацию в цилиндрах, отчего маховик коленвала делает резкий рывок, выводящий из строя стартер.
Чтобы избежать этих неприятностей, нужно помнить, что непрерывная работа стартера не должна превышать 10, максимум 15 секунд, после чего потребуется время на его охлаждение (около 0,5-1 минуты). При неисправном аккумуляторе, окисленных контактах или проблемной проводке шансы сжечь стартер возрастают в несколько раз. Зима – это то волшебное время, когда следить за состоянием всей автоэлектрики нужно особенно тщательно.
Классификация в мире
Как я уже немного затрагивал, в мире сейчас есть несколько основных классификаций величин пускового тока. Которые имеют собственные методики определения и маркировки. Для начала как маркируются:
В любом случае, если вы не нашли показателей на бортах или крышки АКБ, то вам нужно спросить продавца об этих значениях, иногда они указываются в книжках которые идут с батареей. Теперь пару сов про методику определения:
- В странах Европы охлаждают АКБ до – 18 градусов и разряжают в течение 10 секунд до 7,5Вольт.
- Немцы также охлаждают до – 18 градусов и разряжают до 9 Вольт в течение 30 секунд.
- Российская методика схожа с немецкой, у нас по ГОСТУ такие е же значения разряда при них фиксируются основные показатели.
- В США при – 18 градусах, разряжают до 7,2 Вольта, в течение 30 секунд.
Немного поясню — когда просаживается напряжение, потребление ампер растет, именно это и фиксируется (по сути, имитация пуска). Охлаждение имитирует сложные погодные условия.
Сейчас видео версия статьи, для тех кто не понял, смотрим.
На этом заканчиваю, к стати очень полезная статья — как выбрать аккумулятор, всем советую. Читайте наш АВТОБЛОГ.
(42 голосов, средний: 4,55 из 5)
Гелевый или кислотный аккумулятор. Какой лучше? Только факты + В.
Какой должен быть уровень электролита в аккумуляторе. Замеряем о.
Почему кипит аккумулятор при зарядке. Идут пузырьки в банках
Знаете ли вы, какова величина стартерного тока?
Допустим так: 20 градусов, обычный мотор 4-6 цилиндров. Начинаете крутить стартер, параллельно смотрите на величину тока, которую показывает амперметр – сколько там будет? 10-100-1000А? А что будет дальше?
1.Представим, что авто заводится с 3-4 секунды – что будет на амперметре в 0-1-2-3-4 секунду, примерно? Своими словами. Ну и логику рассуждения.
2.А что будет, если выкрутить свечи и повторить эксперимент?
Если вы имеете отношение к автомобилям, проверьте себя. На этот вопрос толком не ответит ни один студент профильной специальности – таков мой опыт.
Читайте также: