Ксенон и фтор реагируют друг с другом
Заметим также, что и советские химики внесли значительный вклад в изучение химии ксенона. В 1967 году будущий академик Валерий Алексеевич Легасов защитил диссертацию, в которой описал получение соединений благородных газов.
Взять всё да и сжать.
Типичная конструкция ячейки с алмазными наковальнями состоит из двух огранённых алмазов конической формы, обращённых друг к другу заострёнными концами. Усилие передаётся механическим сдавливанием алмазов. Между поверхностями расположен так называемый гаскет — диск, изготовленный из металлического рения. Фото: Steve Jacobsen / Northwestern University
Что ещё может покорить ксенон? Оказалось, что под давлением в 50 ГПа лёд (вода не может существовать в жидком виде при таком давлении) начинает реагировать с ксеноном, и получается вещество с очередной поражающей воображение формулой Xe4H12O12. Это уже не просто ксенон, запрессованный в пустоты льда, а настоящее соединение. Получить его удалось Кристель Санлу с коллегами из Эдинбургского университета. Кроме необычайного соединения ксенона, то есть его необычайной химии, в этой работе примечательно то, что нехватка ксенона в атмосфере таких планет, как Уран и Нептун, может быть объяснена именно образованием его соединений с водой, которой там вполне достаточно. Фантазия учёных заходит ещё дальше: они предположили, что и на Земле вполне возможен такой механизм связывания ксенона. Ведь в земной мантии есть места, где и давление подходящее, и температура 1000–1500°С, и вода имеется.
Посредничество фтора
Наконец, последний из ряда наиболее простых оксидов ксенона был получен уже практически в наше время. 22 февраля 2011 года в Университете МакМастер (Канада) Д. С. Брок и Г. Дж. Шробильген смогли получить диоксид ксенона XeO2. Занятно, что они использовали достаточно простую реакцию фторида ксенона XeF4 с водой и водным раствором серной кислоты.
Всего на сегодняшний день известно уже более 100 соединений ксенона.
Откуда на Земле ксенон и куда он делся?
Что же нам может рассказать об истории нашей планеты ксенон? Представьте себе, что зарождающаяся Земля была сильно разогретым куском магматического вещества. А теперь попробуйте ответить на простой вопрос: что будет с газами, окружающими такую разогретую массу, и с газами, растворёнными в ней? Конечно, они в значительной мере улетучатся в космическое пространство. Частично удержать их от этого может лишь земное тяготение. А значит, состав земной атмосферы обогатится тяжёлыми атомами, в то время как лёгкие атомы покинут её. Так что газообразный ксенон должен был в значительной мере исчезнуть в период зарождения Земли. Но наша планета начала остывать и по мере этого снова обогащаться газами и формировать атмосферу. При всех подобных метаморфозах йод-129, плутоний-244 и тем более уран-238 никуда из земного вещества не исчезли, а, значит, продолжили после остывания планеты пополнять атмосферу и мантию атомами ксенона. Если бы Земля остывала очень медленно, то до того, как она остыла, практически весь йод бы распался и образовавшийся ксенон улетучился бы из-за высокой температуры. Если же Земля остыла за время, соизмеримое с периодом полураспада йода-129, то значительная часть йода должна была сохраниться и продолжить продуцировать ксенон-129. При этом на остывшей Земле ксенон должен был сохраниться, что и наблюдается. Значит, наша планета остывала не более нескольких полупериодов распада йода-129.
Таблица. Сравнительное содержание некоторых благородных газов в атмосферах Земли и Марса
Атмосфера | Благородные газы (ppmv — объемные части на миллион) | |||
---|---|---|---|---|
Неон | Аргон | Криптон | Ксенон | |
Земли | 18,18 | 9340 | 1,14 | 0,087 |
Марса | 2,5 | 16 000 | 0,3 | 0,08 |
С другими небесными телами — метеоритами — всё немного проще. Они падают непосредственно на Землю, и изучать их соответственно легче. Пессимизм вызывает только тот факт, что источников ксенона на Земле и других планетах достаточно много и факторов взаимодействия ксенона с веществами, наполняющими Землю, тоже немало, что создаёт задачу с огромным количеством неизвестных и трудно поддающуюся моделированию. Однако её успешное решение помогло бы открыть немало тайн развития солнечной системы, а может, даже и жизни на Земле.
Огни от ксеноновых ламп в Цусимском проливе, используемых японскими рыбаками во время ловли кальмаров. Снимок Цусимского пролива сделан одним из членов экипажа 37-й экспедиции на Международную космическую станцию в сентябре 2013 года. Фото: earthobservatory.nasa.gov
Популярная библиотека химических элементов
Ответственный редактор академик И.В. Петрянов-Соколов
Составители В.В. Станцо, М.Б. Черненко
Могла ли быть иной история открытия химических элементов?
В силу каких причин один элемент был открыт раньше, а другой — позже?
Прежде чем приступить к поискам объективных факторов, от которых зависит очередность открытия элементов, совершенно необходимо более или менее точно зафиксировать момент каждого открытия. Но сделать это не во всех случаях просто.
Взять, к примеру, фтор. Первый его минерал, плавиковый шпат, был обнаружен еще в средние века. Первое искусственное соединение, плавиковая кислота, получено в 1670 г. Шванхардом. В 1780 г. Шееле догадался, что в плавиковой кислоте содержится новый элемент. В 1793 г. Лавуазье поместил фтор (радикал плавиковой кислоты) в таблицу простых тел. А в виде элементарного вещества фтор был выделен только в 1886 г. Муассаном. Что же принимать за момент открытия фтора?
Большинство исследователей датой открытия фтора считает 1886 г.
Однако встречаются и совсем другие толкования. Взять, к примеру, такой элемент, как диспрозий. Его первое специфическое соединение, трехокись, было обнаружено Буабодраном в том же самом 1886 г., когда Муассан выделил фтор. В элементном виде диспрозий впервые выделил Урбен в 1905 г. Казалось бы, по аналогии со фтором, именно 1905 г. должен был значиться в хронологических таблицах. Однако, как мы знаем, подавляющее большинство авторов датой открытия диспрозия считают 1886 г.
Такой же беспорядок царит в хронологии открытий многих химических элементов. Одни считаются открытыми тогда, когда были выделены в свободном виде (кобальт, хлор, калий и т. д.). Другие — когда было выделено их специфическое соединение (стронции, уран, литий и т. д.). Третьи — когда их присутствие было обнаружено каким-либо физическим или химическим методом (цезий, астат, трансураны и т. д.).
Поэтому, чтобы иметь возможность говорить об очередности открытий, надо сначала установить какой-то единый объективный критерий, более или менее пригодный для всех случаев.
Приглашение к анализу
Теперь можно искать факторы, от которых эта последовательность могла бы зависеть. Вероятно, самое простое предположение такое: установленный нами порядок открытий элементов должен зависеть от их распространенности на нашей планете — от так называемых кларков.
Однако само по себе прямое сопоставление очередности открытий элементов и последовательности их кларков как будто ничего не дает. В самом деле, наиболее распространенные на Земле элементы — кислород и кремний. Но в очереди открытий кислород занял всего лишь 26-е место, а кремний — 20-е.
И все же странно. Простая житейская логика заставляет снова и снова возвращаться мыслью к тому, что не возможно же, чтобы распространенность того или иного элемента, частота встреч с ним, пусть в составе соединений, никак не влияла на вовлечение его в сферу материальных интересов разумных жителей планеты. А значит, в конце концов и на очередность открытия.
А что если сравнить первые 15 элементов обеих очередей? Оказывается, четыре совпадения есть: четыре элемента наличествуют и в одной и в другой, хотя и занимают разные места. Один из них — углерод, другой — сера, третий — железо, четвертый — фосфор.
Прибавим еще 15 элементов и посмотрим, сколько одних, и тех же окажется теперь в обеих очередях. Углерод, сера, медь, железо, олово, цинк, фосфор, водород, калий, натрий, кальций, кремний, кобальт, никель, алюминий, магний, азот, кислород, марганец, хлор, барий.
Из 30 элементов, открытых, как мы условились считать, первыми, 21 попадает в первую тридцатку по распространенности. Может ли быть случайным такое совпадение? Похоже, что какая-то зависимость все же пробивается…
Правило больших кларков
Все особенности поведения химических элементов определяются в конечном счете периодическим законом. Не проявится ли в периодической таблице с большей ясностью, чем при простом сличении двух рядов цифр, зависимость между очередностью открытия элементов и их распространенностью в земной коре?
Проверим группу IIa. Очередь открытий: кальций, магний, барий, стронций, бериллий, радий. Последовательность кларков: кальций, магний, барий, стронций, бериллий, радий. Соответствие полное.
Группа IIIa. Ta же картина, что и в первой группе, — есть один мелкий нарушитель — галлий.
А вот с группы IVa начинается беспорядок. Все элементы, обнаруженные в древности, — углерод, олово, свинец, — влезли в таблицу без очереди.
В группе Va очередь не соблюдали известные со средних веков мышьяк, сурьма, висмут.
В группе VIIa судьбу мелких нарушителей — селена, рубидия, галлия — разделил бром.
В группе VIIIa — относительный порядок. Первым был открыт гелий; хотя в земной атмосфере его меньше, чем аргона и неона, но на Солнце, где гелий был обнаружен, его гораздо больше, чем других благородных газов. Несколько нарушает очередность неон — в принципе так же, как рубидий и подобные ему второстепенные нарушители в своих группах.
Перейдем от главных групп к побочным.
В группе 16, полностью представленной древними элементами — медью, серебром, золотом, как и следовало ожидать, полный беспорядок.
В группе 116 очередности кларков не подчиняется древняя ртуть.
Итак, очередность открытий элементов в группах периодической системы в общем соответствует распространенности элементов. Этой закономерности более или менее подчиняются 94 из ныне известных 107 элементов. Только 13 элементов составляют исключение.
Атом водорода имеет электронную формулу внешнего (и единственного) электронного уровня 1s 1 . С одной стороны, по наличию одного электрона на внешнем электронном уровне атом водорода похож на атомы щелочных металлов. Однако, ему, так же как и галогенам не хватает до заполнения внешнего электронного уровня всего одного электрона, поскольку на первом электронном уровне может располагаться не более 2-х электронов. Выходит, что водород можно поместить одновременно как в первую, так и в предпоследнюю (седьмую) группу таблицы Менделеева, что иногда и делается в различных вариантах периодической системы:
С точки зрения свойств водорода как простого вещества, он, все-таки, имеет больше общего с галогенами. Водород, также как и галогены, является неметаллом и образует аналогично им двухатомные молекулы (H2).
В обычных условиях водород представляет собой газообразное, малоактивное вещество. Невысокая активность водорода объясняется высокой прочностью связи между атомами водорода в молекуле, для разрыва которой требуется либо сильное нагревание, либо применение катализаторов, либо и то и другое одновременно.
Взаимодействие водорода с простыми веществами
с металлами
Из металлов водород реагирует только с щелочными и щелочноземельными! К щелочным металлам относятся металлы главной подгруппы I-й группы (Li, Na, K, Rb, Cs, Fr), а к щелочно-земельным — металлы главной подгруппы II-й группы, кроме бериллия и магния (Ca, Sr, Ba, Ra)
При взаимодействии с активными металлами водород проявляет окислительные свойства, т.е. понижает свою степень окисления. При этом образуются гидриды щелочных и щелочноземельных металлов, которые имеют ионное строение. Реакция протекает при нагревании:
Следует отметить, что взаимодействие с активными металлами является единственным случаем, когда молекулярный водород Н2 является окислителем.
с неметаллами
Из неметаллов водород реагирует только c углеродом, азотом, кислородом, серой, селеном и галогенами!
Под углеродом следует понимать графит или аморфный углерод, поскольку алмаз — крайне инертная аллотропная модификация углерода.
При взаимодействии с неметаллами водород может выполнять только функцию восстановителя, то есть только повышать свою степень окисления:
Взаимодействие водорода со сложными веществами
с оксидами металлов
Водород не реагирует с оксидами металлов, находящихся в ряду активности металлов до алюминия (включительно), однако, способен восстанавливать многие оксиды металлов правее алюминия при нагревании:
c оксидами неметаллов
Из оксидов неметаллов водород реагирует при нагревании с оксидами азота, галогенов и углерода. Из всех взаимодействий водорода с оксидами неметаллов особенно следует отметить его реакцию с угарным газом CO.
c кислотами
С неорганическими кислотами водород не реагирует!
Из органических кислот водород реагирует только с непредельными, а также с кислотами, содержащими функциональные группы способные к восстановлению водородом, в частности альдегидные, кето- или нитрогруппы.
c солями
В случае водных растворов солей их взаимодействие с водородом не протекает. Однако при пропускании водорода над твердыми солями некоторых металлов средней и низкой активности возможно их частичное или полное восстановление, например:
Химические свойства галогенов
Галогенами называют химические элементы VIIA группы (F, Cl, Br, I, At), а также образуемые ими простые вещества. Здесь и далее по тексту, если не сказано иное, под галогенами будут пониматься именно простые вещества.
Все галогены имеют молекулярное строение, что обусловливает низкие температуры плавления и кипения данных веществ. Молекулы галогенов двухатомны, т.е. их формулу можно записать в общем виде как Hal2.
Галоген
Физические свойства
Следует отметить такое специфическое физическое свойство йода, как его способность к сублимации или, иначе говоря, возгонке. Возгонкой, называют явление, при котором вещество, находящееся в твердом состоянии, при нагревании не плавится, а, минуя жидкую фазу, сразу же переходит в газообразное состояние.
Электронное строение внешнего энергетического уровня атома любого галогена имеет вид ns 2 np 5 , где n – номер периода таблицы Менделеева, в котором расположен галоген. Как можно заметить, до восьмиэлектронной внешней оболочки атомам галогенов не хватает всего одного электрона. Из этого логично предположить преимущественно окисляющие свойства свободных галогенов, что подтверждается и на практике. Как известно, электроотрицательность неметаллов при движении вниз по подгруппе снижается, в связи с чем активность галогенов уменьшается в ряду:
Взаимодействие галогенов с простыми веществами
Все галогены являются высокоактивными веществами и реагируют с большинством простых веществ. Однако, следует отметить, что фтор из-за своей чрезвычайно высокой реакционной способности может реагировать даже с теми простыми веществами, с которыми не могут реагировать остальные галогены. К таким простым веществам относятся кислород, углерод (алмаз), азот, платина, золото и некоторые благородные газы (ксенон и криптон). Т.е. фактически, фтор не реагирует лишь с некоторыми благородными газами.
Остальные галогены, т.е. хлор, бром и йод, также являются активными веществами, однако менее активными, чем фтор. Они реагируют практически со всеми простыми веществами, кроме кислорода, азота, углерода в виде алмаза, платины, золота и благородных газов.
Взаимодействие галогенов с неметаллами
водородом
При взаимодействии всех галогенов с водородом образуются галогеноводороды с общей формулой HHal. При этом, реакция фтора с водородом начинается самопроизвольно даже в темноте и протекает со взрывом в соответствии с уравнением:
Реакция хлора с водородом может быть инициирована интенсивным ультрафиолетовым облучением или нагреванием. Также протекает со взрывом:
Бром и йод реагируют с водородом только при нагревании и при этом, реакция с йодом является обратимой:
фосфором
Взаимодействие фтора с фосфором приводит к окислению фосфора до высшей степени окисления (+5). При этом происходит образование пентафторида фосфора:
При взаимодействии хлора и брома с фосфором возможно получение галогенидов фосфора как в степени окисления + 3, так и в степени окисления +5, что зависит от пропорций реагирующих веществ:
При этом в случае белого фосфора в атмосфере фтора, хлора или жидком броме реакция начинается самопроизвольно.
Взаимодействие же фосфора с йодом может привести к образованию только триодида фосфора из-за существенно меньшей, чем у остальных галогенов окисляющей способности:
серой
Фтор окисляет серу до высшей степени окисления +6, образуя гексафторид серы:
Хлор и бром реагируют с серой, образуя соединения, содержащие серу в крайне не свойственных ей степенях окисления +1 и +2. Данные взаимодействия являются весьма специфичными, и для сдачи ЕГЭ по химии умение записывать уравнения этих взаимодействий не обязательно. Поэтому три нижеследующих уравнения даны скорее для ознакомления:
Взаимодействие галогенов с металлами
Как уже было сказано выше, фтор способен реагировать со всеми металлами, даже такими малоактивными как платина и золото:
Остальные галогены реагируют со всеми металлами кроме платины и золота:
Реакции галогенов со сложными веществами
Реакции замещения с галогенами
Более активные галогены, т.е. химические элементы которых расположены выше в таблице Менделеева, способны вытеснять менее активные галогены из образуемых ими галогеноводородных кислот и галогенидов металлов:
Аналогичным образом, бром вытесняет серу из растворов сульфидов и сероводорода:
Хлор является более сильным окислителем и окисляет сероводород в его водном растворе не до серы, а до серной кислоты:
Взаимодействие галогенов с водой
Вода горит во фторе синим пламенем в соответствии с уравнением реакции:
Бром и хлор реагируют с водой иначе, чем фтор. Если фтор выступал в роли окислителя, то хлор и бром диспропорционируют в воде, образуя смесь кислот. При этом реакции обратимы:
Взаимодействие йода с водой протекает в настолько ничтожно малой степени, что им можно пренебречь и считать, что реакция не протекает вовсе.
Взаимодействие галогенов с растворами щелочей
Фтор при взаимодействии с водным раствором щелочи опять же выступает в роли окислителя:
Умение записывать данное уравнение не требуется для сдачи ЕГЭ. Достаточно знать факт о возможности такого взаимодействия и окислительной роли фтора в этой реакции.
В отличие от фтора, остальные галогены в растворах щелочей диспропорционируют, то есть одновременно и повышают и понижают свою степень окисления. При этом, в случае хлора и брома в зависимости от температуры возможно протекание по двум разным направлениям. В частности, на холоду реакции протекают следующим образом:
а при нагревании:
Йод реагирует с щелочами исключительно по второму варианту, т.е. с образованием йодата, т.к. гипоиодит не устойчив не только при нагревании, но также при обычной температуре и даже на холоду:
■ 7. Как меняется интенсивность окраски галогенов с возрастанием зарядов ядер? 8. Какое название имеют растворы хлора, брома и иода в воде? 9. Как меняется плотность галогенов с возрастанием зарядов ядер? (См. Ответ)
Галоген | Заряд | Агрегаторное состояние | Плотность | Цвет | Температура кипения | Температура плавления | Наилучшие растворители |
Фтор F Хлор Cl Бром Br Йод I |
Химические свойства галогенов
Ключевые слова конспекта: химические свойства галогенов, реакция галогенов с металлами, реакции с неметаллами, реакции галогенов с водой, со щелочами, с солями-галогенидами.
Раздел ОГЭ: 3.1.2. Химические свойства простых веществ-неметаллов: водорода, кислорода, галогенов, серы, азота, фосфора, углерода, кремния
1. Реакция с металлами.
Галогены реагируют практически со всеми металлами (кроме благородных металлов) с образованием галогенидов. Например, натрий горит в хлоре: 2Na + Cl2 = 2NaCl
Со фтором реакции идут очень бурно, с йодом – только при нагревании, часто требуется вода как катализатор.
Окислительная активность галогенов снижается от фтора к йоду
Это можно продемонстрировать на примере окисления железа (обратите внимание на его степень окисления в галогенидах):. В ходе реакции с бромом Вг2 может образоваться как FeBr3, так и FeBr2:
В ходе реакции с бромом Вг2 может образоваться как FeBr3, так и FeBr2:
В реакции с йодом I2 при температуре 500 °С образуется Fel2:
Фтор, хлор и бром окисляют железо глубже (до Fe3+), чем йод.
2. Реакции с неметаллами.
Окислительную способность галогенов можно сопоставить и в реакциях с неметаллами. Галогены реагируют со многими неметаллами (исключением являются благородные газы, азот N2, кислород O2).
Галогены реагируют с водородом, при этом условия проведения реакции зависят от того, с каким из галогенов проводится реакция:
Со фтором реакция может начинаться даже при t° = –250 °С, с хлором реакция идёт при сгорании водорода в хлоре или даже при комнатной t° на свету. С бромом и йодом реакция идёт при температуре 350–500 °С или при наличии катализатора платины Pt. Реакция образования йодоводорода HI обратима. Таким образом, по мере увеличения относительной молекулярной массы галогена от фтора F2 к иоду I2 условия проведения реакции должны быть более жёсткими.
Галогены реагируют с серой. Фтор взаимодействует с серой даже при температуре жидкого воздуха, окисляя её до высшей степени окисления:
Реакция серы с хлором приводит к образованию либо SCl2, либо S2Cl2:
Обратите внимание: здесь встретилась сравнительно редкая для серы степень окисления +2. С йодом сера не реагирует
Более глубокое окисление серы в реакции со фтором демонстрирует более высокую окислительную способность фтора
С йодом сера не реагирует. Более глубокое окисление серы в реакции со фтором демонстрирует более высокую окислительную способность фтора.
Галогены реагируют с фосфором. Красный и белый фосфор уже при комнатной температуре самовоспламеняется во фторе и хлоре, реагирует с жидким бромом. При этом в реакции со фтором происходит более глубокое окисление фосфора:
В реакциях фосфора с хлором и бромом могут образоваться РCl3 и РВг3, но по мере повышения температуры в результате окисления фосфора глубина окисления возрастает – образуются РCl5 и РВг5.
Фтор реагирует с графитом при температуре выше 900 °С:
Остальные галогены не реагируют с простыми веществами, образованными углеродом (алмазом, графитом).
3. Реакции с водой.
Рассмотрим реакции галогенов со сложными веществами. Галогены взаимодействуют с водой. При этом фтор окисляет кислород воды. Пары воды горят в атмосфере F2:
Хлор обратимо реагирует с водой, но при этом не происходит окисление кислорода. В этой реакции хлор сам является как окислителем, так и восстановителем (такие реакции называют реакциями диспропорционирования):
5. Реакции галогенов с солями-галогенидами.
Галогены способны вытеснять друг друга из солей-галогенидов и из галогеноводородов. Фтор F2 вытесняет все остальные галогены из галогеноводородов и галогенидов (в растворах параллельно идёт реакция окисления воды). Хлор Cl2 вытесняет бром и йод из НВг, бромидов, HI и иодидов. Бром Вг2 вытесняет йод из йодидов и йодоводорода. Йод I2 не вытесняет другие галогены:
Признаком данной реакции в растворе является изменение окраски с бесцветной на жёлтую.
- Вернуться к Списку конспектов по химии
- Найти конспект в Кодификаторе ОГЭ по химии
Физиологическое действие галогенов
Все галогены ядовиты по своему физиологическому действию. Особенно ядовит фтор: при вдыхании в небольших количествах он вызывает отек легких, в больших — разрушение легочной ткани и смерть. Хлор — также вещество очень ядовитое, хотя в несколько меньшей степени. Во время первой мировой войны он применялся как боевое отравляющее вещество, потому что он тяжелее воздуха и хорошо удерживается над поверхностью земли, особенно при безветренной погоде. Предельно допустимая концентрация свободного хлора в воздухе 0,001 мг/л. Хроническое отравление хлором вызывает изменение цвета лица, легочные и бронхиальные заболевания. При отравлениях хлором в качестве противоядия нужно применять смесь паров спирта с эфиром, а также водяных паров с примесью нашатырного спирта, причем предварительно обязательно вынести пострадавшего на свежий воздух. В небольших же количествах хлор может излечивать заболевания верхних дыхательных путей, так как губительно действует на бактерии. Благодаря дезинфицирующему действию хлор применяется для обеззараживания водопроводной воды. Пары брома вызывают удушье. Ядовит и жидкий бром, причиняющий при попадании на кожу сильные ожоги. Переливать бром из одного сосуда в другой рекомендуется в резиновых перчатках и под тягой. При попадании на кожу бром следует смывать органическим растворителем — бензолом или четыреххлористым углеродом, протирая пораженное место ватой, смоченной этими растворителями. При смывании брома водой нередко ожога избежать не удается.
Иод наименее ядовит из всех галогенов. Вдыхание паров иода при его нагревании может вызвать отравление, но работать с парообразным иодом приходится редко, например при очистке его возгонкой. Кристаллический иод руками брать не следует, так как при попадании на кожу он вызывает появление характерных желтых пятен. Все работы с галогенами следует производить в вытяжном шкафу. Вместе с тем галогены являются жизненно важными элементами. Хлор в виде поваренной соли постоянно применяется в пищу, а также входит в состав зеленого вещества растений — хлорофилла. Недостаток соединений фтора в питьевой воде вызывает разрушение зубов. Иод необходим всем живым организмам, как растительным, так и животным. Он участвует в регулировании обмена веществ. В организме человека иод сосредоточен главным образом в щитовидной железе и участвует в образовании ее гормона. Недостаток иода вызывает болезненные изменения щитовидной железы. Для предотвращения заболевания в пищу в очень небольших количествах добавляют иод, разводя несколько капель йодной настойки на стакан воды, но чаще в виде иодида натрия и иодида калия.
• Запишите в тетрадь меры техники безопасности в работе с галогенами и первой помощи при отравлениях.
Химические свойства галогенов
Общее уравнение:
Можно сказать, что F реагирует со всеми простыми субстанциями, кроме отдельных благородных газов. А так (с облучением):
Читайте также: