Допустимое содержание кислорода в составе топливного газа
Название работы: Состав горючих газов
Предметная область: Химия и фармакология
Описание: Состав горючих газов. В состав газообразного топлива входят горючие и негорючие газы. Физико-химические и теплотехнические характеристики газового топлива обусловлены различием в составе горючих компонентов и наличием в газе негорючих газообразных к.
Дата добавления: 2012-12-28
Размер файла: 32.23 KB
Работу скачали: 17 чел.
Состав горючих газов.
В состав газообразного топлива входят горючие и негорючие газы.
Физико-химические и теплотехнические характеристики газового топлива обусловлены различием в составе горючих компонентов и наличием в газе негорючих газообразных компонентов (балластов) и вредных примесей.
К горючим компонентам газообразного топлива относятся следующие вещества.
Метан СН 4 . Бесцветный нетоксичный газ без запаха и вкуса. В состав метана входит 75% углерода и 25% водорода; 1нм 3 его имеет массу 0,717кг. При атмосферном давлении и температуре 111К метан сжижается и его объём уменьшается почти в 600 раз. Сжиженный метан является перспективным топливом для многих отраслей народного хозяйства. Использование и транспортирование сжиженного природного газа в ряде случаев даёт большой экономический эффект, позволяет значительно снизить металозатраты на сооружение газопроводов. И тем самым помогает решить проблемы, связанные с резервированием газоснабжения в отдельных районах страны и созданием запасов сырья для химической промышленности.
Вследствие содержания в метане 25% водорода (по массе), имеется большое различие между высшей и низшей теплотой сгорания. Высшая теплота сгорания метана Q в составляет 39820 кДж/м 3 , 9510 ккал/м 3 и 212860 ккал/моль; низшая Q н соответственно 35880 кДж/м 3 , 8570 ккал/м 3 и 191820 ккал/моль.
Содержание метана в природных газах достигает до 98%, поэтому его свойства практически полностью определяют свойства природных газов.
Сгорание метана в воздухе протекает по уравнению:
CH 4 + 2 O 2 + 7,52 N 2 = CO 2 + 2 H 2 O + 7,52 N 2 .
В результате сгорания образуется 10,52нм 3 продуктов горения.
Метан обладает сравнительно низкой реакционной способностью. Это объясняется тем, что на разрыв четырёх связей в молекуле метана требуется большая затрата энергии. Кроме метана в горючих газах могут содержаться этан С 2 Н 2 , пропан С 3 Н 8 , бутан С 4 Н 10 .
Углеводороды метанового ряда имеют общую формулу: C n H 2 n +2 , где n углеродное число, равное 1 (для метана), 2 (для этана), 3 (для пропана).
Н С Н Н С С Н Н С С С Н
метан этан пропан
С увеличением числа атомов в молекуле тяжёлых углеводородов возрастает их плотность и теплота сгорания.
Оксид углерода СО . Бесцветный газ, без запаха и вкуса; масса 1нм 3 составляет 1,25кг.; теплота сгорания 13250 кДж/м 3 , 3016 ккал/нм 3 или 67590 ккал/моль. В высококалорийных газах, содержащих метан и другие углеводороды, увеличение процентного содержания оксида углерода понижает теплоту сгорания газа: 1нм 3 оксида углерода сгорает в теоретически необходимом количестве воздуха по уравнению:
CO + 0,5 O 2 + 1,88 N 2 = CO 2 + 1,88 N 2
и образует 2,88нм 3 продуктов горения.
Вследствие малого объёма продуктов горения оксида углерода на каждый м 3 их приходится тепла, чем на 1м 3 продуктов горения углеводородов. Поэтому продукты горения оксида углерода нагреваются до более высокой температуры, хотя теплота сгорания оксида углерода ниже, чем у углеводородов.
Оксид углерода оказывает токсическое воздействие на организм человека, так как легко вступает в соединение с гемоглобином крови. Предельно допустимая концентрация СО в воздухе помещения при использовании газа для коммунально-бытовых нужд составляет 2мг/м 3 .
Водород Н 2 . Бесцветный нетоксичный газ, без вкуса и запаха. Масса 1нм 3 равна 0,09кг. Он в 14,5 раз легче воздуха. Теплота сгорания водорода составляет: Q в 12750кДж/м 3 , 3040ккал/м 3 и 68260ккал/моль; Q н - 10790 кДж/м 3 , 2580 ккал/м 3 и 57740 ккал/моль. 1нм 3 водорода, сгорая в теоретически необходимом количестве воздуха, образует 2,88нм 3 продуктов горения. Реакция горения выражается следующей формулой:
H 2 + 0,5 O 2 + 1,88 N 2 = H 2 + 1,88 N 2
Водород отличается высокой реакционной способностью, водородно-воздушные смеси имеют широкие пределы воспламенения и весьма взрывоопасны.
В негорючую часть газообразного топлива входят азот и углекислый газ.
Азот N 2 . Двухатомный бесцветный газ без запаха и вкуса. Масса 1нм 3 азота равна 1,25 кг. Атомы азота соединены между собой в молекуле тройной связью, на разрыв этой связи расходуется 170,2тыс. ккал/моль. Теплота разрыва связи настолько велика, что взаимодействие молекулярного азота и кислорода с образованием закиси азота сопровождается затратой большого количества тепла. Азот практически не реагирует с кислородом, поэтому при расчетах процесса горения его рассматривают как инертный газ. Содержание азота в различных газах колеблется в значительных пределах.
Углекислый газ СО 2 . Бесцветный газ, тяжёлый, малореакционный при низких температурах. Имеет слегка кисловатый запах и вкус. Концентрация СО 2 в воздухе в пределах 4-5% приводит к сильному раздражению органов дыхания; 10%-ная концентрация СО 2 в воздухе вызывает сильное отравление. Масса 1нм 3 СО 2 составляет 1,98 кг. Углекислый газ тяжелее воздуха в 1,53 раз.
Углекислый газ при температуре -20 0 С и давлении 5,8МПа превращается в жидкость, которую можно перевозить в стальных баллонах. При сильном охлаждении СО 2 застывает в белую снегообразную массу. Твердый СО 2 (сухой лёд) широко используется для хранения скоропортящихся продуктов.
Кислород О 2 . Газ без запаха, цвета и вкуса. Масса 1нм 3 кислорода составляет 1,43 кг. Содержание кислорода в газе понижает его теплотворную способность и делает газ взрывоопасным. Поэтому содержание кислорода в газе не должно быть более 1% по объёму.
К вредным примесям относится сероводород.
Сероводород H 2 S . Тяжёлый запах с сильным неприятным запахом, напоминающим запах тухлых яиц. Сероводород обладает высокой токсичностью. Масса 1нм 3 сероводорода равна 1,54 кг. Сероводород является газообразной кислотой и, воздействуя на металлы, образует сульфиды. Поэтому сероводород сильно коррозирует газопроводы, особенно при одновременном содержании в газе H 2 S , H 2 O и O 2 . При сжигании газа сероводород сгорает и образует сернистый газ, вредный для здоровья. Содержание сероводорода не должно превышать 2гр. на 100м 3 газа.
Все природные газы бесцветны и в большинстве своём не имеют запаха. Поэтому в случае утечки их из газопроводов в различных помещениях и сооружениях может образоваться газовая смесь, которая остаётся незаметной.
Для того, чтобы утечки газа были своевременно обнаружены, горючие газы, направляемые в городские газопроводы, одоризируют, т.е. придают им резкий специфический запах, по которому их легко обнаружить даже при незначительных концентрациях в воздухе помещений. Наиболее часто в качестве одоранта применяют элилмеркоптан. При этом запах природных топливных газов для коммунально-бытового назначения должен ощущаться при содержании 1% в воздухе. Запах сжиженных углеводородных газов должен ощущаться при содержании их в воздухе 0,5% по объёму.
Транспортирование газа от скважины до городских потребителей.
На рисунке 1 показана схема транспортирования газа. Газ из скважин 1 поступает в сепараторы 2, где от него отделяются различные механические и жидкие примеси. Далее по промысловым газопроводам 3 газ поступает в коллекторы и промысловые газораспределительные станции 4. Здесь газ снова очищается в масляных пылеуловителях, осушается и одорируется.
После такой подготовки газ направляют в магистральный газопровод 5. Для преодоления сил трения и местных сопротивлений в газопроводе и поддержания в нём давления на заданном уровне на трассе газопровода сооружают компрессорные станции 6. На магистральном газопроводе для облегчения ремонтных работ устанавливают запорную арматуру.
Для транспортирования больших количеств газа по магистральным газопроводам используют трубы диаметром 1220 и 1420мм., повышают рабочее давление до 7,5МПа (75кгс/см 2 ), прокладывают газопроводы в две нити и более.
Режим работы магистрального газопровода предусматривает равномерную подачу газа от газовых промыслов до потребителей газа. Однако потребность в газовом топливе для многих потребителей неравномерна: летом потребность в газе уменьшается, а зимой возрастает. Для выравнивания сезонной неравномерности потребления газа строят подземные хранилища газа или подключают к газопроводу потребителей, которым в летнее время можно подавать излишки газа, например электростанции. Таких потребителей называют буферными.
На подходе к городу сооружают газораспределительные станции (ГРС), из которых газ после замера его количества и сжижения давления подаётся в распределительные сети города. Газораспределительная станция конечный участок магистрального газопровода и является как бы границей между городскими и магистральными газопроводами.
Сущность коррозийных процессов.
Разрушение металлических поверхностей под влиянием химического или электрохимического воздействия окружающей среды называется коррозией металлов.
Коррозии могут подвергаться наружные и внутренние поверхности труб. Коррозия внутренних поверхностей происходит в результате воздействия металла в присутствии влаги с такими агрессивными компонентами, как сероводород и кислород.
Очистка газа от сероводорода и кислорода практически устраняет коррозию внутренних поверхностей труб.
Наибольшую опасность представляет коррозия внешних поверхностей подземных газопроводов. В зависимости от коррозийных факторов различают почвенную коррозию и коррозию блуждающими токами. Почвенная коррозия электрохимическое разрушение стальных газопроводов, вызванное действием почвы, грунтов и грунтовых вод. Коррозия блуждающими токами электрохимическое разрушение подземных газопроводов, вызванное действием постоянного и переменного токов, источники которых электрифицированный рельсовый транспорт (магистральный, пригородный, городской и промышленный).
Почвенной коррозии подвергаются незащищённые наружные поверхности стальных труб. Скорость коррозии металла зависит от свойств грунта: влажности, температуры, электропроводности, воздухопроницаемости, наличия солей. Чем больше влажность и проницаемость воздуха, тем быстрее протекает процесс коррозии. При пониженной температуре грунта и замерзании его во влажном состоянии процесс коррозии замедляется.
Электрохимическая коррозия в почве обусловлена взаимодействием металла труб с агрессивными растворами грунта. При этом металл выполняет роль электродов, а агрессивные растворы электролитов. Вблизи участков газопровода, где происходит процесс растворения металла с выходом ионов, образуются анодные зоны, а там, где процесс растворения менее интенсивно катодные зоны.
Таким образом, на поверхности трубы образуется гальваническая пара, в которой ток по металлу трубы течёт от катодной к анодной зоне, а в электролите (грунте) от анодной к катодной. В местах выхода тока (анодная зона) будет происходить растворение металла, т.е. разрушение газопровода. В теле трубы образуются каверны и сквозные отверстия.
Для питания электрифицированного транспорта применяется постоянный ток, причём в качестве второго провода служат рельсы. Хотя рельсы хороший проводник, но часть тока, особенно в местах соединений рельс, попадает в грунт. Двигаясь в грунте, эти токи возвращаются к своим источникам по различным путям наименьшего сопротивления. Один из таких путей газопроводы, имеющие поврежденную изоляцию.
В местах повреждения изоляции блуждающие токи попадают на газопровод и выходят из него вблизи тяговой подстанции. Участки входа тока в газопровод называют катодными, а участки выхода анодными.
Анодные зоны опаснее, так как точки выходят из газопровода в виде положительных ионов, что сопровождается интенсивным выносом частичек металла и образованием сквозных отверстий. В анодной зоне происходит интенсивная коррозия газопроводов, причём эта коррозия во много раз опаснее почвенной. В крупных городах это наиболее распространенный вид коррозии.
Электрические методы защиты.
Основные методы электрической защиты электрический дренаж, катодная и проекторная защита.
Схема катодной защиты: 1-место повреждения изоляции газопровода; 2-газопровод;
3-точка присоединения дренажного кабеля; 4-дренажные кабели; 5-источник
постоянного тока; 6-заземление из старых труб.
Катодная защита. Катодной защитой (рис.2) называется способ защиты газопроводов от коррозии за счёт их катодной поляризации с помощью тока от внешнего источника. На газопровод 2 от специального источника постоянного тока 5 накладывают отрицательный потенциал. Таким образом защищаемый участок газопровода искусственно превращают в катодную зону. Анодную зону создают закопанные вокруг газопровода металлические предметы (старые трубы, рельсы), которые подключают к положительному полюсу источника постоянного тока через кабели 4. В этом случае движение тока идёт от положительного полюса источника питания по кабелю 4 на анодное заземление 6, а от него в грунт и через повреждённые участки 1 газопровода на защищаемый газопровод. От газопровода ток течет по кабелю 4 на отрицательный полюс источника питания. В результате происходит постепенное разрушение не газопровода, а вкопанных в землю старых труб и рельс.
Обычная практика контроля работы двигателя внутреннего сгорания – проверка состава выхлопных газов с помощью четырех или пятикомпонентного газоанализатора. Для проверки норм на токсичность определяют содержание в выхлопных газах окиси углерода (СО), углеводорода (СН), кислорода (О2) и двуокиси углерода (СО2). Своевременно обслуживаемый и правильно эксплуатируемый автомобиль способен удовлетворить нормы на токсичность с пробегом до 500000 километров.
Чтобы хорошо разобраться, необходимо рассмотреть каждый из определяемых компонентов.
УГЛЕВОДОРОДЫ (СН) – это компоненты несгоревшего топлива, их содержание измеряется в частях на миллион по объему (РРМ). Нормально работающий двигатель сжигает в цилиндрах практически все топливо, допустимое содержание СН должно быть менее 50 РРМ. Повышенное содержание СН может объясняться, например, большим потреблением масла через слабые уплотнительные кольца поршней. Чаще всего увеличенное содержание СН вызывается неполадками в системе зажигания. При этом следует проверить:
• Свечи.
• Высоковольтные провода.
• Крышку и ротор распределителя (если имеются).
• Синхронизацию зажигания.
• Катушки зажигания.
ОКИСЬ УГЛЕРОДА (СО) – неустойчивое химическое соединение, легко вступающее в реакцию с кислородом, дающую двуокись углерода СО2. СО – ядовитый газ без цвета, вкуса и запаха. Вступая в легких в реакцию с воздухом, лишает мозг кислорода. Уровень СО в выхлопных газах для современных автомобилей с впрыском топлива не должен превышать 0,5%.
Возможные причины повышения содержания СО:
• Засорение воздушного фильтра.
• Нарушение оборотов двигателя на холостом ходу.
• Неисправность системы вентиляции картера.
• Повышенное давление топлива.
• Любые другие неисправности, приводящие к работе двигателя на богатых смесях.
КИСЛОРОД (О2) – в воздухе его 21%, и в цилиндрах двигателя большая часть вступает в реакцию с топливом. Уровень кислорода в выхлопных газах должен быть низким, не более 0,5%. Более высокие значения, особенно на холостом ходу означают утечку во впускном тракте.
ДВУОКИСЬ УГЛЕРОДА (СО2) – результат соединения углерода из топлива с кислородом воздуха. Допустимое содержание 12-15%. Высокое значение свидетельствует о хорошей работе двигателя. Низкий уровень СО2 говорит о том, что топливная смесь бедная или богатая. Повышенная концентрация СО2 в атмосфере способствует развитию парникового эффекта.
Ну вот, мы коротко рассмотрели каждый из компонентов. Теперь хочу остановиться на этих компонентах более подробно.
ПОВЫШЕННОЕ СОДЕРЖАНИЕ СН В ВЫХЛОПНЫХ ГАЗАХ:
Наиболее вероятной причиной являются пропуски в системе зажигания, когда несгоревшее топливо начинает поступать в выпускной тракт. Перечислю возможные неисправности:
1. Неисправность высоковольтных проводов;
2. Загрязнение свечей;
3. Повреждение катушки зажигания;
4. Неисправность крышки или ротора распределителя;
5. Нарушение установочного угла опережения зажигания;
6. Неисправность датчика положения коленчатого вала;
7. Неисправность электронного модуля зажигания.
Другой возможной причиной может быть работа на переобедненной смеси, которая плохо воспламеняется. При этом возможны такие неисправности:
1. Негерметичность впускного тракта;
2. Утечка разряжения, например, через трещину в вакуумном шланге;
3. Негерметичность дроссельного патрубка или карбюратора;
4. Ослабла или сломана пружина выпускного клапана.
В непрогретом двигателе условия сгорания смеси не оптимальные из-за конденсации паров топлива на стенках цилиндров, и содержание СН в выхлопных газах выше нормы.
Повышенное содержание СН – это признак неполного сгорания топлива, и тогда двигатель работает не экономично. После устранения неисправностей связанных с повышенным содержанием СН, экономичность двигателя улучшается.
Замечу, что при обогащении смеси растет содержание СО, поэтому этот газ называется индикатором обогащения. По аналогичным соображениям повышенное содержание кислорода – это индикатор обеднения.
ПОВЫШЕННОЕ СОДЕРЖАНИЕ СО В ВЫХЛОПНЫХ ГАЗАХ:
Избыток СО в выхлопных газах означает, что в цилиндрах имеется избыток топлива или недостаток кислорода. Прт этом образуется богатая смесь и топливо сгорает не полностью.
Перечислю возможные причины:
1. Не исправен регулятор давления топлива (например, утечка через диафрагму);
2. Повышенное давление топлива (например, засорился обратный топливопровод);
3. Неисправность в системе улавливания паров топлива в баке;
4. Засорился воздушный фильтр или клапан в системе вентиляции картера.
ПОВЫШЕННОЕ СОДЕРЖАНИЕ СН И СО В ВЫХЛОПНЫХ ГАЗАХ:
Это происходит, если топливная система подает в цилиндры двигателя богатую смесь или при переобогащении смеси из-за неисправности в системе зажигания. Например, если свеча загрязнена, искрообразование может не последовать. Не прореагировавший кислород поступит в выпускной тракт, где будет воспринят датчиком кислорода как признак бедной смеси. Электронный блок управления двигателем (ЭБУ) выдаст сигнал на обогащение смеси, искрообразование может еще ухудшиться, а в выхлопных газах будет еще больше СО и СН. В этом случае следует искать неисправность в системе зажигания.
А как убедиться, что система управления двигателем работает в замкнутом режиме ( с обратной связью от датчика кислорода)?
В системе управления впрыском топлива датчик кислорода (ДК)выполняет функцию определения концентрации кислорода в выхлопных газах и входит в состав электронного сравнивающего устройства (компаратора). На одном входе компаратора – сигнал, фиксирующий текущий состав рабочей смеси, на другом – электронный сигнал, соответствующий стехиометрическому составу смеси. Компаратор работает в режиме релейного регулирования.
Чтобы проверить систему регулирования надо:
1. Подключить стрелочный вольтметр к выходу датчика кислорода, используя булавку. Запустить и прогреть двигатель. Сигнал на выходе ДК исправного прогретого двигателя на холостом ходу должен переключаться между уровнями 0,2-0,8 В с частотой 4-10 Гц. Стрелка вольтметра в режиме измерения установившегося постоянного напряжения должна слегка колебаться в районе 0,45 В.
2. Глядя на вольтметр, отсоединить от впускного коллектора вакуумный шланг. Напряжение на выходе датчика упадет ниже 0,3 В, это реакция на обеднение смеси из-за утечки разряжения. ЭБУ в режиме с обратной связью компенсирует избыток кислорода подачей дополнительного топлива, смесь опять станет стехиометрической, стрелка вольтметра опять вернется к напряжению 0,45 В.
3. Наблюдая за стрелкой вольтметра, из баллона с пропаном выпустить немного газа перед воздухозаборником двигателя. На некоторое время вольтметр покажет 0,8 В, индуцируя богатую смесь. Затем ЭБУ отработает это возмущение, уменьшив подачу топлива через форсунки. Режим опять станет стехиометрическим, стрелка прибора будет колебаться в районе 0,45 В.
НЕОБХОДИМОСТЬ ИЗМЕРЕНИЯ СОДЕРЖАНИЯ КИСЛОРОДА (О2) И ДВУОКИСИ УГЛЕРОДА (СО2) В ВЫХЛОПНЫХ ГАЗАХ:
Информации, получаемой от двухкомпонентного газоанализатора по содержанию компонентов СО и СН, может быть недостаточно для диагностирования состояния двигателя, да к тому же эти газы влияют друг на друга в каталитическом нейтрализаторе. В то же время повышенное содержание кислорода в выхлопных газах – это индикатор работы на обедненной смеси. Только следует иметь в виду, что негерметичность в выпускном тракте также приводит к повышенному содержанию кислорода в выхлопных газах и отсюда к ложному указанию на обеднение смеси за счет подсоса воздуха. Чтобы быть уверенным в показаниях газоанализатора по параметру О2, необходимо убедиться в исправности выпускного тракта.
Для этого следует сравнить показания газоанализатора на холостых оборотах и для режима 2500 об/мин:
• Если содержание кислорода высокое в обоих случаях – смесь бедная в обоих случаях – выпускной тракт исправен.
• Если содержание кислорода мало на холостых оборотах и велико на 2500 оборотах – выпускной тракт исправен, но в нем установлен нейтрализатор с инжекцией (дополнительной подачей) воздуха.
• Если на холостых оборотах содержание кислорода велико, а на 2500 оборотах мало – скорее всего имеется небольшая утечка, незаметная при больших выбросах выхлопных газов в выпускном тракте.
Содержание двуокиси углерода СО2 – мера эффективности процесса сгорания топлива в двигателе. Норма 12- 17 %, при стехиометрическом составе смеси содержание СО2 максимально, в иных случаях содержание СО2 понижается. Сам по себе значение содержания СО2 не позволяет сделать вывод, бедная смесь или богатая, необходимо дополнительно учитывать показания СО и СН.
ОКИСЛЫ АЗОТА NO И ИХ ИЗМЕРЕНИЕ:
Окислы азота формируются в камере сгорания двигателя при температуре выше 1370*С (2500*F) или при большом давлении. При соединении окислов азота с углеводородными компонентами СН (остатки несгоревшего топлива) в атмосфере под воздействием солнечных лучей образуется фотохимический смог, вредный для органов дыхания человека.
Окись азота – бесцветный газ без вкуса и запаха. Двуокись азота NO2- рыжеватый газ с кислым едким запахом. Из этих компонентов в камере сгорания двигателя образуется группа окислов азота.
Содержание окислов азота в выхлопных газах определяют с помощью пятикомпонентного газоанализатора. Окислы азота формируются при работе двигателя под нагрузкой. Поэтому измерения приходится проводить на динамометрическом стенде или в поездке портативным газоанализатором.
Эффективной мерой борьбы против образования окислов азота, является применение системы рециркуляции выхлопных газов.
Исправный автомобиль под нагрузкой должен иметь содержание окислов азота в выхлопных газах менее 1000 РРМ, на холостых оборотах – менее 100 РРМ.
Повышенное содержание окислов азота в выхлопных газах обычно возникает, когда:
• Двигатель перегрет.
• Топливная смесь бедная.
Образование окислов азота нарпямую связано с температурой в камере сгорания. Горение бедной смеси происходит с повышением температуры.
При повышенном содержании окислов азота следует проверить:
1. Систему охлаждения двигателя;
2. Работу клапана и целостность патрубков в системе рециркуляции выхлопных газов;
3. Топливную систему на предмет обеднения смеси.
В состав газообразного топлива входят горючие и негорючие газы.
Физико-химические и теплотехнические характеристики газового топлива обусловлены различием в составе горючих компонентов и наличием в газе негорючих газообразных компонентов (балластов) и вредных примесей.
К горючим компонентам газообразного топлива относятся следующие вещества.
Метан СН4. Бесцветный нетоксичный газ без запаха и вкуса. В состав метана входит 75% углерода и 25% водорода; 1нм3 его имеет массу 0,717кг. При атмосферном давлении и температуре 111К метан сжижается и его объём уменьшается почти в 600 раз. Сжиженный метан является перспективным топливом для многих отраслей народного хозяйства. Использование и транспортирование сжиженного природного газа в ряде случаев даёт большой экономический эффект, позволяет значительно снизить металозатраты на сооружение газопроводов. И тем самым помогает решить проблемы, связанные с резервированием газоснабжения в отдельных районах страны и созданием запасов сырья для химической промышленности.
Вследствие содержания в метане 25% водорода (по массе), имеется большое различие между высшей и низшей теплотой сгорания. Высшая теплота сгорания метана Qв составляет 39820 кДж/м3, 9510 ккал/м3 и 212860 ккал/моль; низшая Qн – соответственно 35880 кДж/м3, 8570 ккал/м3 и 191820 ккал/моль.
Содержание метана в природных газах достигает до 98%, поэтому его свойства практически полностью определяют свойства природных газов.
Сгорание метана в воздухе протекает по уравнению:
CH4 + 2O2 + 7,52N2 = CO2 + 2H2O + 7,52N2.
В результате сгорания образуется 10,52нм3 продуктов горения.
Метан обладает сравнительно низкой реакционной способностью. Это объясняется тем, что на разрыв четырёх связей в молекуле метана требуется большая затрата энергии. Кроме метана в горючих газах могут содержаться этан С2Н2, пропан С3Н8, бутан С4Н10.
Углеводороды метанового ряда имеют общую формулу: CnH2n+2 , где n – углеродное число, равное 1 (для метана), 2 (для этана), 3 (для пропана).
Н Н Н Н Н Н
Н С Н Н С С Н Н С С С Н
метан этан пропан
С увеличением числа атомов в молекуле тяжёлых углеводородов возрастает их плотность и теплота сгорания.
Оксид углерода СО. Бесцветный газ, без запаха и вкуса; масса 1нм3 составляет 1,25кг.; теплота сгорания 13250 кДж/м3, 3016 ккал/нм3 или 67590 ккал/моль. В высококалорийных газах, содержащих метан и другие углеводороды, увеличение процентного содержания оксида углерода понижает теплоту сгорания газа: 1нм3 оксида углерода сгорает в теоретически необходимом количестве воздуха по уравнению:
CO + 0,5O2 + 1,88N2 = CO2 + 1,88N2
и образует 2,88нм3 продуктов горения.
Вследствие малого объёма продуктов горения оксида углерода на каждый м3 их приходится тепла, чем на 1м3 продуктов горения углеводородов. Поэтому продукты горения оксида углерода нагреваются до более высокой температуры, хотя теплота сгорания оксида углерода ниже, чем у углеводородов.
Оксид углерода оказывает токсическое воздействие на организм человека, так как легко вступает в соединение с гемоглобином крови. Предельно допустимая концентрация СО в воздухе помещения при использовании газа для коммунально-бытовых нужд составляет 2мг/м3.
Водород Н2. Бесцветный нетоксичный газ, без вкуса и запаха. Масса 1нм3 равна 0,09кг. Он в 14,5 раз легче воздуха. Теплота сгорания водорода составляет: Qв – 12750кДж/м3, 3040ккал/м3 и 68260ккал/моль; Qн - 10790 кДж/м3, 2580 ккал/м3 и 57740 ккал/моль. 1нм3 водорода, сгорая в теоретически необходимом количестве воздуха, образует 2,88нм3 продуктов горения. Реакция горения выражается следующей формулой:
H2 + 0,5O2 + 1,88N2 = H2 + 1,88N2
Водород отличается высокой реакционной способностью, водородно-воздушные смеси имеют широкие пределы воспламенения и весьма взрывоопасны.
В негорючую часть газообразного топлива входят азот и углекислый газ.
Азот N2. Двухатомный бесцветный газ без запаха и вкуса. Масса 1нм3 азота равна 1,25 кг. Атомы азота соединены между собой в молекуле тройной связью, на разрыв этой связи расходуется 170,2тыс. ккал/моль. Теплота разрыва связи настолько велика, что взаимодействие молекулярного азота и кислорода с образованием закиси азота сопровождается затратой большого количества тепла. Азот практически не реагирует с кислородом, поэтому при расчетах процесса горения его рассматривают как инертный газ. Содержание азота в различных газах колеблется в значительных пределах.
Углекислый газ СО2. Бесцветный газ, тяжёлый, малореакционный при низких температурах. Имеет слегка кисловатый запах и вкус. Концентрация СО2 в воздухе в пределах 4-5% приводит к сильному раздражению органов дыхания; 10%-ная концентрация СО2 в воздухе вызывает сильное отравление. Масса 1нм3 СО2 составляет 1,98 кг. Углекислый газ тяжелее воздуха в 1,53 раз.
Углекислый газ при температуре -200С и давлении 5,8МПа превращается в жидкость, которую можно перевозить в стальных баллонах. При сильном охлаждении СО2 застывает в белую снегообразную массу. Твердый СО2 (сухой лёд) широко используется для хранения скоропортящихся продуктов.
Кислород О2. Газ без запаха, цвета и вкуса. Масса 1нм3 кислорода составляет 1,43 кг. Содержание кислорода в газе понижает его теплотворную способность и делает газ взрывоопасным. Поэтому содержание кислорода в газе не должно быть более 1% по объёму.
К вредным примесям относится сероводород.
Сероводород H2S. Тяжёлый запах с сильным неприятным запахом, напоминающим запах тухлых яиц. Сероводород обладает высокой токсичностью. Масса 1нм3 сероводорода равна 1,54 кг. Сероводород является газообразной кислотой и, воздействуя на металлы, образует сульфиды. Поэтому сероводород сильно коррозирует газопроводы, особенно при одновременном содержании в газе H2S, H2O и O2. При сжигании газа сероводород сгорает и образует сернистый газ, вредный для здоровья. Содержание сероводорода не должно превышать 2гр. на 100м3 газа.
Все природные газы бесцветны и в большинстве своём не имеют запаха. Поэтому в случае утечки их из газопроводов в различных помещениях и сооружениях может образоваться газовая смесь, которая остаётся незаметной.
Для того, чтобы утечки газа были своевременно обнаружены, горючие газы, направляемые в городские газопроводы, одоризируют, т.е. придают им резкий специфический запах, по которому их легко обнаружить даже при незначительных концентрациях в воздухе помещений. Наиболее часто в качестве одоранта применяют элилмеркоптан. При этом запах природных топливных газов для коммунально-бытового назначения должен ощущаться при содержании 1% в воздухе. Запах сжиженных углеводородных газов должен ощущаться при содержании их в воздухе 0,5% по объёму.
ГОСТ 5542—50* устанавливает следующие основные требования к газовому топливу для населенных пунктов.
Допускаемые отклонения от номинальной низшей теплоты сгорания, %. ±10
Максимальное содержание, г/100 м 3 :
смолы и пыли. 0.1
нафталина летом . 10
нафталина зимой . 5
цианистых соединений в пересчете на HCN . 5
кислорода (% по объему). Не более
Запах природных газов должен ощущаться при содержании их в воздухе в количестве не более 1/5 от нижнего предела воспламеняемости. Для этого в газ вводят резко пахучее вещество — одорант. В СССР в качестве одоранта используется этилмер- каптан C2H5SH, который вводится в газ в количестве 16 г на 1000 м 3 природного газа или 60—90 г на 1 т сжиженного газа.
Сжиженные газы должны удовлетворять техническим требованиям, определенным в ГОСТ 10196—62 (табл, 1.2). Смесь пропана и бутана для зимнего времени составляют с повышенным содержанием пропана, для летнего — с повышенным содержанием бутана. Соотношение пропана и бутана в смеси устанавливается договоренностью между поставщиком и заказчиком с учетом местных климатических условий.
Читайте также: