Стартер на постоянных магнитах преимущества
Электрические стартеры отличаются способами возбуждения электродвигателя, крепления на двигателе, видами механизма привода, степени герметичности.
По способу возбуждения различают стартеры с последовательным, смешанным возбуждением и возбуждением от постоянных магнитов. Смешанное возбуждение применяют для ограничения частоты вращения вала якоря nя в режиме холостого хода. В диапазоне рабочих токов характеристики стартеров смешанного и последовательного возбуждения отличаются незначительно. Характеристики электродвигателей с возбуждением от постоянных магнитов аналогичны характеристикам электродвигателей с независимым возбуждением. Возбуждение от постоянных магнитов применяется на стартерах малой мощности. Для мощных стартеров налаживают выпуск небольших магнитов с высокой энергией, например, на основе элементов неодим-железо-бор.
Электростартер должен иметь надежное соединение с коленчатым валом двигателя на период пуска и автоматически отключаться от него после выхода двигателя на режим самостоятельной работы. От передаточного числа привода от стартера к маховику зависит согласование характеристик стартерного- электродвигателя с пусковыми характеристиками двигателя. Повышение передаточного числа позволяет применять более быстроходные и меньшие по габаритным размерам электродвигатели. С целью увеличения передаточного числа в стартере используют дополнительный понижающий редуктор.
Шестерню привода стартера располагает между опорами под крышкой привода или консольно за пределами крышки. Стартеры с шестерней между опорами могут быть двух- и трехопорными. Двухопорными выполняются стартеры мощностью до 1,5 кВт. В трехопорных стартерах привод с шестерней расположен на валу якоря между подшипниковыми втулками крышки привода и промежуточной опоры.
Консольное расположение шестерни характерно для стартеров с инерционным приводом, перемешающимся якорем, а также для стартеров с тяговыми реле, встроенными в крышку привода соосно с приводом или размещенными в крышке коллектора.
Разработаны конструкции стартеров с одной опорой в крышке коллектора (стартер 29.3708 автомобиля ВАЗ-2108) при расположении второй опоры вала якоря со стороны привода в картере маховика. В этом случае отпадает необходимость в крышке привода, снижаются нагрузки на детали крепления стартера и уменьшается его масса.
Рис. Стартер с принудительным электромеханическим включением шестерни и роликовой МСХ: 1 — вал якоря с винтовыми шлицами; 2 — шестерня привода; 3 — кольцо упорное; 4 — ведущая обойма МСХ; 5 — крышка со стороны привода; 6 — буферная пружина; 7 — рычаг включения привода; 8 — возвратная пружина тягового реле; 9 — удерживающая обмотка тягового реле; 10 — втягивающая обмотка тягового реле; 11 — тяговое реле; 12 — неподвижный контакт; 13 — контактный болт; 14 — подвижный контакт; 15 — крышка коллектора; 16 — щеткодержатель; 17 — щеточная пружина; 18 — коллектор; 19 — щетка; 20 — корпус стартера; 21 — полюс; 22 — якорь; 23 — полюсный винт; 24 — катушка обмотки возбуждения; 25 — обмотка якоря; 26 — роликовая МСХ.
На отечественных автомобилях и тракторах применяют стартеры с принудительным электромеханическим включением шестерни, имеющие роликовые, храповые или фрикционные муфты свободного хода (МСХ) и управляемые дистанционно с помощью тяговых электромагнитных реле, устанавливаемых на крышке привода.
Основными деталями и узлами электростартера являются корпус 20 с полюсами и катушками обмотки возбуждения, якорь 22 с коллектором 18 и обмоткой якоря 25, механизм привода с МСХ 26, электромагнитное тяговое реле 11, крышка привода 5, крышка коллектора 15, щеточный узел с щеткодержателями, щетками и щеточными пружинами.
Изменения в конструкции корпусов электростартеров и якорей электродвигателей связаны с применением в качестве катушечной и пазовой изоляции полимерных материалов, а также коллекторов из пластмассы.
Использование пластмассы в коллекторах позволяет увеличить их механическую прочность, дает возможность автоматизировать формирование пакета коллектора. Особый интерес представляют торцовые и свертные коллекторы. Замена цилиндрических коллекторов торцовыми и свертными снижает расход коллекторной меди и повышает срок службы щеточно-коллекторного узла. Свертной коллектор получают из медной ленты, которая подвергается расчеканке на требуемое количество пластин. После свертывания ленты в цилиндр и опрессовки пластмассой цилиндрическую часть коллектора обтачивают, в результате перемычки между пластинами срезаются и они оказываются изолированными.
Механизм привода стартера располагается на шлицевой части вала якоря. МСХ привода обеспечивает передачу вращающего момента от вала якоря маховику во время пуска двигателя и препятствует вращению якоря маховиком после пуска. Применение МСХ в приводных механизмах стартеров повышает их надежность и исключает преждевременный выход шестерни их зацепления с венцом маховика при пуске холодного двигателя в условиях низких температур.
Наибольшее распространение получили роликовые МСХ. Они просты по конструкции, мало чувствительны к загрязнению, надежны, не требуют регулировки и ухода в эксплуатации. На автотракторных стартерах устанавливают роликовые МСХ с бесплунжерными прижимными устройствами. Прижимное устройство в виде Г-образного толкателя 2 расположено между роликом У и специальным упором, закрепленным на наружной ведущей обойме 12. При включении МСХ в работу наружная ведущая обойма 12 поворачивается относительно ведомой обоймы 17 с шестерней, ролики под действием прижимных пружин и сил трения между обоймами и роликами перемещаются в узкую часть клиновидного пространства и МСХ заклинивается. После пуска двигателя частота вращения ведомой обоймы 17 с шестерней превышает частоту вращения наружной ведущей обоймы 12, ролики перемещаются в широкую часть клиновидного пространства и МСХ проскальзывает.
На стартерах мощностью 6-10 кВт в настоящее время применяется привод с храповой МСХ. Преимуществом храповой МСХ по сравнению с роликовыми является высокая прочность и возможность передачи большого вращающего момента при сравнительно небольших ее размерах.
Рис. Бесплунжерная роликовая МСХ: 1 — ролик; 2 — толкатель; 3 — прижимная пружина; 4 и 8 — замковые кольца; 5 — опорная чашка; 6 — пружина; 7 — поводковая муфта: 9 — буферная пружина; 10 — направляющая шлкцевая втулка; 11 — центрирующее кольцо; 12 — наружная ведущая обойма; 13 — фиксатор пружины (пластина с отогнутыми лепестками); 14 — шайба; 15 — войлочный уплотнитель; 16 — кожух МСХ: 17 — ведомая обойма с шестерней; 18 — втулка.
При срабатывании тягового реле рычаг привода через корпус 2 МСХ перемещает направляющую шлицевую втулку 1 вместе с ведущим 5 и ведомым 6 храповиками по шлицам вала и вводит шестерню в зацепление с венцом маховика. Вращающий момент к венцу маховика передается через шлицевую втулку 1, ведущий 5 и ведомый 6 храповики и шестерню 8. Осевое усилие, возникающее в винтовых шлицах втулки 1 и храповика 5, воспринимается резиновым кольцом 11.
Рис. Приводной механизм с храповой МСХ: 1 — шлицевая втулка: 2 — корпус привода: 3 — шайба: 4 — пружина; 5 — ведущий храповик: 6 — ведомый храповик; 7 — штифт направляющий; 8 — шестерня; 9 — сегмент; 10 — коническое кольцо; 11 — резиновое кольцо; 12 — запорное кольцо.
В случае, когда шестерня упирается в венец маховика, сжимается пружина 4, и ведущий храповик 5, перемещаясь по винтовым шлицам втулки 1, своими торцовыми зубьями поворачивает ведомый храповик 6 с шестерней 8 на угол, достаточный для ввода шестерни в зацепление.
Если частота вращения шестерни и ведомого храповика больше частоты вращения направляющей втулки 1, ведущий храповик, перемещаясь по винтовым шлицам втулки 1, отходит от ведомого храповика и шестерня вращается вхолостую. Вместе с ведущим храповиком отходит и коническое кольцо 10, при этом сегменты получают свободу перемещения в радиальном направлении вдоль штифтов 7 ведомого храповика и фиксируют МСХ в расцепленном состоянии. Во время отдельных вспышек воспламенения в цилиндрах двигателя шестерня остается в зацеплении с венцом маховика и может снова передавать вращающий момент от электродвигателя после выравнивания частот вращения ведущего и ведомого храповиков. Шестерня выходит из зацепления только после выключения тягового реле электростартера.
Фрикционные дисковые муфты применяют на мощных стартерах автомобилей БелАЗ. МСХ состоит из ведущий и ведомой полумуфт и заклинивается после ввода шестерни в зацепление. Фрикционные диски прижимаются друг к другу в результате усилия в резьбовом соединении ведомой втулки муфты и корпуса шестерни. После пуска двигателя усилие в резьбовом соединении меняет направление, прижатие дисков ослабевает и муфта пробуксовывает. Недостатком фрикционных МСХ является изменение передаваемого вращающего момента в процессе эксплуатации вследствие износа фрикционных дисков.
Рис. Схема управления электростартером
Электростартеры конструктивно выполнены в герметичном исполнении. Степень защиты стартера от проникновения посторонних тел и воды оговаривается в стандартах на отдельные виды изделий. Стартеры, предназначенные для тяжелых условий работы (на большегрузных автомобилях и на тракторах), отличаются большей степенью герметизации. Герметизация обеспечивается установкой в местах разъема резиновых колец, применением пластмассовых втулок и уплотнительных прокладок из мягких пластических материалов.
Конструктивное исполнение стартера зависит от способа крепления его на двигателе. Обычно стартер располагают сбоку картера двигателя, при этом крышка привода обращена в сторону маховика и входит в отверстие картера сцепления. Крепление стартера на двигателе обеспечивает сохранение постоянного расстояния между центрами шестерни привода и зубчатого венца маховика при снятии стартера и его установке после технического обслуживания и ремонта. Такому условию удовлетворяет фланцевое крепление. Конфигурация и размеры присоединительного фланца на крышке со стороны привода стандартизованы. При фланцевом креплении крепежный фланец несет нагрузку как от усилий, возникающих при передаче вращающего момента от стартера к двигателю, так и от массы стартера. Поэтому для стартеров большой мощности осуществляют крепление на постели двигателя посредством натяжной ленты. Установка стартера на постели упрощает конструкцию крышки со стороны привода, но повышает требования к качеству изготовления корпуса стартера. Для предотвращения проворачивания стартера в канавке на его корпусе и в постели двигателя установлены специальные шпонки.
Типовая схема дистанционного управления стартером с дополнительным реле включения приведена на рисунке. При замыкании контактов выключателя S зажигания контакты К1 дополнительного реле подключают втягивающую КА2 и удерживающую KV2 обмотки тягового реле к аккумуляторной батарее GB. Под действием МДС двух обмоток якорь реле перемещается и с помощью рычага привода вводит шестерню в зацепление с венцом маховика. В конце хода якоря реле замыкаются силовые контакты К2 тягового реле и аккумуляторная батарея соединяется со стартерным электродвигателем М.
Шестерня остается в зацеплении с венцом маховика до тех пор, пока водитель не отключит питание дополнительного реле. После размыкания контактов К1 дополнительного реле втягивающая КА2 и удерживающая KV2 обмотки тягового реле оказываются включенными последовательно, получая питание через контакты К2. Число. витков обеих обмоток одинаково, и по ним проходит ток одной и той же силы. Так как направление тока во втягивающей обмотке в этом случае изменяется, обмотки действуют встречно и создают два равных, но противоположно направленных магнитных потока. Сердечник электромагнита размагничивается и возвратная пружина, перемещая якорь реле в исходное положение, размыкает силовые контакты К2 и выводит шестерню из зацепления с венцом маховика.
Стартеры с постоянными магнитами начали появляться на транспортных средствах с конца 80-х. Два главных преимущества этих двигателей по сравнению с обычными типами — меньший вес и меньший размер. Это делает стартер с постоянными магнитами популярным выбором для изготовителей транспортного средства, так как из-за компактности современных автомобилей меньше места остается для электрических систем двигателя. Сокращение веса вносит вклад и в сокращение потребления топлива.
Доступные в настоящее время стандартные стартеры с постоянными магнитами подходят для использования на двигателях внутреннего сгорания с рабочим объемом примерно до 2 литров. Они имеют номинальную мощность порядка 1 кВт. Типичный пример — стартер компании Lucas модели M78R/M80R, показанный на рисунке.
Рис. Стартер M78R/M80R (Lucas): 1 — соленоид; 2 — узел щеткодержателя; 3 — набор сменных щеток; 4 — якорь; 5 — стопорное кольцо; 6 — ярмо и резиновая прокладка; 7 — вал привода и набор крепления подшипника; 8 — узел приводного механизма; 9 — набор втулок; 10 — узел мотора и набор деталей планетарного механизма
Принцип действия данного стартера похож на обычный для мотора стартера с предустановкой зацепления. Главное же различие состоит в замене обмоток возбуждения и полюсных башмаков высококачественными постоянными магнитами. Сокращение веса составляет до 15%, и диаметр корпуса может быть настолько же уменьшен.
Постоянные магниты обеспечивают постоянное возбуждение, и было бы логичным ожидать, что скорость и крутящий момент будут постоянными.
Однако из-за падения напряжения батареи под нагрузкой и низкого сопротивления отмоток якоря характеристики стартера сопоставимы с электродвигателями сериесного типа. В некоторых случаях между главными магнитами устанавливают концентраторы магнитного потока. Из-за эффекта деформирования магнитного поля характеристика стартера подобна мотору сериесного типа.
Разработки некоторых изготовителей коснулись и конструкции щеток. Используется обычная смесь меди и графита, но щетки делаются из двух половинок, имеющих более высокое содержание меди в зоне передачи мощности и более высокое содержание графита в зоне коммутации.
Это увеличивает срок службы и снижает падение напряжения, увеличивая мощность стартера.
Для более мощных применений были разработаны стартеры с постоянными магнитами, имеющие промежуточную передачу. Это позволяет якорю вращаться с более высокой скоростью (что увеличивает эффективность), а крутящий момент обеспечивается за счет редуктора. Существуют стартеры с постоянными магнитами и промежуточной передачей мощностью около 1,7 кВт, подходящие для двигателей внутреннего сгорания с объемом цилиндров до 3 литров или дизельных двигателей до 1,6 литра. Этот тип стартера с постоянными магнитами может дать экономию веса до 40%. Принцип действия такого стартера подобен обычному стартеру с предварительной установкой зацепления. Промежуточная передача выполняется планетарной.
Ведущая шестерня планетарного механизма находится на валу якоря, а поводок, связывающей шестерни-сателлиты, является приводом стартера. Кольцевое зубчатое колесо остается неподвижным и, кроме того, действует как промежуточная опора якоря. Такое устройство шестерен дает отношение редукции приблизительно 5:1. Оно может быть рассчитано по формуле:
отношение редукции = A/S,
где А — число зубцов на кольцевом венце, S — число зубцов на ведущей шестерне.
Кольцевое зубчатое колесо в некоторых типах стартеров изготавливается из полиамидного компаунда с минеральными добавками, чтобы повысить его прочность и износостойкость. Шестерни якоря и сателлиты — из обычной стали. Такая комбинация материалов обеспечивает тихую и эффективную работу редуктора.
Технический прогресс не стоит на месте и постоянно развивается. Каждый год появляются новые технологии, что позволяет инженерам улучшать или создавать совершенно новые детали. Это касается и машиностроения. В России ежегодно продаются сотни тысяч современных машин. Каждая из них содержит в себе новейшие технологии. Мы же с вами поговорим о таком небольшом узле, как стартер, и разберемся, какой стартер лучше: редукторный или обычный.
Общие сведения
Первый стартер, используемый на автомобиле, имел ряд существенных недостатков. Со временем конструкция постепенно усовершенствовалась и существенно преобразилась. Стартер представляет собой 4-полосный электродвигатель, который необходим для вращения коленвала при запуске мотора. Он берет энергию у аккумуляторной батареи, в разы увеличивает пусковой ток. За счет этого и происходит запуск любого двигателя внутреннего сгорания. Принцип действия стартера за многие годы не изменился.
Тем не менее постоянно усовершенствовалась его конструкция. Уменьшалась масса детали, увеличивался срок службы за счет использования более качественных и новых материалов и т.п. Все это привело к тому, что стартер достаточно сильно преобразовался и появился даже новый тип - редукторный. Именно об этом мы сейчас и поговорим.
Классический стартер: принцип работы и устройство
Ключевой особенностью такого устройства является то, что нет такого промежуточного узла, как редуктор. Это позволяет напрямую от стартера передавать вращение на коленчатый вал. Следовательно, устройство более простое в изготовлении и его куда легче отремонтировать. Еще одна особенность такого стартера в том, что поступающий на включатель электрический ток позволяет моментально ввести в зацепление шестерню и маховик. Это способствует тому, что авто заводится, как говорят водители, с полтычка.
В настоящее время стараются заменять такие стартеры на редукционные. Однако на большинстве автомобилей раньше ставился именно классический стартер. Принцип работы и устройство сделали этот узел крайне выносливым. Такие агрегаты практически никогда не выходят из строя из-за электрического воздействия, но гораздо чаще уходят на ремонт из-за низких температур.
Конструкция и кое-что еще
Во время работы ДВС вырабатывает достаточно большое количество энергии. Её хватает на световые приборы, музыку, дворники и т.п. В общем, во время движения основная нагрузка идет на генератор. В статичном же положении мотор не вырабатывает ничего, поэтому его нужно как-то завести. Для этого и применяют различные виды стартеров наряду с АКБ.
Сам электродвигатель, то есть корпус, выполнен в цилиндрической форме. В нем располагаются сердечники и возбуждающие обмотки. Понятное дело, есть якорь - одна из самых ответственных и дорогостоящих деталей. На ней запрессованы пружины коллектора, а также сердечники. Имеет осевидную форму. Есть еще втягивающее реле стартера. Цена на эту запчасть относительно небольшая, хоть и выполняет деталька крайне важные функции. Во-первых, подает энергию от замка зажигания на электродвигатель. Во-вторых, выталкивает обгонную муфту.
Чаще всего из строя выходит именно втягивающее реле стартера. Цена его благо доступна и начинается от 500 рублей и заканчивается несколькими тысячами. Помимо этого в конструкции есть бендикс с приводной шестерней и щетки.
Этапы работы стартера
Данный узел работает следующим образом:
- соединение шестерни с маховиком;
- запуск стартера;
- отсоединение шестерни и маховика.
Естественно, что стартер работает только при пуске двигателя, а потом отключается. Если этого не происходит, значит, один из механизмов неисправен.
После того как водитель вставляет в замок зажигания ключ и проворачивает его в рабочее положение, от АКБ поступает ток на тяговое реле. Благодаря этому бендикс редукторного стартера входит в зацепление шестерней, в это же время благодаря подаче напряжения на электродвигатель замыкается цепь и происходит запуск автомобиля. После того, как обороты мотора превышают обороты нашего стартера, он отключается. Включается только при следующем запуске ДВС. Ну а сейчас давайте рассмотрим, чем отличается редукторный стартер от обычного. Тут есть несколько интересных деталей.
Редукторный стартер
Общий принцип действия ничем не отличается. Электрическая энергия также преобразуется в механическую. Единственное отличие - наличие редуктора. Помимо этого в таком стартере есть и постоянные магниты в обмотке, что позволило несколько увеличить надежность электродвигателя в целом. Конечно, тут есть и свои особенности. В частности, многие интересуются, сколько стоит стартер такого типа. В большинстве случаев несколько дороже классических, но не очень. В среднем на 10-15%. Зато срок его службы на порядок выше, и это обязательно стоит учитывать.
Длительность эксплуатации такого стартера напрямую зависит от качества изготовления редуктора. Чем лучше сталь использовалась при отливе шестеренок, тем меньше шанс, что зубья слижутся уже после сотого запуска. В целом же конструкция сегодня пользуется популярностью, и редукторных стартеров появляется все больше и больше.
Преимущества и недостатки классического варианта
Вот мы собственно постепенно и подходим к ответу на вопрос о том, какой стартер лучше: редукторный или обычный. Для этого рассмотрим сильные стороны классического варианта. Они следующие:
- низкая стоимость;
- высокая ремонтопригодность;
- найти запчасти можно практически везде.
Но есть тут и свои минусы, которые выражаются в следующем:
- необходим высокий базовый ток;
- быстрый износ деталей;
- плохо работает при низких температурах;
- большие масса и размеры.
В целом же это достаточно надежная конструкция при правильном обслуживании. Но развитие не стоит на месте, и это привело к более совершенным редукторным стартерам. Рассмотрим их сильные и слабые стороны.
Стартер с редуктором: чем хорош и какие у него минусы
Мы уже разобрались, как работает данное устройство и в чем его принципиальные отличия. Уже несложно догадаться, какой стартер лучше, редукторный или обычный. Дело в том, что первый вариант имеет следующие сильные стороны:
- небольшие размер и вес;
- длительный срок эксплуатации независимо от температуры окружающей среды;
- небольшое потребление энергии (на 40% меньше классического варианта).
Что же касается минусов, то и они здесь имеются и заключаются в следующем:
- сложность ремонтных работ;
- отсутствие запасных частей в магазинах;
- высокая стоимость изделия;
- низкое качество редуктора.
Нередко основной причиной поломки стартера с редуктором является то, что установлены комплектующие низкого качества. Это приводит к поломкам и различного рода неисправностям. В целом же такой агрегат имеет больше перспектив в будущем, нежели обычный стартер. И обусловлено это вовсе не тем, что один хороший, а второй плохой, а научно-техническим прогрессом.
Подведем итоги
Если вы решили заменить данный узел, то вам нужно сначала определиться, где находится стартер. Обычно это сторона водителя под двигателем или сбоку от него. Для снятия необходимо освободить место. В зависимости от расположения может понадобиться демонтировать защиту двигателя или воздушный фильтр с коробом. Дальше отсоединяем провода и откручиваем болты. Определить, где находится стартер, несложно. Он имеет цилиндрическую форму, и от него идут несколько проводов, зафиксированных гайкой. Все выполняется достаточно просто и быстро.
Вот мы и ответили на вопрос о том, какой стартер лучше: редукторный или обычный. Классические стартеры по-своему хороши, но постепенно выводятся из эксплуатации. Но есть у них и свои сильные стороны, как и у редукторных - свои слабые. К примеру, в глубинке будет сложно найти запчасти на стартер с редуктором, а на обычный - без проблем. Это же можно сказать и по поводу ремонта - не все сталкивались с редукторами на стартере и не каждый за это возьмется. Сколько стоит стартер с редуктором? Все зависит от марки авто, нормальный обойдется в 5-7 тысяч рублей.
Устройство
Он состоит из трёх основных частей:
- Втягивающее реле;
- Электродвигатель;
- Бендикс.
Электродвигатель – преобразует электрическую энергию в механическую. Он вращает бендикс с определенным числом оборотов, а тот, в свою очередь, коленвал двигателя. В результате этого, происходит запуск силового агрегата.
Бендикс – это своего рода редуктор, передающий крутящий момент от вала электродвигателя к маховику коленвала. Это подвижная деталь, она насажена на вал электрического двигателя стартера и двигается по нему на шлицах.
Кроме того, он состоит из двух частей. Поэтому, он свободно вращается по часовой стрелке и блокируется в другую сторону. Это обеспечивает надежную передачу крутящего момента к двигателю авто. Кроме того, это бережет весь агрегат от поломки, когда мотор запустился.
Автомобильные стартеры бывают классического и редукторного типа. Последние оснащены редуктором с планетарной передачей. Бендикс находиться на собственном валу, а не на якоре электромотора.
Пришло время рассмотреть устройство и принцип работы каждого составляющего элемента схемы стартера автомобиля. Хочу отметить, что любой из них является основным. Поломка любого из них, приведет к полной потери работоспособности всего агрегата.
Втягивающее реле
Как говорилось выше – в большей степени это электрическая деталь. Да, в ней есть механические подвижные части, но они приводятся в движение за счет тока.
Из чего оно состоит
На тыльной стороне находятся три контакта:
Реле стартера автомобиля состоит из двух обмоток. Каждая из них выполняет свою функцию и нужна для создания электромагнитного поля для втягивания якоря. Он соединен через тягу с бендиксом. Это выталкивает его наружу, где он входит в зацепление с маховиком и электродвигатель готов вращать коленвал.
Еще одной подвижной деталью реле, является медная площадка, расположенная под крышкой реле. Во время втягивания, происходит нажатие на эту площадку, она замыкает собой два пятака – шляпки силовых болтов. Через неё, от одного болта к другому, протекает большой электрический ток от аккумулятора к электродвигателю.
Как работает втягивающее реле
При отпускании ключа, снимается напряжение на управляющем проводе. Через обмотку перестает течь ток, исчезает электромагнитное поле и якорь, под действием возвратной пружины, выходит из корпуса. Он через тягу вытягивает из зацепления бендикс, возвращая его в исходное положение.
Обрыв в одной из обмоток приведет к тому, что бендикс не будет выскакивать или наоборот, постоянно выскакивать и возвращаться в корпус. Целостность можно определить простой диагностикой втягивающего реле. Причём для этого не нужны специальные приборы, достаточно воспользоваться аккумулятором и контрольной лампой, или мультиметром.
Электродвигатель
Устройство
- Он состоит из якоря, на котором намотана особым образом медная проволока, и бендикса, который находиться на противоположном конце вала.
- Токопроводящих контактных щёток и коллекторного кольца (контактной пластины)
- Корпуса, внутри которого находятся магниты и он жестко соединен с кузовом автомобиля.
- Втулки или подшипники.
Принцип работы
При повороте ключа в замке зажигания, напряжение через втягивающую обмотку создает электромагнитное поле. Он втягивает якорь реле, и замыкает пластиной между собой силовые пятаки.
Потеря контакта где-нибудь в этой цепи, влечет к полной неисправности стартера. Как их определить, поговорим в других статьях.
Бендикс
Устройство
- Звездочки или шестерни, как кому нравиться. Она выполнена из закаленного металла, чтобы увеличить срок службы. Она насажена на вал якоря электродвигателя, и находиться во внутренней обойме.
- Обгонной муфты. Внутри неё находится стопорное кольцо с роликами. Они прижимаются пружинками к наружной обойме.
Устройство бендикса стартера такое, чтобы уберечь элементы агрегата от преждевременной поломки, в момент запуска двигателя автомобиля.
Принцип работы
Особенностью этого механизма является то, что он может свободно вращаться в одну сторону и заклинивать при попытке провернуться в противоположном направлении. Это происходит за счет роликов, расположенных в обгонной муфте.
При подаче напряжение на обмотки втягивающего реле стартера выбрасывается бендикс. Он входит в зацепление с маховиком. В это время начинает вращаться якорь электродвигателя, который передает крутящий момент на бендикс, а тот на маховик двигателя авто.
Происходит запуск мотора машины. Если обороты коленвала выше скорости вращения якоря, обгонная муфта бендикса разблокируется, и шестерня механизма будет вращаться независимо от вала электродвигателя. Водитель отпускает ключ, исчезает напряжение в обмотках реле и электромотора, бендикс входит внутрь, и перестает вращаться.
Подведем итог
Собрав воедино знания об устройстве стартера автомобиля и принципе его работы, можно понять принцип его работы.
В автомобильном электростартере нового поколения электродвигатель не имеет статорных обмоток возбуждения, которые заменены на постоянные магниты, а механический привод дооборудован понижающим планетарным редуктором, который установлен непосредственно в корпусе стартера. Это позволило сделать стартер высоко-оборотистым, легким, малых размеров и более эффективным в работе.
Стартерный электродвигатель
Классический электростартер автомобиля — это устройство, состоящее из электродвигателя (ЭДВ) постоянного тока с последовательной обмоткой возбуждения, который на время пуска двигателя внутреннего сгорания (ДВС) подключается к аккумуляторной батарее (АКБ) с помощью пускового тягового реле (ПТР). Это же реле посредством рычага с вилкой перемещает по оси стартера муфту свободного хода (МСХ) и тем самым механически сочленяет шестерню на валу стартерного электродвигателя непосредственно с венечной шестерней маховика ДВС.
Конструкция автомобильного стартера, при которой вал электродвигателя соединяется прямо с маховиком ДВС, имеет ряд недостатков. Так, передаточное число главного редуктора, состоящего из венечной шестерни маховика и шестерни МСХ, не может быть достаточно высоким. Ограничения накладываются расчетным размером диаметра маховика, а также числом, размером и прочностью зубцов шестерни МСХ. В такой редукторной паре — соотношение зубцов не может быть более 16—18.
От указанных недостатков свободны ЭДВ с независимым (от тока якоря) возбуждением.
Рис 1 б) С независимым возбуждением.
Независимое возбуждение магнитного поля на статоре ЭДВ можно получить тремя способами: обмоткой возбуждения, которая подключена к отдельному от якоря источнику электрической энергии (управляемое независимое возбуждение — рис. 1, б);
Рис 1 в) С параллельным возбуждением обмоткой возбуждения, подключенной параллельно якорю ЭДВ (параллельное возбуждение — рис. 1, в);
Рис 1 д) С возбуждением от постоянного магнита постоянными магнитами на статоре (возбуждение от постоянных магнитов относится к неуправляемому независимому возбуждению — рис. 1, д).
Электродвигатель с питанием обмотки возбуждения от независимого источника (рис. 1, б) в автомобильной системе электростартерного пуска не используется, так как на борту автомобиля один пусковой источник электрической энергии — аккумуляторная батарея.
Электродвигатели с чисто параллельным возбуждением (рис. 1, в) в автомобильных электростартерах неэффективны, так как напряжение АКБ при пуске ДВС в зимнее время (при температуре ниже — 20 °С) резко падает до 8—9 В. При этом намагничивающая сила параллельной обмотки возбуждения, а следовательно и крутящий момент стартера, значительно ослабевают, пуск ДВС становится невозможным. Кроме того, характеристика ЭДВ с параллельным возбуждением жесткая, что недопустимо при низком передаточном соотношении между оборотами стартерного ЭДВ и оборотами коленвала ДВС, так как это может привести к ударным перегрузкам и поломкам в зубцах механического привода.
Рис 1 г) Со смешанным возбуждением.
Однако жесткость характеристики ЭДВ обеспечивает плавность хода стартера, а также ограниченность оборотов холостого хода, и поэтому параллельное возбуждение иногда вводится в ЭДВ классического электростартера дополнительно к последовательному (рис. 1, г). Такое возбуждение обеспечивает ЭДВ усредненную (умеренно жесткую) механическую характеристику и называется смешанным. Используется, например, в стартерах для автомобилей ВАЗ.
Такие стартеры имеют следующие преимущества:
- главное магнитное поле электродвигателя с постоянными магнитами на статоре не зависит ни от тока якоря, ни от падения напряжения АКБ при пуске ДВС.
- система постоянных магнитов на статоре электродвигателя делается многополюсной (не менее шести полюсов), что позволяет заметно уменьшить габариты магнитной системы (постоянные магниты значительно меньше электромагнитов), а следовательно и всего стартера в целом. КПД и обороты стартерного электродвигателя с многополюсным статором также выше.
- сами постоянные магниты выполняются не из сплавов дорогостоящих металлов, а из спекаемых ферритовых порошков с большой коэрцитивной силой, что делает магниты легкими, прочными, технологичными и, как следствие, дешевыми.
- наличие дополнительного понижающего редуктора в электростар-терной системе пуска позволяет оптимально согласовать жесткую механическую характеристику электродвигателя независимого возбуждения с минимальной пусковой частотой вращения коленвала ДВС при максимальной механической нагрузке стартера.
- И наконец, стартерный ЭДВ с независимым возбуждением от постоянных магнитов и с дополнительным редуктором может работать в режиме повышенных оборотов при пуске холодного двигателя, потребляя при этом от АКБ меньший ток по сравнению с классическим стартером. КПД стартерного режима АКБ и надежность пуска ДВС увеличиваются.
Как и любая новая техника, электростартеры с планетарным редуктором и с возбуждением от постоянных магнитов на начальном этапе внедрения обладали некоторыми недостатками: они были значительно дороже классических за счет высокой стоимости постоянных магнитов и планетарного редуктора; в них быстрее изнашивались щетки из-за более высоких оборотов; их работа сопровождалась повышенным шумом.
Современная технология изготовления стартеров нового поколения исключает эти недостатки. Так, постоянные магниты, как уже отмечалось, стали ферритовыми. Главная шестерня планетарного редуктора изготавливается литьем под давлением из термореактивной пластмассы. Пластмассу армируют бронзой, что делает планетарную шестерню прочной, износостойкой, технологичной и дешевой. Остальные детали дополнительного редуктора обычного исполнения. Планетарный редуктор с пластмассовой шестерней не шумит. Быстрый износ коллекторных щеток устранен применением в них более жесткого графита и удалением из него порошковой меди.
Последнее стало возможным за счет понижения величины якорного тока. Уменьшена сила прижатия щеток к коллектору.
Следует однако заметить, что стоимость стартера нового поколения пока еще несколько выше стоимости классического. Но если 25 лет назад разница в цене была около 150 %, то в последнее время она не превышает 50 %.
Читайте также: