Назначение и устройство акб генератора стартера
Аккумуляторная батарея включает в себя шесть свинцово-кислотных аккумуляторов. Она представляет собой химический источник постоянного тока и предназначена для питания электрическим током приборов электрооборудования при неработающем двигателе, при работе двигателя на малой частоте вращения коленчатого вала, а также при пуске двигателя стартером.
Аккумуляторная батарея имеет кислотостойкий корпус, который разделен на шесть отсеков. Каждый отсек аккумуляторной батареи представляет собой отдельный аккумулятор. Сверху батарея закрыта общей крышкой, которая приварена при помощи ультразвуковой сварки. В крышке имеются отверстия, через которые осуществляется заливка электролита в каждый аккумулятор. Кроме этого через отверстия проходят полюсные выводы батареи.
Аккумулятор включает в себя два полублока чередующихся пластин (положительных и отрицательных). Пластины одинаковой полярности привариваются к бортам, которые служат для крепления пластин и вывода электрического тока. Решетки пластин отливают из сплава свинца с добавлением кальция и сурьмы, в результате этого замедляется процесс саморазряда аккумулятора. Кроме этого в решетку пластин впрессовывают активную массу. Активная масса приготавливается на водном растворе серной кислоты и окислов свинца (для положительных пластин) И свинцового порошка (для отрицательных). Это позволяет увеличить емкость аккумулятора.
Одноименные пластины соединяются в полублоки, которые заканчиваются выводными штырями. Полублоки собираются таким образом, что положительные пластины располагаются между отрицательными, поэтому отрицательных пластин на одну больше. Такое расположение позволяет лучше использовать двухстороннюю активную массу крайних положительных пластин, а также исключает их коробление и разрушение.
Положительные пластины аккумулятора помещаются в сепараторы. Сепараторы представляют собой конверты, которые изготовлены из тонкого пластикового микропористого материала. Благодаря конвертам исключается возможность замыкания положительных пластин отрицательными. Кроме этого из-за малой толщины и большой пористости сепараторов не создается помех прохождению электролита, снижается внутреннее сопротивление и получается зарядный ток большей силы.
В каждом аккумуляторе снизу заливных отверстий находятся трубчатые индикаторы, которые показывают уровень электролита. Если уровень электролита соответствует норме, то его поверхность образует эллипс, который можно четко увидеть через наливное отверстие. Кроме этого на корпусе аккумулятора могут быть отметки min и шах, которые показывают максимальный и минимальный уровни электролита.
Полублоки пластин соединяются между собой при помощи межэлементных соединений, которые проходят через пластмассовые перегородки. Межэлементные соединители соединяют пластины с положительными и отрицательными выводами аккумуляторной батареи.
Выводы многих аккумуляторных батарей имеют конусную форму. Такая форма обеспечивает сохранение надежного контакта с клеммами проводов при износе их в процессе эксплуатации. Причем диаметр отрицательного вывода меньше диаметра положительного. Это исключает возможность нарушения полярности при установке аккумуляторной батареи на автомобиль.
Сверху отверстия для заливки электролита закрываются пробками, которые имеют вентиляционные отверстия для выхода газов, образующихся в процессе работы батареи. Электролит представляет собой раствор серной кислоты с дистиллированной водой.
Генератор
Генератор предназначен для питания током всех потребителей электрооборудования, а также для заряда аккумуляторной батареи при средних и высоких оборотах двигателя.
На автомобилях устанавливают трехфазные генераторы переменного тока с выпрямителями на основе кремниевых диодов.
На стальном статоре генератора располагаются три катушки под углом в 120°. Концы катушек соединяются звездой (когда одни концы обмоток соединяются в одной точке, а другие выводятся в общую цепь потребителей). Катушка и включенный в нее потребитель образуют фазу. Внутри статора вращается ротор. Во время вращения ротора к катушкам каждые 120° попеременно подходят северный и южный полюса. При этом обмотки катушек статора пересекают силовые магнитные линии, в результате этого в них индуцируется переменная по своему направлению ЭДС. ЭДС создает переменный ток в цепи каждой фазы. При этом ток, который индуцируется в одной из фаз, обязательно проходит в цепи двух других фаз. За один оборот ротора через равные промежутки времени в цепи каждой фазы меняется направление тока.
Переменный ток не может использоваться для зарядки аккумуляторной батареи, поэтому в генераторе устанавливается блок выпрямителей. Блок выпрямителей включает в себя шесть кремниевых диодов, которые преобразуют переменный ток в постоянный. Кремниевые диоды имеют достаточно большой срок службы, пропускают малый обратный ток, а также достаточно надежно работают при температуре от -60 до + 125 С. Кроме этого диоды имеют малые габариты и массу, что позволяет их устанавливать в крышку генератора автомобиля.
Генератор включает в себя:
1) статор;
2) ротор;
3) щетки;
4) выпрямительный блок;
5) электронный регулятор напряжения;
6) проводниковый шкив;
7) конденсатор.
Конструкция статора включает в себя сердечник и катушки обмотки. Сердечник изготовляют из отдельных пластин, изолированных лаком. Сердечник статора выполнен в виде кольца. На внутренней поверхности сердечника имеются зубья, на которые надеваются катушки. Катушки образуют обмотку статора, разделенную на три фазы. Одни концы фаз соединены между собой в одной точке, которая называется нулевой. Другие концы фаз выводятся непосредственно в цепь.
Ротор генератора включает в себя вал и шесть пар магнитных полюсных наконечников. На валу напрессована втулка с обмоткой возбуждения. Магнитные наконечники под действием обмотки возбуждения создают магнитное поле. Кроме этого на валу ротора есть Два контактных кольца. Через контактные кольца в обмотку возбуждения подается электрический ток. Ло контактным кольцам скользят графитовые щетки, которые соединены с регулятором напряжения. Вращение ротора происходит в шариковых подшипниках, которые установлены в передней и задней крышках. Подшипники не требуют смазки, так как они заполнены специальной смазкой, которая рассчитана на весь срок службы генератора.
Выпрямительный блок состоит из двух алюминиевых пластинок с запрессованными в них шестью диодами. Диоды выпрямительного блока пропускают электрический ток только в одном направлении, создавая тем самым постоянный ток. Кроме этого На пластине выпрямительного блока есть дополнительные три диода. Напряжение, снимаемое с дополнительных диодов, идет на питание постоянным током обмотки ротора.
Электронный регулятор напряжения представляет собой неразборный и нерегулируемый узел. В паз регулятора напряжения вставляется щеточный узел, который представляет собой пластмассовый щеткодержатель с двумя щетками.
Приводной шкив с вентилятором устанавливается на переднем конце вала ротора.
Вентилятор предназначен для охлаждения статора, ротора и выпрямительного блока. Охлаждающий воздух засасывается через отверстия в задней крышке, циркулирует внутри генератора и затем выходит наружу через отверстия в передней крышке.
Конденсатор устанавливается в генераторе для подавления радиопомех и для защиты электронного оборудования от импульсов напряжения в системе зажигания.
При включении зажигания на обмотку генератора поступает ток от аккумуляторной батареи. Ток, протекающий по обмотке возбуждения, создает вокруг полюсов ротора электромагнитное поле. После пуска двигателя ротор генератора начинает вращаться и под каждым зубцом статора проходит то южный, то северный полюс ротора, в результате этого магнитный поток, проходящий через зубцы статора, меняет свое "направление. Переменный магнитный поток пересекает витки обмотки статора, в результате этого в ней индуцируется ЭДС.
Переменный электрический ток, который индуцируется в обмотке статора, выпрямляется выпрямительным блоком. После этого постоянный ток подается для питания потребителей. Кроме этого с выводов дополнительных диодов подается напряжение для питания обмотки возбуждения ротора.
При увеличении частоты вращения ротора происходит увеличение выходного напряжения генератора. Если напряжение начинает превышать 13,7-14,5 В, регулятор напряжения прекращает подачу тока в обмотку возбуждения. После этого происходит падение напряжения генератора, регулятор снова начинает подавать ток в обмотку, и весь процесс повторяется. Благодаря высокой частоте протекания этого процесса напряжение генератора остается практически постоянным в пределах от 13,7 до 14,5 В. Размыкание и замыкание цепи питания электрооборудования происходит за счет открытия и закрытия выходного транзистора в регуляторе напряжения. Открытие и закрытие транзистора происходит под действием управляющего напряжения на выводе регулятора напряжения. Более точный контроль напряжения в цепи электрооборудования может осуществляться при помощи вольтметра, который установлен на щитке приборов.
Крепление генератора к двигателю автомобиля в большинстве случаев осуществляется при помощи болтов, вставляемых в отверстие приливов крышек со втулками. С верхней стороны генератор крепится к двигателю через натяжную планку, которая обеспечивает перемещение генератора при регулировке натяжения или при замене приводного ремня.
Понятие и принцип работы стартера, его виды и конструктивные особенности. Схема включения стартера с помощью замка зажигания. История развития автомобильных генераторов переменного тока с клювообразным ротором, определение их основных характеристик.
Рубрика | Транспорт |
Вид | реферат |
Язык | русский |
Дата добавления | 26.04.2015 |
Размер файла | 274,1 K |
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1. Понятие и принцип работы стартера
стартер автомобильный генератор ротор
Синхронная машина состоит из двух частей: индуктора и якоря. Индуктором называют часть машины, в которой создается первичное магнитное поле. Якорем называют часть машины, в которой индуцируется ЭДС. Наибольшее распространение получили синхронные машины, в которых якорь неподвижен, а индуктор вращается.
Рассмотрим устройство синхронной трехфазной машины, в которой якорь является статором, а индуктор является вращающимся ротором.
Стартер это - такой машины по конструкции аналогичен статору асинхронной машины и состоит из трех основных частей: корпуса (станины), сердечника и обмоток. Сердечник представляет собой полый цилиндр, набранный из электротехнической стали толщиной 0,5 мм. На внутренней поверхности сердечника имеются пазы, в которые укладывается обмотка статора. Пазы, как правило имеют прямоугольное сечение.
Обмотка статора состоит из трех одинаковых фазных обмоток, сдвинутых в пространстве друг относительно друга на 1200 и соединенных звездой.
В синхронных машинах применяют роторы двух конструкций: явнополюсные и неявнополюсные. Неявнополюсные роторы используются в синхронных генераторах рассчитанных на скорость вращения ротора 1500 и 3000 оборотов в минуту. В синхронных двигателях используют только явнополюсные роторы.
Явнополюсный ротор содержит вал, на котором закреплен обод, а к нему крепятся полюса. Сердечники полюсов набираются из пластин, из электротехнической стали толщиной 0,5 мм, на полюсах крепится обмотка возбуждения, по которой пропускают постоянный ток, подводимый через щетки и контактные кольца, закрепленные на роторе. Кроме этого в сердечниках полюсов делают пазы, в которые укладывают медные стержни, по одному стержню в каждый паз. С торцов стержни между собой закорачиваются сегментами или кольцами, образуя короткозамкнутую обмотку такого же типа как обмотка у короткозамкнутого ротора асинхронного двигателя, которая является пусковой обмоткой.
На электрических схемах синхронная машина изображается в виде двух концентрических окружностей (внешняя окружность изображает обмотку ротора). К обмотке статора подключается трёхфазная сеть, а к обмотке ротора сеть постоянного тока. Условное изображение синхронной машины приведено ниже:
При пуске обмотка статора подключается к трехфазной сети. Ротор приводится в движении благодаря наличию короткозамкнутой пусковой обмотки. Трехфазные токи, проходя по обмоткам статора создают вращающееся магнитное поле, которое вращается со скоростью ?0 Поле статора, вращаясь, пересекает стержни пусковой обмотки, индуцируя в них ЭДС, под действием которой по ним будут протекать токи. При взаимодействии этих токов с вращающимся полем статора создается электромагнитный момент, приложенный к ротору, ротор придет во вращение. Обмотка возбуждения на период пуска замыкается на резистор с целью уменьшения возникающих в ней напряжений. В конце пуска, когда скорость ротора становится достаточно близкой к скорости вращения магнитного поля статора (0,95-0,98) ?0, обмотку возбуждения отключают от резистора, и на нее подается постоянный ток. Постоянное магнитное поле вращающегося ротора сцепляется с вращающим полем статора, и ротор втягивается в синхронизм. После этого ротор продолжает вращаться со скоростью, развивая вращающий момент. Пусковая обмотка при этом перестает работать, так как поле статора уже не пересекает стержни пусковой обмотки, и ток в ней становится равным нулю.
Стартеры Современные пусковые устройства легко запускаются одним поворотом ключа в замке зажигания. Но за каждым элементом процесса пуска скрывается целый ряд сложных технических операций - от запуска стартера, контроля зацепления шестерни привода стартера и зубчатого венца маховика и до схемы блокировки, служащей для того, чтобы стартер не запускался при работающем двигателе. Все компоненты стартера должны быть тщательно подобраны, чтобы слаженно и долговременно работать и выдерживать огромное число запусков двигателя. У легкового автомобиля при движении по городу и пробеге около15000 км это около 2000 запусков двигателя в год.
Принцип действия. Двигатель внутреннего сгорания начинает самостоятельно работать при условии, что его коленчатый вал вращается с определенной (пусковой) частотой, при которой обеспечивается нормальное протекание процессов смесеобразования, воспламенения и сгорания топлива. Пусковая частота вращения бензиновых двигателей составляет 40-50 об/мин. У дизелей необходимо вращать коленчатый вал с большей частотой (100-250 об/мин), так как при медленном вращении сжимаемый воздух не нагревается до необходимой температуры и топливо, впрыснутое в камеру сгорания, не воспламеняется. Эти частоты вращения взяты для примера при плюсовой температуре окружающего воздуха. При минусовых температурах скорость вращения необходима большая. Стартер - устройство, обеспечивающее вращение коленчатого вала с пусковой частотой. При прокручивании двигателя стартер должен преодолеть момент сопротивления, создаваемый силами трения и компрессией, а при включении - и момент инерции вращающихся частей двигателя.
Составляющие, которые определяют развиваемый стартером крутящий момент, зависят от объема и конструкций двигателя, числа цилиндров, степени сжатия, вязкости масла и частоты вращения. Стартер состоит из электродвигателя постоянного тока, механизма привода и механизма управления.
Конструкция электродвигателей почти одинакова у всех стартеров. Статоры стартеров изготовляются либо из постоянных магнитов четырех или шестиполюсными(нового образца), либо последовательного возбуждения четырехполюсными обмотками. Для уменьшения частоты вращения якоря в режиме холостого хода применяют электродвигатели смешанного возбуждения.
Передача крутящего момента от стартера к коленчатому валу осуществляется через шестерню, находящуюся в зацеплении с зубчатым венцом маховика.
Для увеличения крутящего момента на коленчатом валу применяется понижающая передача с передаточным числом 10-15. Шестерня стартера должна находиться в зацеплении с зубчатым венцом только во время пуска двигателя. Для этого шестерня и вал электродвигателя снабжены шлицами, которые допускают осевое перемещение шестерни по валу для сцепления и расцепления ее с зубчатым венцом маховика.
Перемещение шестерни в современных стартерах осуществляется электромагнитным реле, подвижной сердечник которого через рычаг передает на шестерню осевое усилие. Работой электромагнитного реле управляет водитель через замок зажигания и разгрузочное реле.
После пуска частота вращения коленчатого вала достигает 1000 об/мин. Если при этом вращение будет передаваться на якорь стартера, его частота вращения повысится до 10000-15000 об/мин. Даже при кратковременном увеличении частоты вращения якоря до такой величины (пока водитель не отключит стартер) возможен разнос якоря. Для предохранения якоря стартера от разноса усилие от вала якоря к шестерне привода у большинства стартеров передается через муфту свободного хода (бендикс).
Муфта обеспечивает передачу крутящего момента только в одном направлении - от вала якоря к маховику. На автомобилях применяют стартеры с электромагнитным включением и дистанционным управлением. Принцип работы стартера заключается в следующем: При замыкании контактов замка зажигания по втягивающей обмотке электромагнита протекает ток, плунжер электромагнита втягивается и включается у держивающая обмотка электромагнита.
Плунжер электромагнита и соединенный с ним рычаг (вилка) перемещает шестерню бендикса.
Одновременно плунжер давит на астину, которая в момент ввода шестерни в зацепление с венцом маховика замыкает контакты. Ток через замкнутые контакты поступает в обмотку электродвигателя, и якорь начинает вращаться.
Схема включения стартера. После пуска двигателя водитель с помощью замка зажигания разрывает цепь 50 обмотки электромагнита. Под действием пружины размыкаются контакты электромагнита, и шестерня бендикса возвращается в исходное положение.
2. Автомобильные генераторы и принцип их работы
Тенденции развития
Долгое время основным источником электрической энергии на автомобилях являлись генераторы постоянного тока, которые обеспечивали требования эксплуатации автомобилей выпуска до 60-х годов по максимальной мощности, характеристикам и сроку службы. Начало 60-х годов в отечественном автомобилестроении характеризовалось значительным увеличением срока службы автомобилей, снижением эксплуатационных затрат на обслуживание и ремонт, повышением требований к безопасности дорожного движения и комфорту пассажиров. В связи с этим выявилась необходимость значительного увеличения мощности генератора, срока его службы, улучшения характеристик и снижения эксплуатационных затрат. Одновременно существенно повысились требования к максимальной частоте вращения и габаритным размерам генератора исходя из условий его компоновки в ограниченном подкапотном пространстве автомобиля.
Удовлетворение указанным требованиям путем совершенствования конструкции и технологии производства генераторов постоянного тока, учитывая низкую надежность работы в эксплуатации щеточно-коллекторного узла и малый срок его службы, а также большие габариты и массу генератора, практически оказалось неосуществимо. С помощью научного поиска и исследований было определено новое направление в развитии автомобильных генераторов. Ими явились генераторы переменного тока.
В генераторах постоянного тока таким выпрямителем является щеточно-коллекторный узел, выпрямляющий переменный ток, полученный в обмотках якоря. Развитие полупроводниковой техники позволило применить в генераторах переменного тока более совершенный выпрямитель на полупроводниковых вентилях (диодах). При этом генератор получил качества, которые обеспечили ему широкое распространение в автомобилестроении.
Основными технико-экономическими преимуществами генераторов переменного тока перед генераторами постоянного тока являются: уменьшение в 1,8 . 2,5 раза массы генератора при той же мощности и примерно в 3 раза расхода меди; большая максимальная мощность при равных габаритах; меньшее значение начальных частот вращения и обеспечение более высокой степени заряженности аккумуляторных батарей; значительное упрощение схемы и конструкции регулирующего устройства вследствие исключения из него элемента ограничения тока и реле обратного тока; уменьшение стоимости эксплуатационных затрат в связи с большей надежностью работы и повышенным сроком службы.
Первые автомобильные генераторы переменного тока были спроектированы для работы с отдельными селеновыми выпрямителями и вибрационными регуляторами напряжения. Селеновые выпрямители имели значительные размеры и их приходилось размещать отдельно от генератора в местах, где обеспечивалось хорошее охлаждение. Для соединения селенового выпрямителя с генератором требовалась дополнительная проводка.
Кроме того, селеновые выпрямители недостаточно теплостойки и допускают максимальную рабочую температуру не выше + 80 0 С. Поэтому в дальнейшем селеновые выпрямители были заменены выпрямителями, состоящими из кремниевых диодов, которые более теплостойки и имеют значительно меньшие размеры, что попозволяет размещать их внутри генератора.
На смену вибрационным регуляторам напряжения пришли сначала контактно-транзисторные, а затем бесконтактные на дискретных элементах и бесконтактные интегральные регуляторы. Габариты интегральных регуляторов позволяют встраивать их в генератор, который со встроенными регулятором и выпрямительным блоком называется генераторной установкой.
Для автомобильных генераторов надежность и срок службы определяются в основном тремя факторами: качеством электрической изоляции; качеством подшипниковых узлов; надежностью щеточно-контактных устройств.
Первые два фактора зависят от уровня развития смежных производств. Третий фактор может быть исключен посредством разработки бесконтактных генераторов, имеющих более высокую надежность и, следовательно, больший ресурс, чем контактные. Это обстоятельство стимулировало создание автомобильных бесконтактных генераторов переменного тока с электромагнитным возбуждением - индукторных генераторов и генераторов с укороченными полюсами.
Индукторные генераторы нашли широкое применение на тракторах и сельхозмашинах благодаря простоте конструкции, надежности при работе в тяжелых условиях эксплуатации (пыль, грязь, влага, вибрации) и невысокой стоимости.
Применение на автомобилях существующих конструкций индукторных генераторов сдерживается из-за их основных недостатков: - невысоких удельных показателей;
- повышенного уровня пульсации выпрямленного напряжения;
- повышенного магнитного шума.
Дальнейшее совершенствование конструкции и устранение вышеперечисленных недостатков позволят применять индукторные генераторы на автомобилях.
Производство бесщёточных генераторов с укороченными полюсами только начинается, а первыми моделями этого семейства являются генераторы 45.3701 и 49.3701, которые планируется устанавливать на автомобили семейства УА3.
Принцип действия генераторов переменного тока
Упрощенная схема устройства автомобильного генератора переменного тока с клювообразным ротором представлена на рис.
Автомобильный генератор переменного тока с клювообразным ротором
В крышке 4 со стороны контактных колец установлены пластмассовый щеткодержатель 8 с двумя прямоугольными меднографитовыми щетками 6 и выпрямительный блок 1. При помощи крыльчатки 15 создается притяжная вентиляция для охлаждения генератора. Привод генератора осуществляется при помощи шкива 13.
Принцип действия генератора заключается в следующем. При включении замка зажигания на обмотку возбуждения 2 подается напряжение аккумуляторной батареи, которое вызывает появление тока возбуждения. Ток возбуждения, проходя по обмотке возбуждения, создает магнитный поток, рабочая часть которого распределяется по клювообразным полюсам одной полярности. Выходя из полюсов, магнитный поток пересекает воздушный зазор, проходит по зубцам и спинке статора 10, еще раз пересекает воздушный зазор, входит в клювообразные полюсы другой полярности и замыкается через втулку и вал.
При вращении ротора 3 под каждым зубцом статора 10 проходит попеременно то положительный, то отрицательный полюс, т. е. магнитный поток, пересекающий обмотку статора 11, изменяется по величине и направлению. При этом в обмотках фазы будет индуцироваться переменная по величине и направлению ЭДС, действующее значение которой
где f - частота; w - число витков обмотки одной фазы; kоб - обмоточный коэффициент; Ф - магнитный поток.
где p - число пар полюсов; n - частота вращения.
3начение обмоточного коэффициента kоб зависит от числа пазов статора, приходящихся на полюс и фазу
Видео: Как устроен аккумулятор? Типы аккумуляторов (АКБ). В чём разница и как правильно заряжать? Как обслужить аккумулятор? Какой АКБ лучше? Секреты выбора аккумулятора для автомобиля. Правильная зарядка аккумулятора. Как проверить АКБ (аккумулятор) без нагрузочной вилки?
Для того чтобы завести двигатель, необходимо принудительно вращать его. Система электроснабжения и электрического пуска предназначена для вырабатывания необходимой электроэнергии и передачи ее от аккумуляторной батареи стартеру, который проворачивает двигатель. Аккумуляторная батарея служит источником электропитания для всех потребителей электроэнергии, имеющихся в автомобиле. Аккумуляторная батарея является одним из самых важных узлов автомобиля.
В любом автомобиле электрические узлы потребляют при работе ток от аккумуляторной батареи. Система электроснабжения предназначена для постоянного поддержания аккумуляторной батареи в полностью заряженном состоянии. Устройство, вырабатывающее электроэнергию, согласно стандарту SAE называется генератором.
Рис. Устройство аккумуляторной батареи: 1 — бак; 2 — межэлементное соединение; 3 — пробка; 4 — заливное отверстие; 5 — крышка аккумулятора; 6 — заливочная мастика; 7 — штырь; 8 — мостик баретки; 9 — предохранительный щиток; 10 — сепаратор; 11 — положительная пластина; 12 — отрицательная пластина; 13 — ребра
Во всех электрогенераторах для преобразования механической энергии в электрическую используется явление электромагнитной индукции. Принцип электромагнитной индукции заключается в том, что при перемещении проводника в магнитном поле в нем возникает электрический ток.
Главное назначение автомобильной аккумуляторной батареи — служить источником электрической энергии, необходимой для пуска двигателя, и резервным источником питания в случае, если энергии, вырабатываемой генератором, оказывается недостаточно для электроснабжения автомобиля. Аккумуляторная батарея служит также стабилизатором напряжения системы электроснабжения в целом. Аккумуляторная батарея действует как стабилизатор напряжения, поскольку она выполняет роль накопителя электроэнергии, отдающего во время пуска двигателя за короткое время большой (многоамперный) ток, и пополняемого постепенно генератором автомобиля в процессе подзарядки. Прежде чем проверять систему электроснабжения и электрического пуска, необходимо убедиться в том, что аккумуляторная батарея находится в хорошем (работоспособном) состоянии.
С устройством аккумуляторной батареи автомобиля вы можете в следующей статье.
Батарея в зависимости от требуемого напряжения содержит три или шесть последовательно соединенных аккумуляторов.
Стартерная свинцовая аккумуляторная батарея обычной конструкции с межэлементными перемычками над ячеичными крышками состоит из собранных в полублоки 2 к 3 положительных и отрицательных электродов (пластин), сепараторов 7, моноблока 12 (корпуса), крышек 7 с пробками 10, межэлементных перемычек 9, полюсных выводов 11 и предохранительного щитка 5.
Рис. Стартерная аккумуляторная батарея обычной конструкции:
1 — сепаратор; 2, 3 — полублоки соответственно положительных и отрицательных электродов; 4 — баретка; 5 — предохранительный щиток; 6 — мостик; 7 — крышка; 8 — заливочное отверстие; 9 — межэлементная перемычка; 10 — пробка; 11 — полюсный вывод; 12 — моноблок; 13 — опорная призма
Рис. Аккумуляторная батарея с общей крышкой:
1 — решетка; 2 — сепаратор; 3,4 — электроды соответственно положительный и отрицательный; 5, 12 — полублоки соответственно отрицательных и положительных электродов; 6 — блок электродов с сепараторами; 7 — корпус моноблока; 8 — полюсный вывод; 9 — обшая крышка; 10 — пробка; 11 — мостик с борном
Рис. Аккумуляторная батарея с сепараторами-конвертами:
1 — выступ моноблока: 2 — моноблок; 3 — электрод; 4 — крышка; 5 — пробка; 6 — планка; 7 — вывод; 8 — борн; 9 — мостик: 10 — перегородка; 11 — межэлементная перемычка; 12 — сепаратор-конверт
Аккумуляторная батарея с общей крышкой и межэлементными перемычками под крышкой дана на рисунке. Положительные 3 и отрицательные 4 электроды имеют решетку 1 с нанесенной на нее активной массой.
Для предохранения от коротких замыканий электроды разделены сепараторами 2. Положительные и отрицательные электроды соединены бареткой в полублоки 12 и 5. Полублоки объединяются в блоки, которые опускаются в секции моноблока и соединяются между собой межэлементными перемычками.
Электрические аккумуляторные батареи применяются в любом автомобиле и представляют собой автономный источник питания. АКБ накапливает энергию, которая затем питает бортовую сеть, когда это необходимо, и подает ток на стартер для запуска двигателя.
Назначение аккумулятора в автомобиле
Автомобильный аккумулятор принято обозначать аббревиатурой АКБ, что значит аккумуляторная кислотная батарея. Не все батареи относятся к этому типу, но в автомобилях наиболее распространены именно они.
Аккумулятор является важным компонентом в работе любого транспортного средства. Он выполняет следующие основные функции:
- Подача электроэнергии на стартер для запуска двигателя. Аккумулятор способен в течение 30 секунд подавать пусковой ток или ток холодной прокрутки на стартер, который, в свою очередь, запускает двигатель.
- Питание бортовой сети в случае недостаточной мощности (производительности) генератора.
- Автономное питание бортовой сети автомобиля.
Каждый аккумулятор имеет определенную емкость и заряд. При работе двигателя всю нагрузку на электропитание берет на себя генератор. Он же заряжает аккумулятор во время движения. Если мощности не хватает, подключается батарея. Определенное время АКБ может обеспечить автономное питание.
Генератор выходит на оптимальный режим производительности при достижении двигателем частоты вращения коленчатого вала 1600-1800 об/мин и более.
Располагается АКБ, как правило, в подкапотном пространстве автомобиля или закреплен на раме в случае крупного грузового транспорта. Это связано с тем, что кислота, находящаяся внутри, очень агрессивна и опасна для здоровья. Она может просочиться через корпус или выделиться в виде газа. С аккумулятором следует обращаться осторожно.
Более безопасны необслуживаемые АКБ, внутри которых нет жидкого электролита. Такие батареи практически не выделяют вредных паров и их можно использовать где угодно. Среди альтернативных мест размещения аккумулятора можно выделить багажное отделение и под сиденьем водителя.
Параметры АКБ
Обычная автомобильная батарея выдает напряжение в 12В. Этого хватает для питания бортовой сети. Для большегрузных автомобилей используются батареи с напряжением в 24В. По сути, это две обычные батареи, которые последовательно соединены. Емкость АКБ измеряется в Ампер-часах (А*ч). Для легкового транспорта емкость батареи находится в пределах 40-130 А*ч. Емкость показывает, какое время аккумулятор сможет давать энергию при нагрузке. Но эти величины измеряются при определенной нагрузке и при определенной температуре – 20°C. При других условиях параметры могут меняться.
Также важным показателем является ток холодной прокрутки или пусковой ток. Разные модели способны выдавать от 250А до 1300А. Ток холодной прокрутки – это то напряжение, которое способен отдать АКБ в течение 30 секунд при температуре 18°C. В иных условиях данный параметр может поменяться, например, зимой.
Устройство аккумулятора
На самом деле, стандартный аккумулятор – это шесть маленьких аккумуляторов, заключенных в один корпус. Шесть отсеков объединены в едином корпусе. Часто их называют банками. Каждая банка дает напряжение в 2,1В – 2,2В. Шесть банок соединены последовательно толстыми свинцовыми перемычками, что в итоге дает напряжение в 12,6В – 13,2В.
Автомобильный аккумулятор состоит из следующих основных элементов:
- пластиковый корпус;
- крышка;
- отрицательные пластины (электроды);
- положительные пластины;
- перемычки, соединяющие отсеки;
- жидкий электролит;
- сепараторы;
- положительный и отрицательный вывод (клеммы);
- заливные пробки.
Корпус и крышка
Корпус и крышка выполнены из пластика, который нейтрален к кислоте. В каждой банке находятся свинцовые пластины – электроды.
Пластины
Отрицательная пластина из губчатого свинца (Pb) называется катод, положительная пластина пористая с диоксидом свинца (PbO2) – анод. Чтобы батарея разряжалась не так быстро, используется не чистый свинец, а с применением разных присадок. Ранее добавляли 5% сурьмы, но процесс сульфатации все равно проходил быстро. В современных жидкостных аккумуляторах добавлен кальций. Он значительно снижает процесс сульфатации и повышает емкость АКБ до 70%. Если говорить про гелевые или AGM аккумуляторы, то в них применяется только чистый свинец. Это позволяет повысить мощность и отдаваемый пусковой ток до 1000-1300А.
Электролит
В каждой банке залит электролит. Это смесь серной кислоты и дистиллированной воды, в соотношении 35:65. Плотность электролита находится в пределах 1,23-1,31 г/см3. Чем она выше, тем батарея более устойчива к морозам.
Сепаратор
В простых жидкостных аккумуляторах между пластинами находится сепаратор. От слова “separate” – разделять. Обычно сепараторы изготавливаются из нейтрального пластика. Эти пластины разделяют положительные и отрицательные электроды от замыкания. Материалом для сепараторов служит ревертекс или эбонит. Также эти элементы иногда называют диэлектрической прослойкой.
В более современных необслуживаемых аккумуляторах в качестве сепараторов применяется микроволокно. Этот высокотехнологичный материал удерживает электролит внутри и не дает ему вытекать и испаряться. Пластины завернуты в микроволокно как в конверте и плотно прижаты друг к другу.
Клеммы и пробки
Клеммы аккумулятора также изготавливаются из свинца. К ним присоединяются контакты. На обслуживаемых аккумуляторах на корпусе располагаются заливные пробки. Их количество равно количеству банок. Они служат для заливки дистиллированной воды в случае необходимости.
Принцип работы
Между пластинами и электролитом непрерывно происходит электрохимическая реакция. При разряде химическая энергия преобразовывается в электрическую, а при заряде, наоборот, – электрическая в химическую. Когда аккумулятор подключен к потребителям энергии, то происходит его разрядка.
Происходит следующий процесс. На катоде идет восстановление диоксида свинца. Свинец на аноде окисляется. Серная кислота вступает в реакцию с металлами на обеих пластинах. При этой реакции образуется сульфат свинца. Процесс называется сульфатацией. Из серной кислоты выделяется водород, который затем вступает в реакцию с кислородом из положительно заряженной пластины. Образуется вода, а серная кислота расходуется. Плотность электролита понижается. Процесс реакции показан на картинке.
При зарядке весь процесс происходит в обратном порядке. Серная кислота восстанавливается. Вновь образуется диоксид свинца и серная кислота. При полной зарядке плотность электролита должна быть в пределах 1,29 гр/см3. Это значение показывает уровень содержания серной кислоты на один кубический сантиметр электролита.
Таким образом, работа батареи основана на циклах заряд-разряд. Если допустить глубокий разряд, процесс может быть необратимым. Останется только вода и сульфат свинца. Поэтому нужно всегда следить за уровнем заряда.
Зарядка, хранение и зависимость от температуры
После того как автомобильный аккумулятор запустил стартер и двигатель, происходит его зарядка от генератора. В снятом положении батарея заряжается зарядным устройством. Хранить аккумулятор с жидким электролитом можно только в строго горизонтальном положении и при определенной температуре 5°С -15°С. Это обусловлено тем, что электролит может вытечь, а осыпавшиеся пластины замкнуть на дне банки.
Разная температура также влияет на работу АКБ. При высокой температуре показатели мощности и токоотдачи высокие, но батарея быстрее разряжается и повышается расход воды. Электролит по своему составу не замерзает при минусовой температуре, но на сильном морозе он все же может это сделать. В мороз химические процессы замедляются, пусковой ток снижается, падает емкость батареи. Вот почему у водителей часто возникают проблемы с запуском двигателя зимой.
Разновидности аккумуляторов
Современные аккумуляторные батареи можно условно разделить на обслуживаемые и необслуживаемые.
Можно выделить следующие основные виды:
- АКБ с жидким электролитом.
- EFB аккумуляторы.
- AGM.
- Гелевые.
Аккумуляторы с жидким электролитом относятся к обслуживаемому типу. Это значит, что время от времени нужно следить за уровнем электролита, его плотностью и емкостью батареи. Их срок службы в среднем составляем 3-5 лет. Они доступны по цене и хорошо справляются со своей задачей в автомобиле. Поэтому остаются самыми распространёнными.
Батареи по технологии EFB появились сравнительно недавно. В них также находится жидкий электролит, но пластины завернуты в микроволокно. Материал впитывает электролит, что увеличивает площадь контакта с пластинами. Это также повышает емкость и мощность и позволяет снизить объем электролита по сравнению с обычными АКБ, делая такие батареи практически необслуживаемыми. Срок службы 4-5 лет. Стоимость приемлемая.
Аккумуляторы AGM относятся к классу необслуживаемых батарей. Это значит, что у них полностью герметичный корпус. На корпусе имеются газоотводные клапаны. Между пластинами находится стекловолокно, в порах которого электролит. Это позволяет значительно замедлить процесс сульфатации. Такие батареи не боятся полного разряда. Срок службы до 10 лет. Но есть минусы: высокая стоимость и обслуживание.
Гелевые
Это также необслуживаемые батареи. В электролит добавлены вещества, которые сгущают его и доводят до твердого состояния. Сам электролит выступает в роли сепаратора между пластинами. Срок службы до 10 лет, но требуется специальный уход, как и в случае с AGM. Не боятся глубокого разряда, но чувствительны к перезаряду и замыканию. Стоят в 3-4 раза дороже обычных.
Аккумуляторная батарея – это то устройство, которое требует от водителя внимания. Чтобы батарея прослужила долго, нужно знать ее устройство и принцип работы. При правильном уходе и условиях содержания АКБ проработает долгие годы.
Читайте также: