Mosfet что это в магнитоле
Некоторые модели магнитол имеют надпись на передней панели — MOSFET 50Wx4. Это означает, что усилитель модели собран на транзисторах по технологии MOSFET, и это гарантирует качество звучания. Такая надпись используется и на автомагнитолах компании Pioneer. Рассмотрим магнитолу Пионер MOSFET 50Wx4 и инструкцию по настройке.
Внешний вид и функции
Для примера возьмем автомагнитолу Pioneer DEH-5000UB. На передней панели находится большой дисплей с цифро-буквенной индикацией и кнопками управления. Он состоит из 16 символов. Изменить подсветку дисплея позволяют цветовые комбинации из 10 цветов. Основная часть дисплея отображает информацию:
На задней панели расположены USB и вспомогательный (AUX) входы. К ним подключаются внешние аудио источники.
Для управления устройством имеется диск управления, который работает как джойстик. Сам джойстик — рычажок MULTI-CONTROL — можно поворачивать, сдвигать вправо, влево, вверх или вниз. Нажимая кнопку SRC несколько раз выбираем один из сигналов: TUNER, COMPACT DISC, USB, AUX. Тюнер имеет три фиксированных диапазона, каждый из которых настраивается на 6 радиостанций и обеспечивает устойчивый прием FM и AM диапазонов.
При переключении режима воспроизведения с одного источника на другой возможны перепады громкости звука.
Для выравнивания громкости предусмотрена функция непрерывного сэмплирования. Существует много возможностей для управления встроенным проигрывателем компакт-дисков: выбор папки, выбор дорожки, ускоренная перемотка и пр.
Дополнительный линейный выход через разъем RCA позволяет соединять магнитолу с внешним усилителем или активным сабвуфером, для лучшего звучания низких частот.
Технические характеристики
Звучание звукового устройства определяется прежде всего усилителем мощности. Наша автомагнитола оснащена встроенным 4-канальным усилителем МОСФЕТ 50Wx4. При этом обеспечивается: согласование с акустикой 2 Ом., Hi-Fi класс по соотношению сигнал/шум, низкий выходной шум. Это обеспечивает чистоту и насыщенность звучания при воспроизведении музыки разных жанров.
- Общие.
- источник питания: 14,4 В постоянного тока: (допустимый диапазон от 10,8 В до 15,1 В);
- максимальный потребляемый ток: 10,0 А;
- размеры (Ш × В × Г): шасси — 178 мм × 50 мм × 162 мм, передняя панель — 188 мм × 58 мм × 22 мм;
- масса: 1,3 кг.
- максимальная выходная мощность: 50 Вт × 4, 50 Вт × 2/4 Ом + 70 Вт × 1/2 Ом (для сабвуфера);
- номинальная выходная мощность: 22 Вт × 4 (от 50 до 15 000 Гц, суммарное значение коэффициента нелинейных искажений 5%, нагрузка 4 Ом, оба канала задействованы);
- эквалайзер: нижние частоты: 40/80/100/160 Гц, средние частоты 200/500/1к/2к Гц, верхние частоты 3,15к/8к/10к/12,5к Г;
- сабвуфер (моно): частота 50/63/80/100/125 Гц.
- диапазон частот: 87,5 МГц до 108,0 МГц;
- отношение сигнал/шум: 75 дБ (сеть IEC-A).
Руководство по эксплуатации
В комплекте прилагается инструкция по применению магнитолы Pioneer MOSFET 50Wx4. Руководство содержит 5 основных пунктов:
- Перед началом эксплуатации.
- Управление устройством.
- Регулировки аудиопараметров.
- Начальные настройки.
- Другие функции.
Каждый пункт подробно описывает назначение элементов управления устройства, настройку качества звучания, работу с тюнером и внешними устройствами.
Настройка
При настройке магнитолы Пионер все действия производятся с помощью специального джойстика MULTI-CONTROL. Мануал содержит подробную инструкцию по регулировке различных параметров.
Чтобы вызвать главное меню, надо нажать MULTI-CONTROL. Поворачивая джойстик, выбираем AUDIO, нажимаем, чтобы выбрать. Для перехода к предыдущему меню нажать, а к главному меню — нажать и удерживать кнопку DISP/BACK/SCRL. Кнопка BAND/ESC вернет первоначальный экран.
Таким же образом выбираем: FADER/BALANCE (регулировка баланса), PRESET EQUALIZER (вызов графического эквалайзера), EQ SETTING 1 (настройка графического эквалайзера), EQ SETTING 2 (точная настройка эквалайзера), LOUDNESS (тонкомпенсация), SW SETTING 1 (включение/выключение сабвуфера), SW SETTING 2 (настройка сабвуфера), HIGH PASS FILTER (фильтр верхних частот), BASS BOOST (усилитель нижних звуковых частот), SRC LV ADJUST (регулировка уровня входного сигнала). С помощью меню HIGH PASS FILTER и BASS BOOST убираем искажения звука.
Эквалайзер служит для регулировки коррекции звука. Причем в устройстве уже имеется 5 предустановок: мощный, естественный, ровный, супербас. Есть еще установка CUSTOM — это регулируемая кривая, которую создаем сами. Если производить регулировку кривой эквалайзера, то она будет сохранена в памяти в CUSTOM.
Тонкомпенсация компенсирует недостаточное звуковое давление в нижнем и верхнем диапазонах звуковых частот на низкой громкости. С помощью MULTI-CONTROL выбираем LOUDNESS.
Как выключить
Чтобы выключить магнитолу Pioneer, нужно нажать и удерживать кнопку OFF, пока устройство не выключится.
Одна из статей формирования стоимости автомагнитолы – это именно используемый тип микросхемы Усилителя Низкой Частоты в выходном каскаде магнитолы (УНЧ). Именно эта микросхема, в основном, будет влиять на качество звучания. Важно знать, на звук так же влияет акустика, проводка, внешний усилитель (если такой имеется), шумоизоляция автомобиля, и многое другое – но если изначально использовался дешевый УНЧ, то никакого глобального улучшения в звуке добиться будет невозможно!
Небольшой обзор звуковых усилителей, используемых в автомагнитолах
При выборе штатной магнитолы на свой автомобиль, покупатели интересуются: почему при почти схожих характеристиках различных моделей магнитол, присутствует существенная разница в их стоимости? Экран одинаковый, GPS навигация есть и там, и там, и Bluetooth, и много другого схоже. НО, ЭТО С ПЕРВОГО ВЗГЛЯДА! Это все предисловие для большой статьи о штатных магнитолах…
Сейчас мы постараемся разобраться с усилителями звука штатных магнитол.
Одна из статей формирования стоимости автомагнитолы – это именно используемый тип микросхемы Усилителя Низкой Частоты в выходном каскаде магнитолы (УНЧ). Именно эта микросхема, в основном, будет влиять на качество звучания. Важно знать, на звук так же влияет акустика, проводка, внешний усилитель (если такой имеется), шумоизоляция автомобиля, и многое другое – но если изначально использовался дешевый УНЧ, то никакого глобального улучшения в звуке добиться будет невозможно!
Покупатель часто сталкивается с такой ситуацией – полное отсутствие в описании автомагнитолы используемого типа УНЧ. Указывают только выходную мощность (часто завышенную), реже — диапазон воспроизводимых частот и больше вообще никакой информации по звуку. Часто и на сайте завода изготовителя, в описании магнитолы эта информация отсутствует. Это делается вот почему, производитель ставит в свои магнитолы дешевый УНЧ и, конечно же, не говорит о модели, чтобы не спугнуть покупателя. О дорогом и качественном компоненте в своем изделии, уж точно молчать не будет… Поэтому, если вы любитель качественного звучания, перед покупкой обязательно поинтересуйтесь, какой тип микросхемы используется в магнитоле. Если информация будет закрыта, хотя бывает и так, что продавцы попросту могут этого и вовсе не знать, то скорее всего это бюджетный по звуку вариант штатного головного устройства…
Мощность звука. Полностью зависит от используемой микросхемы. И чем этот параметр больше, тем в итоге лучше, так как УНЧ воспроизводит без искажений только в начале своей Амплитудно Частотной Характеристики (АЧХ) — линейный режим работы. Именно поэтому акустику сопротивлением 2 Ом любят устанавливать в автомобили бизнес/люкс класса.
MOSFET. При описании усилителя часто можно увидеть на магнитолах эту надпись. Если производитель не обманывает, то в его изделии используется микросхема УНЧ, которая изготовлена по технологии MOSFET: это технология производства составных (биполярных + полевых) на одной подложке, где на входе стоит биполярный с низкоомным входом и раскачивает высокоомный вход полевого, у которого в свою очередь очень малое сопротивление открытого перехода.
Как следствие, согласованность по входу, и выходу, а также меньше рассеиваемая мощность. То есть, меньше уровень паразитных шумов. Такая технология используется в качественных усилителях. MOSFET - называются полевые транзисторы, характеристики которых очень хорошо подходят для применения в усилителях, так как у них не ВЧ-помех! У них считается самое лучшее соотношение сигнал/шум. Коротко, MOSFET это хорошо!
Ниже мы приводим основные типы микросхем УНЧ, используемые производителями в магнитолах. Это краткое описание поможет вам сделать правильный выбор, исходя из потребностей к качеству звука.
Хотим подчеркнуть, что критерии оценки звука для каждого индивидуальны!
Усилитель TDA 7388
Это бюджетная микросхема без выдающихся характеристик и устанавливает повсеместно во все дешевые магнитолы.
Характеристики:
4 канала x 41Вт МАХ при нагрузке 4Ом
коэффициент нелинейных искажений 4 x 25Вт 4Ом (14,4В, 1КГц) -10%.
Усилитель TDA 7850 MOSFET
Характеристики:
- мощность 4 канала x 50Вт/4Oм МАХ. (4х30Вт/4Oм 14.4В, 1КГц, 10 %)
- мощность 4 канала x 80Вт/2Oм МАХ. (4х55Вт/2Oм 14.4В, 1КГц, 10 %)
- изготовлен по технологии MOSFET
Усилитель отлично согласуется с акустикой 2Ом. Имеет низкий уровень паразитных шумов, высокий показатель соотношения сигнал/шум, который соответствует классу HI-FI. Дает насыщенную звуковую картину. Отличное звучание. Устанавливается в такие аппараты, как RedPower , некоторые модели Carmedia , DayStar и другие.
Усилитель TDA 7560 MOSFET
Более дешевый аналог модели УНЧ TDA7850. Имеет схожие основные характеристики, но значительно дешевле в стоимости. Разрабатывался специально для использования в автомобиле.
Характеристики:
- мощность 4 канала x 50Вт/4Oм МАХ. (4х30Вт/4Oм 14.4В, 1КГЦ, 10 %)
- мощность 4 канала x 80Вт/2Oм МАХ. (4х55Вт/2Oм 14.4В, 1КГц, 10 %)
Усилитель TDA 7851A MOSFET
Дальнейшее развитие усилителя TDA 7850, но адаптированный специально для использования в автомагнитолах. Имеет идентичный характеристики с УНЧ 7850, но незначительно снижена выходная мощность, за счет этого производитель добился меньшего тепловыделения в ограниченном объеме магнитолы.
Характеристики:
- мощность 4 канала x 48Вт/4Oм МАХ. (4х28Вт/4Oм 14.4В, 1КГц, 10 %)
- мощность 4 канала x 72Вт/2Oм МАХ.
- изготовлен по технологии MOSFET
Итог
Подводя итоги, можно выделить несколько важных пунктов:
На сегодняшний день, среди достаточного количества разновидностей транзисторов выделяют два класса: p-n - переходные транзисторы (биполярные) и транзисторы с изолированным полупроводниковым затвором (полевые).
Другое название, которое можно встретить при описании полевых транзисторов – МОП (металл – окисел - полупроводник). Обусловлено это тем, что в качестве диэлектрического материала в основном используется окись кремния (SiO2).
Еще одно, довольно распространенное название – МДП (металл – диэлектрик - полупроводник).
Немного пояснений. Очень часто можно услышать термины MOSFET, мосфет, MOS-транзистор. Данный термин порой вводит в заблуждение новичков в электронике.
Что же это такое MOSFET ?
MOSFET – это сокращение от двух английских словосочетаний: Metal-Oxide-Semiconductor (металл – окисел – полупроводник) и Field-Effect-Transistors (транзистор, управляемый электрическим полем). Поэтому MOSFET – это не что иное, как обычный МОП-транзистор.
Думаю, теперь понятно, что термины мосфет, MOSFET, MOS, МДП, МОП обозначают одно и тоже, а именно полевой транзистор с изолированным затвором.
Внешний вид одного из широко распространённых мосфетов - IRFZ44N.
Стоит помнить, что наравне с аббревиатурой MOSFET применяется сокращение J-FET (Junction – переход). Транзистор J-FET также является полевым, но управление им осуществляется за счёт применения в нём управляющего p-n перехода. В отличие от MOSFET'а, J-FET имеет немного иную структуру.
Принцип работы полевого транзистора.
Суть работы полевого транзистора заключается в возможности управления протекающим через него током с помощью электрического поля (напряжения). Этим он выгодно отличается от транзисторов биполярного типа, где управление большим выходным током осуществляется с помощью малого входного тока.
Упрощённая модель полевого транзистора с изолированным затвором.
Взглянем на упрощённую модель полевого транзистора с изолированным затвором (см. рис.). Поскольку мосфеты бывают с разным типом проводимости (n или p), то на рисунке изображён полевой транзистор с изолированным затвором и каналом n-типа.
Упрощённая модель полевого транзистора с изолированным затворомОснову МДП-транзистора составляет:
Подложка из кремния. Подложка может быть как из полупроводника p-типа, так и n-типа. Если подложка p-типа, то в полупроводнике в большей степени присутствуют положительно заряженные атомы в узлах кристаллической решётки кремния. Если подложка имеет тип n, то в полупроводнике в большей степени присутствуют отрицательно заряженные атомы и свободные электроны. В обоих случаях формирование полупроводника p или n типа достигается за счёт введения примесей.
Области полупроводника n+. Данные области сильно обогащены свободными электронами (поэтому "+"), что достигается введением примеси в полупроводник. К данным областям подключаются электроды истока и стока.
Диэлектрик. Он изолирует электрод затвора от кремниевой подложки. Сам диэлектрик выполняют из оксида кремния (SiO2). К поверхности диэлектрика подключен электрод затвора – управляющего электрода.
Теперь в двух словах опишем, как это всё работает.
Если между затвором и истоком приложить напряжение плюсом (+) к выводу затвора, то между металлическим выводом затвора и подложкой образуется поперечное электрическое поле. Оно в свою очередь начинает притягивать к приповерхностному слою у диэлектрика отрицательно заряженные свободные электроны, которые в небольшом количестве рассредоточены в кремниевой подложке.
Между истоком и стоком начинает протекать ток. Таким образом, за счёт внешнего управляющего напряжения контролируется проводимость полевого транзистора. Если снять управляющее напряжение с затвора, то проводящий канал в приповерхностном слое исчезнет и транзистор закроется – перестанет пропускать ток. Следует отметить, что на рисунке упрощённой модели показан полевой транзистор с каналом n-типа. Также существуют полевые транзисторы с каналом p-типа.
Показанная модель является сильно упрощённой. В реальности устройство современного MOS-транзистора гораздо сложнее. Но, несмотря на это, упрощённая модель наглядно и просто показывает идею, которая была заложена в его устройство.
О различии MOSFET'ов обогащённого и обеднённого типа можно прочесть тут. Там же показано, как различные МОП-транзисторы обозначаются на принципиальных схемах.
Нетрудно заметить, что электрод затвора и подложка вместе с диэлектриком, который находится между ними, формирует своеобразный электрический конденсатор. Обкладками служат металлический вывод затвора и область подложки, а изолятором между этими электродами – диэлектрик из оксида кремния (SiO2). Поэтому у полевого транзистора есть существенный параметр, который называется ёмкостью затвора.
Об остальных важных параметрах мосфетов я уже рассказывал на страницах сайта.
Полевые транзисторы в отличие от биполярных обладают меньшими собственными шумами на низких частотах. Поэтому их активно применяют в звукоусилительной технике. Так, например, современные микросхемы усилителей мощности низкой частоты для автомобильных CD/MP3-проигрывателей имеют в составе MOSFET'ы. На приборной панели автомобильного ресивера можно встретить надпись “Power MOSFET” или что-то похожее. Так производитель хвастается, давая понять, что он заботится не только о мощности, но и о качестве звука.
Полевой транзистор, в сравнении с транзисторами биполярного типа, обладает более высоким входным сопротивлением, которое может достигать 10 в 9-й степени Ом и более. Эта особенность позволяет рассматривать данные приборы как управляемые потенциалом или по-другому - напряжением. На сегодня это лучший вариант создания схем с достаточно низким потреблением электроэнергии в режиме статического покоя. Данное условие особенно актуально для статических схем памяти имеющих большое количество запоминающих ячеек.
Если говорить о ключевом режиме работы транзисторов, то в данном случае биполярные показывают лучшую производительность, так как падение напряжений на полевых вариантах очень значительно, что снижает общую эффективность работы всей схемы. Несмотря на это, в результате развития технологии изготовления полупроводниковых элементов, удалось избавиться и от этой проблемы. Современные образцы обладают малым сопротивлением канала и прекрасно работают на высоких частотах.
В результате поисков по улучшению характеристик мощных полевых транзисторов был изобретён гибридный электронный прибор – IGBT-транзистор, который представляет собой гибрид полевого и биполярного. Подробнее о IGBT-транзисторе можно прочесть здесь.
Технологические возможности и успехи в разработке мощных полевых транзисторов привели к тому, что в настоящее время не составляет особого труда приобрести их за приемлемую цену.
В связи с этим возрос интерес радиолюбителей к применению таких MOSFET транзисторов в своих электронных самоделках и проектах.
Стоит отметить тот факт, что MOSFET'ы существенно отличаются от своих биполярных собратьев, как по параметрам, так и своему устройству.
Пришло время ближе познакомиться с устройством и параметрами мощных MOSFET транзисторов, чтобы в случае необходимости более осознанно подобрать аналог для конкретного экземпляра, а также иметь возможность понимать суть тех или иных величин, указанных в даташите.
Что такое HEXFET транзистор?
В семействе полевых транзисторов есть отдельная группа мощных полупроводниковых приборов называемых HEXFET. Их принцип работы основан на весьма оригинальном техническом решении. Их структура представляет собой несколько тысяч МОП ячеек включенных параллельно.
Под многократным увеличением кристалл мощного HEXFET транзистора выглядит вот так.
Как видим, он имеет шестиугольную структуру.
Получается, что мощный MOSFET, по сути представляет собой эдакую супер-микросхему, в которой объединены тысячи отдельных простейших полевых транзисторов. В совокупности они создают один мощный транзистор, который может пропускать через себя большой ток и при этом практически не оказывать значительного сопротивления.
Благодаря особой структуре и технологии изготовления HEXFET, сопротивление их канала RDS(on) удалось заметно снизить. Это позволило решить проблему коммутации токов в несколько десятков ампер при напряжении до 1000 вольт.
Вот только небольшая область применения мощных HEXFET транзисторов:
Схемы коммутации электропитания.
Системы управления электродвигателями.
Усилители низкой частоты.
Ключи для управления мощными нагрузками.
Несмотря на то, что мосфеты, изготовленные по технологии HEXFET (параллельных каналов) обладают сравнительно небольшим сопротивлением открытого канала, сфера применения их ограничена, и они применяются в основном в высокочастотных сильноточных схемах. В высоковольтной силовой электронике предпочтение порой отдают схемам на основе IGBT.
Транзисторы HEXFET марки IRLZ44ZSИзображение MOSFET транзистора на принципиальной электрической схеме (N-канальный МОП).
Как и биполярные транзисторы, полевые структуры могут быть прямой проводимости или обратной. То есть с P-каналом или N-каналом. Выводы обозначаются следующим образом:
О том, как обозначаются полевые транзисторы разных типов на принципиальных схемах можно узнать на этой странице.
Основные параметры полевых транзисторов.
Вся совокупность параметров MOSFET может потребоваться только разработчикам сложной электронной аппаратуры и в даташите (справочном листе), как правило, не указывается. Достаточно знать основные параметры:
VDSS (Drain-to-Source Voltage) – напряжение между стоком и истоком. Это, как правило, напряжение питания вашей схемы. При подборе транзистора всегда необходимо помнить о 20% запасе.
ID (Continuous Drain Current) – ток стока или непрерывный ток стока. Всегда указывается при постоянной величине напряжения затвор-исток (например, VGS=10V). В даташите, как правило, указывается максимально возможный ток.
RDS(on) (Static Drain-to-Source On-Resistance) – сопротивление сток-исток открытого канала. При увеличении температуры кристалла сопротивление открытого канала увеличивается. Это легко увидеть на графике, взятом из даташита одного из мощных HEXFET транзисторов. Чем меньше сопротивление открытого канала (RDS(on)), тем лучше мосфет. Он меньше греется.
PD (Power Dissipation) – мощность транзистора в ваттах. По-иному этот параметр ещё называют мощностью рассеяния. В даташите на конкретное изделие величина данного параметра указывается для определённой температуры кристалла.
VGS (Gate-to-Source Voltage) – напряжение насыщения затвор-исток. Это напряжение, при превышении которого увеличения тока через канал не происходит. По сути, это максимальное напряжение между затвором и истоком.
VGS(th) (Gate Threshold Voltage) – пороговое напряжение включения транзистора. Это напряжение, при котором происходит открытие проводящего канала и он начинает пропускать ток между выводами истока и стока. Если между выводами затвора и истока приложить напряжение меньше VGS(th), то транзистор будет закрыт.
На графике видно, как уменьшается пороговое напряжение VGS(th) при увеличении температуры кристалла транзистора. При температуре 175°C оно составляет около 1 вольта, а при температуре 0°C около 2,4 вольт. Поэтому в даташите, как правило, указывается минимальное (min.) и максимальное (max.) пороговое напряжение.
Рассмотрим основные параметры мощного полевого HEXFET-транзистора на примере IRLZ44ZS фирмы International Rectifier. Несмотря на впечатляющие характеристики, он имеет малогабаритный корпус D 2 PAK для поверхностного монтажа. Глянем в datasheet и оценим параметры этого изделия.
Предельное напряжение сток-исток (VDSS): 55 Вольт.
Максимальный ток стока (ID): 51 Ампер.
Предельное напряжение затвор-исток (VGS): 16 Вольт.
Сопротивление сток-исток открытого канала (RDS(on)): 13,5 мОм.
Максимальная мощность (PD): 80 Ватт.
Сопротивление открытого канала IRLZ44ZS составляет всего лишь 13,5 миллиОм (0,0135 Ом)!
Хорошо видно, как при неизменном напряжении на затворе, но при повышении температуры уменьшается ток (с 51A (при t=25°C) до 36А (при t=100°C)). Мощность при температуре корпуса 25°C равна 80 Ваттам. Так же указаны некоторые параметры в импульсном режиме.
Транзисторы MOSFET обладают большим быстродействием, но у них есть один существенный недостаток – большая ёмкость затвора. В документах входная ёмкость затвора обозначается как Ciss (Input Capacitance).
На что влияет ёмкость затвора? Она в большой степени влияет на определённые свойства полевых транзисторов. Поскольку входная ёмкость достаточно велика, и может достигать десятков пикофарад, применение полевых транзисторов в цепях высокой частоты ограничивается.
В схемах переключения время заряда паразитной входной ёмкости транзистора влияет на скорость его срабатывания.
Важные особенности MOSFET транзисторов.
Очень важно при работе с полевыми транзисторами, особенно с изолированным затвором, помнить, что они “смертельно” боятся статического электричества. Впаивать их в схему можно только предварительно закоротив выводы между собой тонкой проволокой.
При хранении все выводы МОП-транзистора лучше закоротить с помощью обычной алюминиевой фольги. Это уменьшит риск пробоя затвора статическим электричеством. При монтаже его на печатную плату лучше использовать паяльную станцию, а не обычный электрический паяльник.
Дело в том, что обычный электрический паяльник не имеет защиты от статического электричества и не "развязан" от электросети через трансформатор. На его медном жале всегда присутствуют электромагнитные "наводки" из электросети.
Любой всплеск напряжения в электросети может повредить паяемый элемент. Поэтому, впаивая полевой транзистор в схему электрическим паяльником, мы рискуем повредить MOSFET-транзистор.
Читайте также: