Какие особенности были у модели лямбда
В ΛCDM (Лямбда холодная темная материя) или же Лямбда-CDM модель это параметризация из Большой взрыв космологический модель, в которой Вселенная состоит из трех основных компонентов: во-первых, космологическая постоянная обозначается Лямбда (Греческий Λ) и связанные с темная энергия; во-вторых, постулируемый холодная темная материя (сокращенно CDM); и в-третьих, обычные иметь значение. Его часто называют стандартная модель космологии Большого взрыва, потому что это простейшая модель, которая достаточно хорошо учитывает следующие свойства космоса:
- существование и структура космический микроволновый фон
- то крупномасштабная структура в распределении галактик
- наблюдаемый изобилие из водород (включая дейтерий), гелий и литий
- то ускоряющееся расширение Вселенной наблюдается в свете далеких галактик и сверхновые
Модель предполагает, что общая теория относительности это правильная теория гравитации в космологических масштабах. Он возник в конце 1990-х годов как космология согласованияпосле периода времени, когда разрозненные наблюдаемые свойства Вселенной казались несовместимыми, и не было единого мнения о структуре плотности энергии Вселенной.
Модель ΛCDM можно расширить, добавив космологическая инфляция, квинтэссенция и другие элементы, которые являются текущими областями спекуляций и исследований в космологии.
Некоторые альтернативные модели ставят под сомнение допущения модели ΛCDM. Примеры таких модифицированная ньютоновская динамика, энтропийная гравитация, модифицированная гравитация, теории крупномасштабных изменений плотности материи Вселенной, биметрическая гравитация, масштабная инвариантность пустого пространства и распадающаяся темная материя (DDM). [1] [2] [3] [4] [5]
Содержание
Обзор
Лямбда-CDM, ускоренное расширение Вселенной. График времени на этой схематической диаграмме простирается от эры Большого взрыва / инфляции 13,7 млрд лет назад до настоящего космологического времени.
Большинство современных космологических моделей основаны на космологический принцип, в котором говорится, что наше место наблюдения во Вселенной не является необычным или особенным; в достаточно большом масштабе Вселенная выглядит одинаково во всех направлениях (изотропия) и из любого места (однородность). [6]
Модель включает расширение метрического пространства, которое хорошо задокументировано как красное смещение заметных спектральных линий поглощения или излучения в свете далеких галактик и как замедление времени затухания света на кривых светимости сверхновой. Оба эффекта приписываются Доплеровский сдвиг в электромагнитном излучении при его перемещении в расширяющемся пространстве. Хотя это расширение увеличивает расстояние между объектами, которые не находятся под общим гравитационным влиянием, оно не увеличивает размер объектов (например, галактик) в космосе. Это также позволяет далеким галактикам удаляться друг от друга со скоростью, превышающей скорость света; локальное расширение меньше скорости света, но расширение, суммированное на большие расстояния, в совокупности может превышать скорость света.
Письмо Λ < displaystyle Lambda>(лямбда) представляет космологическая постоянная, который в настоящее время связан с энергией вакуума или темная энергия в пустом пространстве, который используется для объяснения современного ускоряющегося расширения пространства против притягивающего воздействия гравитации. Космологическая постоянная имеет отрицательное давление, п = − ρ c 2 < displaystyle p = - rho c ^ > , что способствует тензор энергии-импульса что, согласно общей теории относительности, вызывает ускоренное расширение. Доля темной энергии в общей плотности энергии нашей (плоской или почти плоской) Вселенной, Ω Λ < displaystyle Omega _ < Lambda>> , оценивается в 0,669 ± 0,038 по данным 2018 г. Обзор темной энергии результаты с использованием Сверхновые типа Ia [7] или 0,6847 ± 0,0073 на основе выпуска 2018 г. Планк спутник данных, или более 68,3% (оценка 2018 г.) плотности массы-энергии Вселенной. [8]
Холодная темная материя как предполагается в настоящее время:
не-барионный Он состоит из вещества, отличного от протонов и нейтронов (и электронов, по соглашению, хотя электроны не являются барионами). холодный Его скорость намного меньше скорости света в эпоху равенства излучения и материи (таким образом, нейтрино исключены, поскольку они небарионны, но не холодны). безрассудный Он не может охлаждаться излучением фотонов. бесстолкновительный Частицы темной материи взаимодействуют друг с другом и другими частицами только посредством гравитации и, возможно, слабого взаимодействия.
Темная материя составляет около 26,5% [9] плотности массы-энергии Вселенной. Остальные 4,9% [9] включает всю обычную материю, наблюдаемую в виде атомов, химических элементов, газа и плазмы, из которых состоят видимые планеты, звезды и галактики. Подавляющее большинство обычного вещества во Вселенной невидимо, поскольку видимые звезды и газ внутри галактик и скоплений составляют менее 10% вклада обычного вещества в плотность массы-энергии Вселенной. [10]
Также плотность энергии включает очень небольшую долю (~ 0,01%) в космическом микроволновом фоновом излучении и не более 0,5% в реликтовые нейтрино. Хотя сегодня они очень малы, в далеком прошлом они были гораздо важнее, преобладали в материи при красном смещении> 3200.
Доброго времени суток, уважаемое хабрасообщество! Как я и обещал после прошлой статьи по теории струн, сегодня мы попробуем приоткрыть завесу тайн и пробежаться по костылям новым веяниям в космологии — попробуем взглянуть на тернистый путь, который прошли ученые, и разобраться, к чему же они в конце концов пришли в попытке описать происхождение, жизнь и будущее нашей Вселенной. В процессе написания статья немало разрослась, поэтому я все-таки решил разделить её на две части.
Космологическая постоянная
Практический смысл космологической постоянной заключался в том, что пустое пространство на самом деле не пустое — в нём имеется некое поле, которое оказывает воздействие на находящееся в нём вещество, извлекая нужную для этого энергию из ниоткуда. Подобные выводы вызывали у современников недоумение, и коллеги не преминули обрушиться на Эйнштейна с критикой.
В 1922 году Александр Фридман представил собственную модель Вселенной, которая не использовала космологическую постоянную. Но по его модели получалось, что Вселенная должна либо постоянно расширяться, либо постоянно сжиматься. Изначально Эйнштейн к данной модели отнесся отрицательно.
Но в 1929 году Эдвин Хаббл поставил точку в данном вопросе, экспериментально подтвердив, что Вселенная расширяется — то есть, расстояние между двумя любыми галактиками с течением времени постоянно увеличивается, а не остаётся неизменным. Эйнштейн признал свою неправоту, сказав, что введение космологической постоянной было его величайшей ошибкой.
Открытие расширяющейся Вселенной стало новым толчком для науки — привело к созданию теории Большого взрыва. Да и современная Лямбда-CDM модель Вселенной базируется именно на модели Фридмана, включая в себя помимо нее и космологическую постоянную, и тёмную материю, и тёмную энергию.
Тёмная материя
До 1998 года учёные усердно работали над теорией Большого взрыва, которая постепенно все больше и больше развивалась. Но общая суть оставалась неизменной: изначально вся материя была сосредоточена в одной-единственной точке, и много лет назад произошел Большой взрыв, дав начало нашей Вселенной.
Математически теория базировалась на ОТО, но она не была в состоянии описать все наблюдаемые явления. Например, было установлено, что края всех галактик вращаются гораздо быстрее, чем это следует из законов Ньютона, которые являются предельным случаем ОТО.
На тот момент у тёмной материи не было экспериментальных подтверждений, и для объяснения этого факта было предложено два варианта:
- Тёмную материю просто не видно. Черные дыры, коричневые карлики, нейтронные звезды, кварковые звезды, преонные звезды, многочисленные планеты в телескоп не узреть на таких расстояниях, а они вполне себе обычные объекты во Вселенной. Хотя согласно различным космологическим теориям и наблюдениям за древними космическими объектами — так много подобных объектов быть не должно.
- Тёмная материя состоит из невидимых частиц. Хотя сама возможность существования подобных частиц в науке сейчас под большим вопросом. Тем не менее тёмная материя должна состоять не только из слабо взаимодействующих, но и довольно массивных частиц. Подпадающие под такие характеристики частицы усиленно ищутся, но пока безуспешно.
Благодаря тёмной материи ученые смогли объяснить и образование галактик, так как уровень схлопывания межзвездного газа явно был недостаточен для образования галактики, а другой материи пригодной для описания галактикообразования на тот момент не было известно.
Помимо этого, у тёмной материи было и любопытное следствие, так как по расчетам её масса выходила аж очень большой — до 26 % всей массы нашей Вселенной — то она должна создавать сильные гравитационные поля, которые способствуют притяжению материи друг к другу и, как следствие, замедляют расширение Вселенной.
Исходя из этого встал вопрос о том, насколько быстро замедляется расширение Вселенной. Если тёмной материи относительно мало, то Вселенная может расширяться вечно, постепенно замедляя скорость расширения, но никогда не доводя её до нуля. Некоторые учёные считали, что тёмной материи даже больше, чем мы думаем, и она рано или поздно приведёт к тому, что Вселенная, не выдержав собственную массивность, перестанет расширяться и начнёт сжиматься обратно, пока не сколлапсирует в ту самую одну-единственную точку или сингулярность — так называемая теория Большого схлопывания. Чтобы выяснить, что именно нас ждёт, учёные продолжали свои исследования.
Тёмная энергия
И в 1998 году, наблюдая за сверхновыми звёздами, ученые сделали знаменательное открытие — оказывается, 5 млрд. лет назад Вселенная начала расширяться с ускорением. То есть с каждым годом Вселенная расширяется всё быстрее и быстрее, как будто материю подталкивает на разгон некая неучтенная энергия.
Итогом этого стало возникновение понятия тёмной энергии, которую ввели именно для объяснения ускоренного расширения Вселенной. Это было чисто абстрактное понятие, так как сведения относительно её природы практически отсутствовали даже в виде гипотез, в отличие от той же тёмной материи.
Позднее ученые предложили несколько вариантов сущности тёмной энергии — один из самых очевидных, что это просто плотность энергии вакуума (согласно квантовой механике, из-за принципа неопределённости Гейзенберга даже в совсем пустом пространстве постоянно происходят квантовые флуктуации — рождаются и исчезают частицы, и хотя в среднем частиц в вакууме нет, энергия в среднем в вакууме есть). То есть именно то, чем обуславливалось введение космологической постоянной в уравнения ОТО.
Однако, на текущий момент не существует достоверных методов для вычисления плотности энергии вакуума (получается очень много, гораздо больше, чем должно быть), что ставит под сомнение состоятельность гипотезы, и интерпретируется некоторыми учеными, как неспособность дать адекватное описание.
Несмотря на это, космологическая константа — это во многих отношениях самое простое решение проблемы ускоряющейся Вселенной, когда единственное числовое значение объясняет множество наблюдений. Поэтому нынешняя общепринятая лямбда-CDM модель включает в себя космологическую константу как существенный элемент.
Однако у обоих вариантов имеются проблемы с экспериментальным подтверждением. Если это действительно какое-то скалярное поле, оно может теоретически как-то с чем-то и взаимодействовать, так что можно зафиксировать какие-либо признаки этого взаимодействия. А вот если это постоянная энергия вакуума, то перспектив в этом направлении вообще практически нет.
Существует ещё третий вариант для скептиков: тёмная энергия, как и тёмная материя — нечто вроде эпициклов Птолемея, то есть абсолютно выдуманные конструкции, придуманные, чтобы теория, хромая на обе ноги, сходилась с реальностью. Сейчас предпринимаются попытки описать ускоренное расширение Вселенной без связи с тёмной энергией, а, например, через гравитацию. Но как сказал астрофизик Ethan Siegel:
Хотя такие альтернативы и получают широкое освещение в прессе, почти все профессиональные астрофизики уверены, что тёмная энергия существует, и что ни одна из конкурирующих теорий не может успешно объяснить наблюдения с таким же уровнем точности, как стандартная тёмная энергия.
В отдалённой перспективе, если тёмная энергия действительно есть, и она никуда не исчезнет со временем, то это может привести к любопытным последствиям. А именно, Вселенная станет расширяться всё быстрее и быстрее, из-за чего все близкие друг от друга объекты станут недоступными из-за ограничения в скорости обмена материей (300 000 км/с из СТО) — в конце концов удалятся на расстояние, за которое нельзя и никогда не будет можно заглянуть. Иными словами в конечном итоге каждая элементарная частица во Вселенной останется в гордом одиночестве, отгороженная от всего остального мира горизонтом событий. А кто-то говорит, что разорвет даже и их.
Тёмная жидкость
Она предполагает, что тёмная материя и тёмная энергия не являются отдельными физическими явлениями, как считалось ранее, и не имеют отдельного происхождения, а тесно связаны друг с другом и могут рассматриваться как две грани одной жидкости.
В галактических масштабах тёмная жидкость ведет себя как тёмная материя, а в более крупных масштабах её поведение становится похожим на тёмную энергию. Было показано, что простая тёмная жидкость с отрицательной массой обладает свойствами, необходимыми для объяснения как тёмной материи, так и тёмной энергии. При этом теория так же предполагает, что тёмная жидкость представляет собой особый вид жидкости, притягивающее и отталкивающее поведение которой зависит от локальной плотности энергии.
Другими словами идея теории состоит в том, что, когда тёмная жидкость находится в присутствии вещества, она усиливает силу гравитации около неё. Эффект всегда присутствует, но становится заметным только в присутствии очень большой массы, такой как галактика. Это описание аналогично теории тёмной материи, и подтверждается на частных случаях уравнений тёмной жидкости.
С другой стороны, в местах, где относительно мало материи, как, например, в пустотах (войдах) между сверхскоплениями галактик, эта теория предсказывает, что тёмная жидкость ослабляется и приобретает отрицательное давление. Таким образом, тёмная жидкость становится силой отталкивания, с эффектом, подобным эффекту тёмной энергии.
При этом теория тёмной жидкости выходит за пределы тёмной материи и тёмной энергии, поскольку предсказывает непрерывный диапазон притягивающих и отталкивающих качеств при различных случаях плотности вещества.
О дипольном отталкивателе, как и о некоторых других не менее интересных явлениях, я расскажу в следующей части статьи.
В очередном опусе Итана Сигеля резанула фраза
Пронаблюдав за удалёнными сверхновыми и измерив, как Вселенная расширялась миллиарды лет, астрономы обнаружили нечто удивительное, загадочное и неожиданное.
By observing distant supernovae and measuring how the Universe had expanded over billions of years, astronomers discovered something remarkable, puzzling and entirely unexpected
О какой неожиданности может идти речь? Там ведь совершенно шикарная история длиной в 80 лет с яркими открытиями и закрытиями. История про то, как на самом деле делается настоящая наука. История скорее про физиков, чем про физику.
О чём вообще весь сыр-бор?
Первую версию Общей Теории Относительности (ОТО) Альберт Эйнштейн представил публике 25 ноября 1915 года. В оригинале уравнения ОТО Эйнштейна выглядели вот так:
или, в современной записи, вот так:
Для неумеющего в тензоры читателя понятнее уравнение (1) в оригинальной записи Эйнштейна. Там написано, что энергия-импульс материи G равен кривизне пространства R плюс тензор Риччи S. (Этот самый тензор Риччи тоже есть кривизна, только в более другой форме).
Сейчас, решая уравнение ОТО, энергию-импульс обычно считают известным, а ищут как раз кривизну. Поэтому в современной записи стороны уравнения поменяли местами. Заодно поменяли буковки: G → T, S → Rμν.
Откуда есть пошла лямбда
Но физика — это вам не математика. Здесь нельзя взять формулу и напихать в неё добавочных слагаемых просто так. Нужно иметь очень веские основания, и теоретические, и экспериментальные.
Хотя ниже вы увидите, насколько мало Эйнштейн знал о Вселенной в те годы, но тогда, в 1916, такие основания у него были. Альберт Германович точно знал, что звёзды не попадали друг на друга и совершенно не собираются этого делать в обозримом будущем. Однако, в ОТО-1915 было только притяжение, которое нужно было чем-то сбалансировать.
Первое физическое толкование смысла лямбды
В такой трактовке ненулевое значение Λ означает, что наша Вселенная искривлена сама по себе, в том числе и при отсутствии какой-либо гравитации. Ну, вот такой нам достался мир. Однако, большинство физиков в это не верят, и считают, что у наблюдаемого искривления должна быть какая-то внутренняя причина. Какая-то неведомая доселе фигня, которую можно открыть.
На сегодняшний день измеренная кривизна пространства Вселенной таки равна нулю, но с очень паршивой точностью, порядка 0.4%. И не очень-то видно способов эту точность улучшить.
С измерениями кривизны есть две концептуальные проблемы.
Первая в том, что мы не можем измерить совсем пустое пространство, потому что просто ничего там не видим. А если там есть что-то, что мы таки видим, то пространство уже не пустое и, значит, уже дополнительно искривлено гравитацией.
Допустим, у нас есть как-то измеренные координаты объектов, плюс пачка фотографий этих объектов в разных ракурсах (снятых из разных точек). Тогда мы можем вычислить кривизну пространства. Например, гравитация Солнца отклоняет пролетающий мимо свет далёких звёзд. Во время солнечных затмений это отклонение можно измерить экспериментально и сравнить с предсказаниями ОТО.
Теперь наоборот: допустим, мы знаем кривизну пространства, и у нас есть пачка фотографий. Тогда, если кривизна достаточно хорошая, без чёрных дыр и т.п. — мы можем вычислить координаты объектов на фото. Именно так работают наши глаза, точнее мозги, когда вычисляют расстояние до объектов по двум фоткам с разных точек.
Поэтому измерить кривизну наблюдаемой Вселенной в целом мы можем только из очень окольных соображений.
Вселенная Фридмана
Meanwhile in Russia, не смотря на войны и революции, над теорией ОТО бился прапорщик (и по совместительству профессор) Александр Александрович Фридман. Он рассмотрел все варианты лямбд и выяснил следующее:
При Λ < 0 имеют место лишь силы притяжения, как гравитационные, так и вызванные кривизной впуклоговогнутого пространства. Рано или поздно звёзды и галактики в таком мире таки попадают друг на друга. Причём конец будет неожиданно быстрым и очень горячим.
Но самое интересное происходит при Λ = 0. Здесь всё зависит от начальных условий — т.е. координат и скоростей конкретных галактик. Возможны три варианта: большое сжатие, большой разлёт и стационарный вариант, когда галактики разлетаются, но с относительно небольшими скоростями и без ускорения.
Сегодня вышеописанные ситуации называются космологическими решениями Фридмана.
Статьи Фридмана 1922 и 1924 годов отменяли необходимость в лямбда-члене, из-за чего поначалу были приняты Эйнштейном в штыки.
За свою работу Фридман вполне мог претендовать на Нобелевку.
Летом 1925 он женился, поехал в свадебное путешествие в Крым, съел там немытую грушу, заразился тифом и в сентябре — умер.
И да, статья Итана про примерно такой график (конкретно на этом учтены данные на 2010 год):
Здесь по горизонтали отложено z — это красное смещение, по вертикали наблюдаемая яркость сверхновых особого типа Ia, которые всегда выделяют одно и то же количество энергии. Вообще, это два способа измерения одного и того же расстояния, но, так сказать, в разные моменты времени.
Серые палки — наблюдавшиеся события с их погрешностью измерений. Синим пунктиром отложено предсказание при Λ = 0, красной линией — аппроксимация фактически наблюдаемых значений. Отклонение красной линии от прямой означает, что Вселенная расширяется ускоренно. Но Эйнштейн об этом так и не узнал.
Вселенная Каптейна
Перейдём к экспериментальной части.
Голландский астроном Якобус Корнелиус Каптейн открыл звезду Каптейна в 1897, после чего приступил к opus magnum всей своей жизни. Объединяя огромное количество наблюдений разных обсерваторий, он попытался создать первую карту Вселенной. По его карте выходило, что вселенная имеет форму вращающегося (sic!) диска крышесносящего по тем временам размера 40000 световых лет, причём Солнце находится отнюдь не в центре, а вполне себе на задворках. Закончена и опубликована эта работа была только в 1922.
Для понимания уровня тогдашних знаний: то, что Каптейн считал невероятно огромной Вселенной, сегодня считается совершенно рядовой, ничем не примечательной среди миллиардов таких же… галактикой Млечный Путь. Тем не менее, заслуга Каптейна в том, что он открыл её вращение и приблизительно вычислил её центр.
Наблюдения Хаббла (астронома, а не телескопа)
Статью со своими открытиями, из которой следовало, что Вселенная значительно больше, чем наш Млечный путь, Хаббл представил американскому астрономическому обществу первого января 1925. За что и был освистан страдающими от похмелья коллегами, едва свыкшимися с расстояниями Каптейна.
Хаббл не унимался и прикрутил к телескопу ещё и спектрометр. Анализируя красное смещение галактик, он выяснил, что галактики разбегаются, а Вселенная, соответственно, расширяется. Заодно он открыл закон имени себя с константой имени себя (впрочем, закон был предсказан Леметром), и описал всё это в статьях к концу 20-ых годов. Согласно его наблюдениям, оказалась верна модель Фридмана для Λ = 0.
Это выбило из-под лямбды теперь уже и экспериментальные основания её существования.
Здесь ещё нужно упомянуть, что первоначальные оценки Хаббла были очень уж неточными и показывали возраст Вселенной порядка 2 миллиардов лет. Позднее это войдёт в противоречие с данными геофизиков, которые при помощи радиоизотопного анализа оценят возраст Земли в несколько миллиардов лет, и десятилетиями будет сильнейшей головной болью для физиков-космологов.
Стационарная Вселенная Хойла
С начала 30-ых годов вопрос с лямбдой считался решённым, и из мейнстримных физиков ей никто толком не занимался. Одним из редких исключений, рискнувших попереть супротив самого Эйнштейна, стал британец Фред Хойл.
Речь пойдёт о гелии. Этот элемент феноменально инертен и не хочет ни с чем реагировать. Причём не только химически, но и физически тоже, если мы говорим про гелий-4. Его ядро — альфа частица — имеет пиковую энергию связи на нуклон в своей области. см. рис из какого-то реферата:
Это значит, что альфа-частица не может присоединить дополнительные протоны или другую альфа-частицу иначе как случайно: это просто-напросто энергетически невыгодно. А в ядрах звёзд ничего кроме протонов и альфа-частиц и нет.
Возникал резонный вопрос: а откуда, собственно, взялись химические элементы тяжелее гелия?
Ближайшее ядро, в которое может превращаться гелий-4, это углерод-12. Но для этого нужно объединить три альфа-частицы.
Проблема в том, что вероятность столкновения трёх альфа-частиц одновременно слишком мала. А двухшаговый процесс (сначала сталкиваются две частицы, потом очень быстро, пока они не разлетелись обратно на две альфа-частицы, в них врезается ещё одна), в принципе, возможен, но расчёты Эдвина Солпитера показывали, что такой процесс идёт слишком вяло, чтобы производить существенные количества углерода.
Однако, по расчётам Хойла выходило, что при наличии такого уровня в три-альфа процессе наступает резонанс, и звёзды — красные гиганты производят достаточно много углерода для нашего существования.
Удивительно, но американцы решили провести небольшой эксперимент на своём ускорителе. И да — триумфально нашли нужный энергетический уровень на 7.65 МэВ, который физики-ядерщики всего мира почему-то проглядели во всех предыдущих экспериментах.
Сегодня такое возбуждённое состояние углерода-12, когда три альфа-частицы фактически выстраиваются по линии, называется хойловским. Соответствующая статья Хойла, Фаулера и супругов-астрономов Джефри и Маргерит Бёрбиджей является краеугольным камнем современных теорий звёздного нуклеосинтеза и настолько часто цитируется, что обозначается просто B²FH, без ссылок и расшифровок.
И — да, на сегодня это чуть ли не единственное известное успешное предсказание на основе антропного принципа.
Однако, из квантовых флуктуаций постоянно рождается новое вещество, причём так, что средняя плотность материи остаётся одинаковой. Расчёты показывают, что в одном кубическом километре пространства должен рождаться всего-навсего один протон раз в 300000 лет (а так же один электрон или что-то типа того для сохранения электрического заряда). Прекрасное число, чтобы исключить любую возможность какой-либо экспериментальной проверки!
Теория стационарной Вселенной серьёзно рассматривалась как альтернатива теории Большого Взрыва в 50-х и начале 60-х. Но экспериментальное открытие в 1964 году предсказанного ТББ реликтового излучения поставило на ней крест.
За статью B²FH дали Нобелевку. Но только Фаулеру, который распорядился провести десятидневный эксперимент. Ни супругам Бёрбиджам, проводившим длительные астрономические наблюдения и собственно написавшим статью, ни автору идеи Хойлу нобелевку не дали — за упорствование в космологической ереси.
Квантовая лямбда
Вернёмся к уравнению ОТО.
Слева (в современной записи) стоит кривизна пространства, сиречь гравитация по ОТО. Справа — тензор энергии-импульса. Под этим тензором стоит жутко сложный матан, но суть в следующем: там учтена вся-вся-вся материя Вселенной во всех видах и состояниях. И обычное вещество, и всякие хитрые частицы, и все виды излучений (кроме гравитации, которая слева).
Теперь мысленно перенесём лямбду вправо. В такой записи это будет не дополнительная кривизна, а какая-то неучтённая энергия (замечу, отрицательная, раз уж мы считаем лямбду положительной). И здесь просматриваются две возможности.
Первая гипотеза состоит в том, что лямбда — это энергия собственно вакуума. Звучит диковато, но на самом деле вполне согласуется с квантовой механикой. Возьмём кусок пространства и уберём из него всё, что хотя бы в принципе можно убрать. Уберём всё вещество, все частицы и все волны, независимо от их природы. Останутся только физические поля в невозмущённом состоянии. Полный штиль.
Так вот, у некоторых полей (например, Хиггсовских) в пустоте ненулевое значение. И теоретически у них есть некоторая энергия. Кроме того, в силу принципа неопределённости у любых полей есть квантовые флуктуации — и они тоже имеют некоторую энергию.
Вместо заключения
CDM (читается "Лямбда - Сидиэм") - сокращение от Lambda - Cold Dark Matter, современная стандартная космологическая модель, в которой пространственно - плоская вселенная заполнена, помимо обычной барионной материи, тёмной энергией (описываемой космологической постоянной? В уравнениях Эйнштейна) и холодной тёмной материей (англ. Cold Dark Matter. Согласно этой модели возраст вселенной равен 13, 75 0, 11 миллиардов лет.
Модель предполагает, что общая теория относительности является правильной теорией гравитации на космологических масштабах. Она возникла в конце 1990-х годов и предполагает инфляцию для объяснения пространственной плоскостности вселенной и начального спектра возмущений.
Большинство современных космологических моделей основано на космологическом принципе, который утверждает, что наше местоположение во вселенной никак особенно не выделяется и что на достаточно большом масштабе вселенная выглядит одинаково во всех направлениях (изотропность) и из каждого места (однородность. Этот принцип представляет собой не безусловное требование - постулат, а скорее презумпцию - то есть считается верным, пока не доказано обратное.
Модель включает в себя расширение вселенной, которое хорошо подтверждается космологическим красным смещением спектров удалённых галактик и квазаров.
Антиматерия. Свойства
По современным представлениям, силы, определяющие структуру материи (, образующее, и, образующееи), совершенно одинаковы () как для частиц, так и для античастиц. Это означает, что структура антивещества должна быть идентична структуре обычного вещества.
Свойства антивещества полностью совпадают со свойствами обычного вещества, рассматриваемого через зеркало (зеркальность возникает вследствиев).
В 2013 году эксперименты проводились на опытной установке, построенной на базе вакуумной ловушки ALPHA. Учёные провели измерения движения молекул антиматерии под действием гравитационного поля Земли. И хотя результаты оказались неточными, а измерения имеют низкую статистическую значимость, физики удовлетворены первыми опытами по прямому измерению гравитации антиматерии.
В ноябре 2015 года группа российских и зарубежных физиков на американскомRHIC экспериментально доказала идентичность структуры вещества и антивещества путём точного измерения сил взаимодействия между антипротонами, оказавшимися в этом плане неотличимыми от обычных протонов.
В 2016 году учёным коллаборации ALPHA впервые удалось измерить оптический спектр атома антиматерии, отличий в спектре антиводорода от спектра водорода не обнаружено.
Отличие вещества и антивещества возможно выявить только за счёт, однако при обычныхслабые эффекты слишком малы.
Проводятся эксперименты по обнаружению антивещества во Вселенной.
Михайлов Темная энергия. О Темной Материи и Темной Энергии
Темная энергия презентация.
Темная энергия. Если бы во Вселенной было еще больше темной энергии, она бы осталась почти бесформенной (слева), без тех крупных структур, которые мы видим (справа).
Похожие презентации
краткое содержание других презентаций на тему слайда
Сингулярность. Космологическая сингулярность
Текущая версия страницы покаопытными участниками и может значительно отличаться от, проверенной 15 сентября 2015; проверки требуют.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии , проверенной 15 сентября 2015; проверки требуют 26 правок .
У этого термина существуют и другие значения, см. Сингулярность .
Космологи́ческая сингуля́рность — состояние Вселенной в определённый момент времени в прошлом, когда плотность энергии (материи) и кривизна пространства-времени были очень велики — порядка планковских значений . Это состояние, вместе с последующим этапом эволюции Вселенной, пока плотность энергии (материи) оставалась высокой, называют также Большим взрывом . Космологическая сингулярность является одним из примеров гравитационных сингулярностей , предсказываемых общей теорией относительности (ОТО) и некоторыми другими теориями гравитации .
Возможность возникновения этой сингулярности при продолжении назад во времени любого решения ОТО, описывающего динамику расширения Вселенной , была строго доказана в 1967 году Стивеном Хокингом . Также он писал:
Результаты наших наблюдений подтверждают предположение о том, что Вселенная возникла в определённый момент времени. Однако сам момент начала творения, сингулярность, не подчиняется ни одному из известных законов физики.
Например, не могут быть одновременно бесконечными плотность и температура , т. к. при бесконечной плотности мера хаоса стремится к нулю, что не может совмещаться с бесконечной температурой.
Проблема существования космологической сингулярности является одной из наиболее серьёзных проблем физической космологии. Дело в том, что никакие наши сведения о том, что произошло после Большого взрыва, не могут дать нам никакой информации о том, что происходило до этого.
Эволюция Вселенной. Тема 8. Возникновение и эволюция Вселенной. Геологическая эволюция.
1. Современная космология. Эволюция Вселенной. Науку, изучающую эволюцию Вселенной, называют космологией. Основные задачи, которые стоят перед ней, это объяснение на основе наблюдаемых фактов и теоретических моделей происхождение Вселенной и предсказание ее будущего. Выдвигаемые модели невозможно подтвердить экспериментально из-за огромных размеров Вселенной, они могут быть подтверждены или опровергнуты лишь косвенно физико-математическими расчетами и наблюдениями.
История науки знает множество моделей эволюции Вселенной.
К концу XIX века господствовала стационарная космологическая модель Вселенной, т.е. убежденность в том, что Вселенная неизменна и бесконечна в пространстве и времени.
Если же процесс расширения Вселенной мысленно повернуть вспять, то можно прийти к выводу, что когда-то материя во Вселенной была сосредоточена в одном первоначальном сгустке. Исследования показали, что возраст Вселенной составляет около 12 - 18 млрд. лет. Какие же размеры имела Вселенная? Как шла эволюция Вселенной?
2. Теория Большого взрыва . Опираясь на научные данные почти все современные ученые-космологи полагают, что начало Вселенной положил так называемый Большой взрыв. По этой гипотезе все вещество Вселенной в момент до взрыва находилось в сгустке микроскопических размеров огромной плотности и температуры. Появление этого зародыша окутано научными спорами. Этот зародыш, послуживший началом взрыва, называют сингулярностью или сингулярной точкой. До взрыва не существовало материи, а значит ни времени, ни пространства. С первых тысячных долей первой секунды после взрыва, когда температура Вселенной была 1016-1018К, образовались первые частицы вещества: кварки, антикварки и излучение (фотоны). В течение той же секунды из кварков и антикварков образовались протоны, антипротоны и нейтроны. В этих условиях стали частыми реакции аннигиляции. При столкновении протона и антипротона происходит реакция аннигиляции, в ходе которой обе частицы сталкиваясь взаимопогашаются, исчезают с образованием излучения (фотонов).
Какие же свойства темной энергии известны на настоящее время? Таких свойств немного, всего три. Но то, что известно, может по справедливости вызвать изумление.
О втором свойстве мы уже говорили: темная энергия заставляет Вселенную расширяться с ускорением. Этим темная энергия тоже разительно отличается от нормальной материи, которая тормозит расширение. Два описанных свойства свидетельствуют о том, что темная энергия в определенном смысле испытывает антигравитацию, для нее имеется гравитационное отталкивание вместо гравитационного притяжения. Области с повышенной плотностью нормальной материи за счет гравитационного притяжения собирают вещество из окружающего пространства, сами эти области сжимаются и образуют плотные сгустки. Для антигравитирующей субстанции всё наоборот: области с повышенной плотностью (если они есть) растягиваются из-за гравитационного отталкивания, неоднородности разглаживаются и никаких сгустков не образуется.
Третье свойство темной энергии состоит в том, что ее плотность не зависит от времени. Тоже удивительно: Вселенная расширяется, объем растет, а плотность энергии остается постоянной. Кажется, что здесь есть противоречие с законом сохранения энергии. За последние 8 млрд. лет Вселенная расширилась вдвое. Область пространства, которая тогда имела, скажем, размер 1 м, сегодня имеет размер 2 м, ее объем увеличился в 8 раз, во столько же раз увеличилась энергия в этом объеме. Несохранение энергии налицо.
На самом деле рост энергии при расширении Вселенной не противоречит законам физики. Темная энергия устроена так, что расширяющееся пространство совершает над ней работу, что и приводит к увеличению энергии этой субстанции в расширяющемся объеме пространства. Правда, расширение пространства само обусловлено темной энергией, так что ситуация напоминает барона Мюнхгаузена, вытаскивающего себя за волосы из болота. И тем не менее противоречия нет: в космологическом контексте невозможно ввести понятие полной энергии, включающей в себя энергию самого гравитационного поля. Так что и закона сохранения энергии, запрещающего рост или убывание энергии какой-нибудь формы материи, тоже нет.
Утверждение о постоянстве плотности темной энергии тоже основано на астрономических наблюдениях, а потому тоже справедливо с определенной точностью. Чтобы охарактеризовать эту точность, укажем, что за последние 8 млрд. лет плотность темной энергии изменилась не более чем в 1,1 раза. Это мы сегодня можем сказать с уверенностью.
Отметим, что второе и третье свойство темной энергии — способность приводить к ускоренному расширению Вселенной и ее постоянство во времени (или, более общо, очень медленная зависимость от времени) — на самом деле тесно связаны между собой. Такая связь следует из уравнений общей теории относительности. В рамках этой теории ускоренное расширение Вселенной происходит именно тогда, когда плотность энергии в ней или совсем не меняется, или меняется весьма медленно. Таким образом, антигравитация темной энергии и ее сложные отношения с законом сохранения энергии — две стороны одной медали.
Этим надежные сведения о темной энергии по существу и исчерпываются. Дальше начинается область гипотез. Прежде, чем говорить о них, обсудим вкратце один общий вопрос.
Суть темного вещества и Темной Энергии. Что входит в тёмную материю (теории)
- Барионная тёмная материя. Вполне логично допущение, что эта материя обычная, но плохо взаимодействующая электромагнитным образом. Поэтому обнаружить её не удаётся. Состав этого вещества может быть таким: звёзды-карлики, тёмные гало, нейтронные звёзды, чёрные дыры. Возможно присутствие звёзд кварковых и преонных, но они имеют статус объектов гипотетических. Такой вариант объяснения тёмной материи следует из космологии Большого взрыва. Исходя из этого, получается, что концентрация лёгких элементов должна быть резко отличной от наблюдаемой.
- Небарионная тёмная материя. Предполагаемых объектов такого вещества достаточно. Но, конечно, всё это – теоретические модели.
- Лёгкие нейтрино. Эти частицы реально существуют, и этот факт доказан. Считается, что их число во Вселенной аналогично числу фотонов. Хотя они и обладают очень малой массой, но общее число вполне может влиять на динамику пространства. Их масса в диапазоне 10-2 – 10-3 эВ. После производства некоторых экспериментов выяснилось, что лёгкие нейтрино не могут быть доминирующей частью тёмной материи.
- Тяжёлые нейтрино. Эти нейтрино названы стерильными за неспособность слабого взаимодействия. Изученные свойства этих частиц таковы, что они вполне способны составить значительную часть тёмной материи. Параметры их масс — 10-1 – 10-4 эВ.
- Аксионы. Такой тип частиц относится к гипотетическим нейтральным. Они введены в квантовую хромодинамику для решения некоторых проблем. Возможно, что они составляют существенную часть тёмной материи, несмотря на небольшую массу — 10-5эВ.
- Суперсимметричные частицы. Теоретически существует одна такая частица — LSP. Она стабильная, и не участвует в электромагнитных и сильных взаимодействиях . Ею может быть гравитино, фотино, хиггсино и некоторые другие.
- Космионы. Такие частицы ввели в физику, чтобы разрешить проблемы солнечных нейтрино. Но, после разрешения некоторых теорий, эти частицы, вероятно, исключат из числа претендентов, составляющих тёмную материю.
- Дефекты пространства-времени. В вакуумном поле Вселенной могли происходить энергетические скачки. Результатом этого могла стать различная выстроенность скалярного поля. При взаимодействии областей, имеющих различную ориентацию, образовывались дефекты разных конфигураций. Объекты, полученные при этом, наделены большой массой. Они вполне могли бы стать доминирующей составляющей тёмной материи. Но пока такие частицы не обнаружены.
Темная энергия для чайников. Что такое тёмная энергия?
Нынешняя стандартная модель Вселенной, Лямбда-CDM, предполагает, что Вселенная расширяется в соответствии с геометрическим понятием Лямбды – которая представляет космологическую константу, используемую в Общей теории относительности Эйнштейна. Лямбда, как предполагается, может представлять темную энергию, таинственную движущую силу, ускоряющую расширение пространства-времени. Холодная темная материя, как предполагается, является подпирающими лесами, которые лежат в основе распределения видимой материи в большем масштабе (макроуровне). Но чтобы попытаться смоделировать, как Вселенная разворачивалась в прошлом и развернется в будущем, мы сначала должны предположить, что она везде примерно одинаковая.
Это иногда называют Космологическим Принципом, который утверждает, что когда Вселенная рассматривается в достаточно крупном масштабе, то она обладает особенным свойством — одинаковостью для всех наблюдателей. Сюда входит два момента: 1) изотропия, что означает — Вселенная выглядит примерно одинаково, куда бы Вы ни посмотрели; 2) однородность, то есть свойства Вселенной выглядят примерно одинаковыми для всех наблюдателей, из любой точки их нахождения. При этом однородность — это не то, что мы можем когда-либо подтвердить наблюдением, таким образом, мы должны предположить, что часть Вселенной, которую мы можем наблюдать непосредственно, является верным и репрезентативным образцом остальной части Вселенной.
Изотропия, по крайней мере теоретически, представляет собой световой конус, как показано внизу на схеме. Поясним, что имеется ввиду. Мы изучаем Вселенную и получаем историческую информацию о том, как она развивалась в прошлом. Затем мы предполагаем, что те части Вселенной, которые мы можем наблюдать, продолжали вести себя в последовательной и предсказуемой манере вплоть до настоящего времени – даже при том, что мы не можем подтвердить, верно ли это, пока не пройдет больше времени. Но все остальное за пределами нашего светового конуса — это нечто, о чем мы не можем узнать, а следовательно мы можем только предполагать, что Вселенная повсюду однородна.
Модель наблюдения за Вселенной
Рой Маартинс (Roy Maartens) пытается развить аргумент, почему для нас разумно предположить, что Вселенная однородна. По существу, если наше наблюдение за Вселенной показывает последовательный уровень изотропии в течение долгого времени, то можно строго предположить, что наша часть Вселенной развернулась в манере, совместимой с данной частью однородной Вселенной.
Изотропия наблюдаемой Вселенной может строго подтверждаться, если Вы смотрите в каком-либо направлении и находите:
• последовательное распределение материи;
• последовательные скорости большей части галактик и галактических групп, двигающихся от нас посредством расширения Вселенной;
• последовательные измерения углового диаметрального расстояния (где объекты одинакового абсолютного размера выглядят меньшими на большем расстоянии – до расстояния красного смещения 1.5, когда они начинают выглядеть больше – см. здесь);
• последовательную гравитационную фокусировку крупномасштабными объектами, такими как галактические группы.
Эти наблюдения поддерживают предположение, что и распределение материи, и основная пространственно-временная геометрия наблюдаемой Вселенной являются изотропическими. Если эта изотропия верна для всех наблюдателей, тогда Вселенная совместима с метрикой Фридмана — Леметра — Робертсона — Уокера. Это должно было бы значить, что она — однородная, изотропная и связанная – так что Вы можете путешествовать куда угодно (односвязная Вселенная) – или она, возможно, имеет пространственно-временные туннели, так называемые червоточины (многосвязная Вселенная).
То, что наблюдаемая Вселенная всегда была изотропической – и, вероятно, продолжит быть такой в будущем – строго подтверждается наблюдениями за космическим микроволновым фоном, который является изотропическим. Если эта одинаковая изотропия видима для всех наблюдателей – тогда вероятно, что Вселенная была и всегда будет однородной.
Наконец, Маартинс обращается к коперниковскому Принципу, который гласит, что мало того, что мы не центр Вселенной, но наше положение в значительной степени произвольно. Другими словами часть Вселенной, которую мы можем наблюдать, может быть достоверным и репрезентативным образцом более обширной Вселенной.
Читайте также: