Как работает шар тесла
Плазменные лампы - как устроены и работают
Удивительное зрелище — плазменная лампа. Герметичная стеклянная колба с установленным внутри единственным высоковольтным электродом, окруженным инертным газом под почти атмосферным давлением.
Высокое напряжение (от 2000 до 5000 В) подается к электроду лампы от одного из выводов вторичной обмотки импульсного трансформатора, работающего на частоте 30-40 кГц, который установлен внутри пластикового корпуса лампы. Трансформатор плазменной лампы похож на строчный трансформатор, какой можно встретить в старом мониторе или телевизоре с электронно-лучевой трубкой.
Цвет этих молний, танцующих вокруг электрода внутри колбы, может быть различным, что зависит от вида газов, входящих в состав смеси, которой колба заполнена. Что касается длины молний, то она зависит от потенциала на электроде и от степени разряженности заполняющего колбу газа.
Как видите, здесь нет нити накаливания, поэтому срок службы подобных устройств ограничен лишь качеством электроники, установленной в основании лампы, а также аккуратностью ее владельца.
Потребление декоративных плазменных ламп зависит от размеров колбы и обычно не превышает 20 Вт. Наиболее распространенные сегодня на рынке сферические и конические плазменные лампы имеют габариты не более 30 см.
Если мощность постепенно повышать, то ниточка станет все ярче и ярче, наконец, когда одна ниточка окажется переполнена подаваемой через нее энергией, в этот момент появится вторая ниточка, и они станут отталкиваться друг от друга подобно одноименным электрическим зарядам.
Светящиеся нити тонки, так как окружающие их магнитные поля оказывают магнитогидродинамический эффект типа самофокусировки: собственное магнитное поле плазменного канала создают силу, действующую на его сжатие.
Изобретателем первого прототипа устройства, которое мы сегодня называем плазменной лампой, был ученый Никола Тесла (1856-1943), американский инженер-электрик, уроженец Австрийской империи.
В его время, в отличие от времен когда Тесла работал над своей лампой, уже появилась технология создания газовых смесей различного состава (на основе ксенона, неона и криптона), позволяющих получать в колбах плазму разнообразных цветов.
Свечение здесь создается благодаря коронному разряду в газе, практически обусловленному током через емкость в цепи лампа-воздух-земля. В качестве земли для высоковольтного источника светильника используется точка нулевого потенциала, доступная при питании устройства от розетки.
Считается, что когда человек прикасается пальцем к стеклу работающей лампы, то поток энергии идет через тело, как если бы оно имело сопротивление 1000 Ом и было включено последовательно с конденсатором емкостью 150 пф (стекло колбы выступает в роли диэлектрика). Человека не убивает, поскольку ток плазменной лампы достаточно высокочастотный.
Так или иначе, контактируя с плазменной лампой соблюдайте меры безопасности! Дело в том, что переменное электрическое поле действует не только в проводах высоковольтного источника лампы, но и за пределами колбы.
Расположенный вблизи лампы металлический предмет станет электризоваться переменным электрическим полем, и коснувшись такого предмета можно получить слабый удар током и даже ожег. Если же человек, прикасаясь к лампе, случайно окажется заземлен, например держась за батарею, он получит удар током.
Кроме того, вблизи работающей плазменной лампы не следует располагать никакие электронные устройства, ведь любая электроника боится индуцированных электрических токов, и легко выйдет из строя, попав в переменное электрическое поле высокой напряженности, источником которого выступает электрод внутри лампы.
По сути процесс возникающий в плазменной лампе можно сравнить с термоядерной реакцией. Высоковольтный электрод внутри герметичного стеклянного шара ионизирует газ своим напряжением, образуя плазму. В плазменной лампе нагрев происходит за счет напряжения, а в термоядерных реакциях за счет деления тяжелых ядер и синтеза (слиянием) легких ядер, например: дейтерия и трития.
Плазменная лампа устроена следующим образом: в герметичной стеклянной колбе установлен единственный высоковольтный электрод, который окруженным инертным газом почти под атмосферным давлением. Если говорить о напряжении данной лампы, то оно составляет от 2000 до 5000 В (является достаточно высоким). На электрод подается напряжение через импульсный трансформатор, работающий на частоте 30-40 кГц . Данными показателями обладает декоративная плазменная лампа. Какие вещи можно получать при увеличении показателей и масштабности установки, я не могу сказать. Но могу сказать, что из этого может выйти неплохое оружие, достаточно лишь убрать стеклянный шар и газ (которые и придают декоративный эффект и вид), значительно увеличив мощность установки.
Да и без всего декоративная плазменная лампа способна зажигать лампы вокруг себя, так же есть шанс получить ожог. Стеклянная колба необходима лишь для удержания газа и для изоляции. Именно газ дает красивый эффект плазмы.
От чего зависит цвет плазменных ламп? Разновидность смеси газов влияют на цвет плазмы, например: ксенон, неон и криптон.
Термоядерный синтез - это крайне опасный процесс синтеза легких ядер. Опасен он тем, что полноценный контроль над ним человечество до сих пор не смогло установить. Данный синтез может как подарить нам огромное количество энергии, так и погубить экологию и жизни. Водородная бомба является аналогом термоядерного реактора только вот реакция в ней происходит без нужного контроля, что и приводит к убойному взрыву. В реакторе же продукты реакций удерживается сильным магнитным полем. Кстати, сегодня 35 стран мира строят гигантский термоядерный реактор ИТЭР . На сегодняшний день это самая дорогая установка на Земле, а именно 19 миллиардов евро .
Что за чудо этот плазменный шар!
Миниатюрные молнии, как тонкие жалящие жгуты, беспорядочно и внезапно пронизывают пространство от центра до самых стенок стеклянной сферы.
Сколько названий у этого декоративного светильника – плазменная лампа, плазменный шар, плазменная сфера … можно придумать и другие.
Но эти декоративные светильники делают не только в форме шара,
но и виде сердца, цилиндра, плоского диска и даже гантелей.
А самый большой плазменный шар диаметром в 1 метр находится в Центре науки «Technorama в Швейцарии.
А что такое плазма?
Твердое вещество при нагревании переходит в жидкое состояние, а затем в газ. Дальнейший нагрев газа ведет к ионизации атомов газа, электроны с внешних орбит отрываются от атомов. При температуре выше 100 ОООК вещество сильно ионизировано. Это и есть плазма. Плазму называют четвертым состоянием вещества.
Так, например, Солнце генерирует плазму - "солнечный ветер", который распространяется по Вселенной.
Понятие "плазмы" ввел Крукс в 1879 году для описания ионизованной среды газового разряда.
Поскольку плазма состоит из ионов и электронов, то под действием внешнего электрического поля, заряженные частицы приходят в движение, и возникает электрический ток в виде разрядов. Плазма электропроводна.
Однако при выполнении определенных условий, плазма может существовать и при более низкой температуре.
А с чего все началось?
В 18 веке М.В. Ломоносов впервые получил свечение газов при пропускании электрического тока через заполненный водородом стеклянный шар.
В 1856 году Генрихом Гейслером была создана первая газоразрядная лампа с возбуждением от соленоида и было получено синее свечение трубки.
В 1893 году Томас Эдисон получил люминесцентное свечение.
В 1894 году М. Моор создал газоразрядную лампу, испускающую розовое свечение, наполнив ее азотом и углекислым газом.
В 1901году П. Хьюитт продемонстрировал ртутную лампу, испускающую сине-зелёного свет.
В 1926 году Э. Гермер предложил покрывать внутренние стенки колбы флуоресцентным порошком, который преобразовывал ультрафиолетовый излучение, испускаемое возбуждённой плазмой, в белый видимый свет. Э.Гермер был признан изобретателем лампы дневного света.
Во второй половине 20 века исследователи Б. Паркер и Дж. Фолк получили оригинальное свечение плазменных шаров, наполняя их различными смесями инертных газов. Эти плазменные шары в то время получили названия "светящиеся скульптуры" и "земные звезды". Именно в те годы декоративные плазменные светильники и приобрели современный вид.
Прозрачная стеклянная сфера установлена на подставке и заполнена смесью инертных газов под низким давлением. Шарик в середине сферы служит электродом. В цоколь лампы встроен трансформатор, который выдает на электрод переменное напряжение в несколько киловольт с частотой около 20-30 кГц.
Вторым электродом является окружающая стеклянная сфера или даже сам человек, если он прикасается к шару.
Когда Вы включаете лампу, возникает свечение в виде многочисленных электрических разрядов.
Молнии направлены по силовым линиям электрического поля. Если дотронуться пальцем до стекла, меняется электрическое поле внутри лампы, и электрические разряды смещаются в сторону контакта пальца со стеклом.
Особенно впечатляет работа плазменного шара в темноте.
Как работает плазменный шар?
Плазменный шар является газоразрядной трубкой (лампой) с инертным газом, в которой в результате ионизации газа можно наблюдать светящуюся плазму.
Несмотря на различные конструкции декоративных светильников принцип действия их одинаков.
При включении лампы носители зарядов (ионы и электроны), образующиеся в газе в результате фотоэмиссии, начинают ускоренно двигаться вдоль линий силового поля лампы. В результате ударного возбуждения и рекомбинации возникает характерное для данного газа свечение, наблюдается тлеющий разряд. Для возникновения и поддержания газового разряда в трубке требуется наличие электрического поля.
«Плазменный шар наполнен светящимися движущимися змейками. Каждая змейка - это плазменное образование типа слабо светящегося шнурового разряда.
Такой разряд называется тлеющим: он развивается между металлическим шаровым электродом, расположенным в центре всего устройства, и слабо проводящей металлизированной поверхностью стеклянного шара при не очень большом электрическом токе в газе низкого давления.
Каждая змейка разряда, а их может быть одновременно до двух десятков, в среднем вытянута в радиальном направлении.
Но она, как живая, все время немного изгибается и колеблется, имея несколько периодов изгиба вдоль своей длины.
На каждом из своих концов змейка имеет своеобразный трезубец, который как маленькая кошачья лапка, непрерывно шевелится, собирая заряды с соответствующего электрода.
Змейки-разряды находятся в беспрерывном движении. Кроме не прекращающегося извивания, каждая из змеек медленно поднимается вверх, очевидно в результате конвекции.
Собираясь в верхнем положении, змейки попарно сливаются между собой, и, таким образом, часть из них постоянно исчезает.
Напротив, в нижней части устройства непрерывно рождаются новые змейки, они множатся, расщепляясь надвое, и поднимаются вверх, чтобы там исчезнуть.
Вся эта картина, несмотря на свою сложность, качественно легко может быть понята с физической точки зрения.
Разумеется, теоретически гораздо проще представить себе абсолютно симметричный тлеющий разряд между внутренним и внешним электродами.Однако такой разряд неустойчив: из-за разогрева газа и понижения его локальной плотности с соответствующим понижением электросопротивления электрическому току выгоднее протекать по сравнительно узким каналам-трубкам.
Разряд распадается на плазменные шнуры. Будучи более легкими, эти шнуры всплывают вверх под действием силы Архимеда.
А взаимодействие шнуров с потоками газа и между собой приводит к образованию сложно организованной картины змеек, напоминавшей мифологическую голову медузы Горгоны.
Можно понять, почему на концах каждой змейки образуются кошачьи лапки.
Если проводимость электродов невелика, то прямо напротив разряда плотность поверхностного заряда становится меньше и концу змейки с противоположным по знаку зарядом удобно расщепиться и перебегать от точки к точке, собирая поверхностный заряд.
Плазменный шар завораживает и притягивает к себе кажущейся таинственностью: он похож на живое существо, осуществляющее сознательное движение.
В целом образуется сложная нелинейная физическая система с хаотическим типом движения. Для того, чтобы это движение поддерживалось длительное время, система должна быть открытой: через плазменный шар нужно непрерывно пропускать электрический ток от внешнего источника.
Что можно и чего нельзя делать с плазменной лампой?
Если на плазменную лампу положить металлический предмет, вроде монеты, можно получить удар током или ожог, возникает электрическая дуга и прожигает стекло насквозь.
Если намочить поверхность лампы водой, то электрические разряды даже выходят за пределы стеклянного шара на несколько миллиметров. Они достаточно сильны и могут вызвать ожог.
Одновременное прикосновение к лампе и к заземленному предмету приводит к поражению электрическим током.
Если к работающей плазменной лампе просто, держа в руке, поднести неоновую, люминесцентную или любую другую газоразрядную лампу, то она начнёт светиться, т.к. в металлическом объекте, расположенном вблизи плазменного шара, индуцируется ЭДС.
Высокая напряженность электрического поля вблизи плазменной лампы может создавать помехи в работе электронной аппаратуры.
Если плазменная лампа включена достаточно долго, то появляется запах озона.
Однако все газоразрядные лампы работают на основе электрических разрядов в газах, и их с полным основанием можно назвать плазменными. Это и широко распространенные люминесцентные лампы.
В них электрический разряд происходит в парах ртути, в результате возникает невидимое ультрафиолетовое излучение, которое затем преобразуется люминофорным покрытием в видимый свет.
Это и газосветные лампы, где мы видим свет самого газового разряда.
Это и электродосветные лампы, в которых светятся электроды, возбуждённые газовым разрядом.
-->СТАТИСТИКА -->
-->МЫ ВКОНТАКТЕ -->
-->НЕМНОГО РЕКЛАМЫ -->
Наши спонсоры
Описание устройства
Плазменная лампа (плазменный шар) является декоративным прибором, который работает по принципу катушки Тесла: на электрод, который находится в центре стеклянной сферы, подаётся высокочастотный (порядка 30000 Гц) переменный ток. В результате на электроде возникает тлеющий разряд.
Стеклянный шар обычно заполняют разреженным инертным газом (гелий, неон и т.д.) для уменьшения напряжения пробоя (позволяет получать "молнии" в шаре большего диаметра), и для изменения цвета разрядов.
В ходе работы, лампа создаёт достаточно сильное электромагнитное излучение, что приводит к ионизации воздуха вокруг лампы (появляется запах озона). Кроме этого, плазменная лампа способна вызывать тлеющий разряд не только внутри стеклянного шара, но и на некотором расстоянии за его пределами (например, если поднести к лампе газоразрядную трубку или люминисцентную лампу).
Будьте осторожны! Крайне не рекомендуется подносить к лампе электронные приборы (мобильные телефоны, например), так как на металлических деталях данных приборов может возникнуть электростатическая и вторичная эмиссия, что может привести к выходу из строя данных приборов. Не стоит, также, включать лампу на длительное время (полученный путём ионизации воздуха, озон опасен для человеческого организма).
Описание опыта
В данном случае подносили к плазменной лампе газоразрядные трубки. На расстоянии около 10 см, трубки начинали светиться оранжевым светом, что свидетельствует о том, что лампа заполнена Неоном. Изменяя положение лампы относительно плазменного шара, мы смогли добиться появления и затухания свечения в разных частях трубок. Энергосберегающая лампа также излучала свет вблизи плазменного шара. В ходе опыта был обнаружен занимательный эффект: если, "заземлить" плазменную лампу рукой, то свечение газоразрядных трубок, находящихся рядом с плазменным шаром, заметно снижается вплоть до полного исчезновения.
Это интересно
Современный вид светильника плазменный шар получил благодаря изобретателю и ученому Джеймсу Фалку. Он конструировал необычные светильники и продавал их коллекционерам и научным музеям в 1970-х годах.
Технология создания газовых смесей, используемая при изготовлении современных плазменных шаров, была недоступна во времена Николы Тесла, поэтому, изначально лампа не производила такого завораживающего эффекта, как сейчас.
Потребляемая мощность плазменного шара на самом деле крайне невелика и составляет всего 10-20 Вт.
Украсить свой дом можно легко с помощью различных настольных, настенных или напольных светильников. При этом они могут выступать как яркими дизайнерскими элементами, так и быть незаметными со стороны. Но в любом случае осветительные приборы в доме должны подходить под уже имеющийся интерьер помещения. Иначе их свет или просто присутствие привнесут в стиль дисгармонию, что явно будет негативным исходом вашей задумки.
Сегодня многие люди используют как элемент декора такие необычные светильники, как плазменные лампы-шары.
Такой светильник имеет необычный вид и создает свет нестандартного типа. Поэтому подобное приобретение послужит отличным декоративным элементом, но только в случае, если его выбор и размещение в комнате был грамотным. Этому вопросу сегодня и будет посвящена наша статья.
История создания
Появлению столь необычного осветительного прибора, как плазменная лампа-шар, мир обязан известному изобретателю с мировым именем — Никола Тесла.
Именно Тесла, который прославился своими экспериментами с электричеством, соорудил серную лампу еще в 19 веке. На основе данного прибора в дальнейшем и появились первые декоративным лампы подобного вида.
Обратите внимание! На сегодняшний день существуют не только плазменные лампы, но и прожекторы и другие светильники, предназначенные для общественного освещения. Однако они еще не очень сильно распространены в мире в связи с достаточно сложной конструкцией.
Теперь, после того как небольшой исторический экскурс завершен, можно более детально разобраться с устройством столь необычного светильника.
Особенности строения плазменного светильника
Обратите внимание! Плазменная лампа-шар станет отличной заменой для ночника в детской комнате.
Плазменная лампа в качестве ночника
- придаст атмосферу загадочности и необычности;
- станет экзотическим дизайнерским элементом;
- светильник способен своей работой нормализовать психическую деятельность человека, снять стресс и усталость;
- да и в целом это станет оригинальной изюминкой интерьера, которую можно встретить далеко не в каждом доме или квартире.
Стоит отметить, что в отличие от стандартных осветительных приборов, плазменная лампа-шар станет необычным и оригинальным подарком на день рождения.
Итак, плазменная лампа представляет собой прозрачный шар на подставке, внутри которого бьются энергетические разряды. Они способны реагировать на прикосновения человека к прозрачной сфере или даже голосу.
Реакция лампы на прикосновение
Принцип работы плазменного шара
Плазменная лампа-шар в своей сердцевине имеет электрод, который и позволяет ей создавать плазменные разряды внутри прозрачной сферы. Принцип работы устройства заключается в следующем:
- высокое переменное напряжение, характеризующееся частотой примерно в 30 кГц, попадает на электрод;
- сфера лампы внутри содержит разреженный газ;
Обратите внимание! Для наполнения сферы могут использоваться различные газовые смеси, которые будут различаться между собой цветовыми характеристиками формируемых плазменных разрядов. Они могут иметь синий, розовый, желтый, зеленый, малиновый и другие цвета.
Вариант цвета плазменного разряда лампы
- благодаря попаданию на электрод напряжения в парах газа и формируются плазменные разряды.
Сам светильник, работающий по такому принципу, будет потреблять мало электроэнергии (примерно 5-10 Вт). Поэтому если с ним правильно обращаться, то он прослужит десятилетия. О том, как за таким прибором следует следить, мы поговорим в следующем разделе.
Особенности эксплуатации плазменного шара
- запрещается класть на лампу разнообразные металлические предметы. Часто, из любопытства, на сферу кладут монетки различного номинала. Даже небольшая монетка может послужить причиной удара током. При этом сама сфера может лопнуть и выпустить наружу уже не столь красивые и безопасные разряды;
- лампа должна подключаться к сети питания на 220 В. Также для ее питания можно использовать и USB-порт (если имеется такая возможность). Такой разъем можно подсоединить своими руками, если у вас имеется старая модель светильника;
- время работы лампы не должно превышать более двух часов. Иначе это может привести к перегреву, а это негативным образом скажется на прочности прозрачной колбы и в дальнейшем может привести к нарушению ее герметичности.
Обратите внимание! При нарушении правил эксплуатации плазменных светильников, разряды, формируемые ими, могут вырваться за пределы прозрачной сферы. И починить лампу своими руками уже не получится.
Комплектация плазменного светильника
Современные лампы-шары, формирующие у себя внутри плазменные разряды, содержат в себе:
- сам плазменный светильник. У современных моделей должен иметься разъем для USB. У страх моделей такой разъем можно сделать своими руками, отрезав вилку для розетки и подсоединив к ней USB от старого шнура. Только перед проведением таких работ своими руками убедитесь в том, что USB разъем работает нормально;
- USB-кабель. Это обязательный элемент всех современных моделей;
- инструкция по эксплуатации. С помощью инструкции вы сможете выяснить все нюансы и тонкости работы прибора, возможность его починки своими руками, а также другие важные моменты, которые приводят производители.
Набор плазменной лампы
Покупая такой светильник, необходимо обязательно убедиться в исправности лампы (особенно прозрачной сферы). Ее прозрачная часть не должна быть повреждена, покрыта царапинами или трещинами. При их наличии обязательно требуйте замену продукции.
Обычно осветительный прибор имеет следующие технические характеристики:
- питание – 220 В (стандартное);
- мощность — 8 Вт;
- материалы изготовления: пластик, стекло и электронные компоненты.
Технические характеристики лампы должны быть указаны как на упаковке, так и в инструкции к ней.
Приобретая плазменный светильник нужно знать, что диаметр его сферической колбы может варьироваться в достаточно широком диапазоне (от 8 до 20 см).
Варианты внешнего вида
Несмотря на то, что лампа-шар, создающая плазменные разряды, всегда будет иметь сферическую колбу и стандартную конструкцию, ее внешний вид может быть задекорирован различным образом.
Декоративная плазменная лампа
Дополнительный декор поможет более гармонично вписать лампу в интерьер помещения, избегнув при этом риска несоответствия стилей.
Обратите внимание! Такая лампа может быть задекорирована, например, под дракона, который будет охватывать своими крыльями и хвостом шар, делая его менее выразительным на общем фоне конструкции светильника. При этом такой декор не повлияет на притягательность шара и его плазменных разрядов в целом.
Поэтому в плане выбора плазменного светильника обязательно необходимо учитывать его внешний вид, ведь обычная сферическая лампа может не подойти под большинство интерьерных стилей, используемых в современном мире.
Лампа с разрядами и интерьер
Установка плазменного светильника в доме или квартире будет отличным решением по следующим причинам:
- лампа имеет компактные размеры и хорошо впишется как на полку, так и на журнальный столик;
- возможность декорирования внешнего вида прибора расширяет перечень стилей, в которые он сможет гармонично вписаться, не нарушив общий замысел;
- это отличный ночничок, который способен создать атмосферу таинственности и сказки;лампа способствует снятию раздражения, усталости и стрессов.
Плазменная лампа-шар и дети
Обратите внимание! В этих стилях оформление лампы-шара с плазменными разрядами можно оставаться стандартным, без декорирования.
Интерьер в стиле хай-тек
Заключение
Плазменная лампа-шар, при правильном подходе к ее выбору, станет эффектным дополнением практически любого интерьера и стиля. При этом она будет радовать глаз и не надоест вам даже через несколько лет работы. Такой светильник можно смело использовать как эффективный способ борьбы с усталостью и чрезмерной напряженностью, от чего страдают многие из нас.
Читайте также: