Как правильно устанавливать трансформаторы тока на шину
Схемы подключения счетчиков через измерительные трансформаторы можно разделить на две группы: полукосвенного и косвенного включения.
При схеме полукосвенного включения, счетчик включается в сеть только через трансформаторы тока (ТТ). Такая схема, как правило, применяется для средних и крупных предприятий которые питаются от сети 0,4кВ и имеют присоединенную нагрузку свыше 100 Ампер.
При схеме косвенного включения, счетчик включается в сеть через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН). Такие схемы применяются, как правило, для крупных предприятий имеющих на своем балансе трансформаторные подстанции и другое высоковольтное оборудование которое питается от сети выше 1кВ.
Счетчик трансформаторного включения имеет 10 либо 11 выводов:
Как видно на картинке выше выводы №1, 3, 4, 6, 7 и 9 используются для подключения токовых цепей (от трансформаторов тока), а выводы №2, 5, и 8 — для подключения цепей напряжения (от трансформаторов напряжения — при косвенной схеме включения либо напрямую от сети — при полукосвенном включении). 10 вывод, как и 11 (при его наличии), служит для подключения нулевого проводника к счетчику.
В соответствии с п. 1.5.16. ПУЭ класс точности трансформаторов тока и напряжения для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5.
Кроме того в соответствии с п.1.5.23. ПУЭ цепи учета (цепи от трансформаторов до счетчика) следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки. При этом токовые цепи должны выполняться сечением не менее 2,5 мм 2 по меди и не менее 4 мм 2 по алюминию (п.3.4.4 ПУЭ), а сечение и длина проводов и кабелей в цепях напряжения счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения (п. 1.5.19. ПУЭ). (Как правило цепи напряжения выполняются тем же сечением, что и токовые цепи)
Как было написано выше цепи учета необходимо выводить на сборки зажимов или испытательные блоки, так что же представляет из себя испытательный блок?
Испытательный блок или испытательная коробка представляет из себя сборку зажимов предназначенных для подключения электросчетчика и обеспечивающих возможность удобного и безопасного проведения работ со счетчиком:
ВАЖНО! Винты для закорачивания первых выводов токовых цепей обязательно должны быть вкручены при семипроводной схеме подключения и выкручены при десятипроводной схеме.
Перемычки для закорачивания токовых цепей должны быть замкнуты только на время монтажа и проведения других работ со счетчиком, в рабочем положении перемычки должны быть разомкнуты!
Подключения счетчика через трансформаторы тока
Как уже было написано выше при напряжении сети 0,4 кВ (380 Вольт) и нагрузках свыше 100 Ампер применяются схемы полукосвенного включения счетчика, при которой цепи напряжения подключаются к счетчику напрямую, а токовые цепи подключаются через трансформаторы тока:
Примечание: Расчет трансформатора тока можно произвести с помощью нашего онлайн калькулятора.
Существуют следующие схемы подключения счетчиков через трансформаторы: десятипроводные, семипроводные и с совмещенными цепями (может использоваться только при полукосвенном включении). Разберем каждую из схем в отдельности:
2.1 Десятипроводная схема
Принципиальная десятипроводная схема подключения счетчика через трансформаторы тока:
Фактически десятипроводная схема будет иметь следующий вид:
Преимущества десятипроводной схемы:
- Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
- Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
- Высокая надежность. Учет по каждой фазе собирается независимо друг от друга. В случае нарушения цепей учета по одной из фаз работа учета на других фазах не нарушается.
Недостатки десятипроводной схемы:
- Большой расход проводника, для сборки вторичных цепей учета.
2.2 Семипроводная схема
Принципиальная семипроводная схема подключения электросчетчика через трансформаторы тока:
Фактически семипроводная схема будет иметь следующий вид:
Преимущества семипроводной схемы:
- Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
- Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
- Экономия проводника, для сборки вторичных цепей учета за счет объединения вторичных токовых цепей.
Недостатки семипроводной схемы:
- Низкая надежность. В случае нарушения совмещенной токовой цепи электроэнергия не учитывается ни по одной из фаз.
2.3 Схема с совмещенными цепями
Принципиальная схема подключения электросчетчика через трансформаторы тока с совмещенными цепями.
При данной схеме цепи напряжения объединяются с токовыми цепями путем установки перемычек на трансформаторах от контакта Л1 к контакту И1.
Фактически схема с совмещенными цепями будет иметь следующий вид:
Схема с совмещенными цепями не соответствует требованиям действующих правил и в настоящее время не применяется, однако она все еще встречается в старых электроустановках.
3. Подключение счетчика через трансформаторы тока и напряжения
В случае необходимости организации учета электрической энергии в сети выше 1000 Вольт применяется схема косвенного включения счетчика при которой токовые цепи подключаются к счетчику через трансформаторы тока, а цепи напряжения подключаются через трансформаторы напряжения:
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.
Читайте так же:
38 комментариев
Принципиальные схемы правильные. Фактические просто бред. В десятипроводной попутаны и1 и и2. В семипроводной на нулевую клемму счетчика подключен вместо нуля общий заземленный провод. И даже если снять перемычки и1 и и2 все равно попутаны. Автор сколько начинающих электриков вы кинули со своими бредовыми фактическими схемами. Ни одна из схем не соответсвует ПУЭ и не позволяет подключить образцовый счетчик. Поищите в нете правильные схемы а потом публикуйтесь ведь люди вам могли и поверить.
Юрий, вы не правы. Схемы правильные. Вы вообще на практике сталкивались с тем о чем говорите? Я раньше работал электромонтером в энергоснабжающей организации и лично собирал данные схемы, в настоящий момент работаю тамже в должности инспектора и по долгу службы проверяю схемы с помощью вольтамперфазометра и образцового счетчика. И принципиальные, и фактические схемы составлены правильно и легко позволяют проводить проверку учета любым из перечисленных мной способов и полностью соответствуют требованиям действующих правил.
Поэтому с удовольствием послушал бы какие именно пункты ПУЭ нарушают данные схемы, не могли бы вы уточнить? И по поводу общего заземляющего провода, то же правила почитайте и куда в РУ-0,4 подключается PEN проводник.
Анатолий, Вы приводите вверху принципиальную правильную схему и потом на фактической собираете ее не правильно. Останавлюсь на семипроводной. На принципиальной объединены и заземлены выводы И2 ТТ и подключены на нагрузочные входы счетчика 3,6,9-правильно. На фактической:
1. Установленные подвижные перемычки закорачивают вторичные обмотки ТТ (при вкрученных винтах в перемычку с обратной стороны ИКК). Счетчик будет стоять.
2. При снятии подвижных перемычек выводы ТТ И2 будут подключены на генераторные входы счетчика 1,4,7. Если по простому счетчик пойдет в обратную сторону.
3. То что в конце концов и защитный заземляющий и нулевой проводники объединены не отменяет необходимости проложить до 10 клеммы именно нулевой провод. Смотрите свою же принципиальную схему.
4. ПУЭ 1.5.23. Цепи учета следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки.
Зажимы должны обеспечивать закорачивание вторичных цепей трансформаторов тока, отключение токовых цепей счетчика и цепей напряжения в каждой фазе счетчиков при их замене или проверке, а также включение образцового счетчика без отсоединения проводов и кабелей.
Ваша схема не позволяет подключить образцовый прибор без отключения проводов.
5. Да и вообще сравните пожалуйста свою принципиальную схему со своей же фактической!
6. Правильных схем в нете полно.
P.S. Анатолий от ИКК до счетчика у Вас три токовых провода лишние. Тянется один общий и перемычки на счетчике. Еще раз смотрите принципиальную схему.
Юрий, Вам необходимо вспомнить теорию. Как протекает электрический ток в цепи? Он протекает по замкнутому контуру. Соответственно не имеет значения какой из выводов вторичной обмотки тт заземлять, и1 или и2.
1. Закоротки в испытательном блоке закорачивают выводы тт только на время проведения работ со счетчиком (например его замена) т.к. тт должны работать в режиме короткого замыкания иначе тт могут выйти из строя о чем, кстати, и идет речь в приведенном Вами пункте ПУЭ. При работе счетчика данные закоротки размыкаются.
2. В семипроводной фактической схеме на тт закорочены и1 общий провод от них идет на закорачивающую шину икк где опять разделяются и идут до счетчика. Разделение сделано на икк потому что этот вариант надежнее по сравнению с установкой перемычек в счетчике, поэтому некоторые энергоснабжающие организации и вовсе стали запрещать ставить перемычки в счетчике. Разница между принципиальной схемой и фактической только точка заземления и1 или и2.
Нулевой провод можно провести еще один, но это будет не ужный дополнительный расход проводника, т.к. заземление тт выполняется pen проводником.
В целом схема полностью соответствует приведенному Вами пункту ПУЭ.
Я все же считаю, что при эксплуатации любого изделия, в том числе и КИП следует руководствоваться эксплуатационными документами. По ЭД КИП она подключается по семипроводной системе. Поворотные перемычки токовых цепей предназначены для возможности размыкания токовых цепей счетчика, что требует и ПУЭ. А для закорачивания токовых цепей предназначена шина на нижней стороне КИП. В десятипроводной системе конструктивные элементы КИП используются не по назначению, предусмотренному производителем.
Полностью согласен с Дмитрием! Кстати в энергоснпбжающей организации в которой я работаю так же запрещена установка перемычек в счетчике.
Своевременная поверка и замена трансформатора тока, обязательные, так как от устройства зависит точность измерений при обслуживании особо мощных электроустановок, безопасность функционирования и взаимодействие с ними. Устройство понижает мощность до нужного уровня, давая возможность подключать измерительные приборы. Выбор трансформатора тока осуществляется под задачи (защита или измерение), конкретную мощность и особенности оборудования.
Понятие трансформатор тока, назначение
Под трансформаторами тока (ТТ) подразумевают аппараты статичного типа с электромагнитным принципом с обмотками (две или больше) на металлическом стержне (магнитопроводе) с выводами для подключения в сеть и к измерительным приборам.
Для чего применяют ТТ:
- подсоединения измерителей, РЗиА (защитных реле), которые не выдержали бы первоначальной нагрузки. Происходит изолирование подключаемого и работающего узла от чрезмерных мощностей обслуживаемого оснащения;
- расширение пределов измерений;
- понижения тока по мощности и создание защиты;
- контроль в цепях с высокими величинами, например, в сварочном аппарате, где ток достигает 150–250 А;
- в любых других случаях, когда надо понизить ток.
Где используются
ТТ широко применяются при транспортировке электроэнергии на большие расстояния, для распределения между приемниками. Они отличаются тем, что предназначены для выпрямительных, стабилизирующих, сигнальных, усиливающих, контрольных узлов, на станциях и объектах, производящих электричество. Именно поэтому к их точности и подключению требования чрезвычайно высокие — даже ничтожные отклонения значимые.
Где чаще всего и зачем применяют:
- в промышленной, производственной энергетике, в релейных узлах подстанций, распределительных конструкциях, мощных электроустановках;
- для замеров и в приборах, осуществляющих данную функцию. Ставят в узлы учета (коммерческого, бытового);
- для контроля высоких величин, при подсоединении учетных устройств, электросчетчиков.
В чем разница между трансформаторами тока и напряжения
Если рассматривать вопрос, чем отличается трансформатор тока от трансформатора напряжения, то это алгоритм действия, назначение и компоновка, но иногда внешне приборы могут быть схожими.
Первичка может быть с одним витком через окно магнитопровода. На другой катушке строго определенный номинал.
Наличие в ЭУ слабо и среднемощных ТТ обезопасит работы — элемент разделяет цепи высоких/низких мощностей, упрощает измерители, реле.
Устройства, например, способны осуществлять понижение с тысяч ампер до 5 А, 1 А.
Разновидности
Есть много видов ТТ, но в наиболее общем виде выбор трансформаторов тока учитывает, что изделия подразделяются на измерительные (ТТИ) и для защиты.
- защита или контроль (измерение);
- промежуточные — для замеров, выравнивания токов в АВДТ;
- лабораторные.
- для размещения снаружи (в ОРУ), или внутри (в ЗРУ);
- встраиваемые (в ЭУ, измерителях, коммутационных агрегатах);
- накладные;
- для переноски (для лабораторий, тестирования).
- с множеством витков (петлеобразные, восьмеркой);
- одновитковые.
- сухая: (фарфор, эпоксид, бэкелит);
- промасленное покрытие;
- компаунд.
Токовый трансформатор может выполняться с возможностью открывать его, устанавливать и запирать, без отключения, в онлайн режиме.
Защитные ТТ
Измерительные ТТ
Задача измерительного трансформатора тока ТТИ — преобразовывать величины, создавая возможность подсоединять вольтметр, амперметр, другой измеритель, не боясь, что он перегорит от чрезмерной нагрузки. При этом получают максимально точные, достоверные данные измерений. Другими словами, ТТ изолирует подключаемый девайс, не только для замеров, но и любой другой по потребности, от высоких мощностей.
Устройство и принцип работы
В основе работы — электромагнитная индукция. Аппарат разделяет высоковольтные токонесущие части и трансформирует величины энергии до безопасных или требуемых.
Суть работы ТТ. Если через первичку идет переменный определенной силы ток, то вторичная катушка, будучи с постоянной активной нагрузкой, например (резистор или обслуживаемая ЭУ), создает на них падение напряжения пропорционально току первички (зависимо от коэффициента трансформации) и сопротивлению. Напряжение уменьшается в максимально возможном диапазоне, возможности понижения почти бесконечные.
Устройство, схема трансформатора тока:
- две (реже больше) обмотки на магнитопроводе из электростали:
- первичная (включаемая в сеть). Это любая токопроводящая жила;
- вторичная (от нее энергия подается к приемнику). Одиночная или групповая снабжается несколькими выводами для защитных цепей, приборов измерения и контроля;
- выводы, клеммы.
Первичные витки подсоединяются последовательным методом, поэтому там полная нагрузка, вторичная же замыкается на нее (реле защиты, счетчики), пропуская ток пропорциональный величине на первой. Сопротивление измерителей малое и считается, что все трансформаторы тока функционируют в состоянии КЗ.
Есть несколько вариантов вторичных обмоток, обычно они создаются для подсоединения защитных приспособлений и для приборов контрольных, учетных. К катушкам обязательно должна подключаться нагрузка со строго регламентированным сопротивлением — даже ничтожные отклонения приводит к критическим погрешностям замеров, не селективности РЗ.
Работа ТТ поэтапно на примере схемы
Трансформатор тока как устроен, принцип работы поэтапно:
- Через первичную цепь (кол. витков W1) идет ток I1, преодолевается ее полное сопротивление Z1.
- Вокруг катушки образуется магнитное направленное поле Ф1, улавливаемое стержнем стоящим перпендикулярно к вектору (I1) данной величины. Ориентация деталей делает потери энергии почти нулевыми.
- Пересекающий перпендикулярные по отношению к нему витки W2 поток Ф1 создает там движущую силу Е2.
- Из-за последней во вторичной катушке (Z2) появляется ток I2, преодолевающий сопротивление (ее и подсоединенной нагрузки Zн).
- На клеммах витков вторичной катушки возникает понижение напряжения U2. Одно магнитное поле Ф2 от вторичных витков I2 понижает другое Ф1 в стержне. Возникший в нем трансформаторный поток Фт определяют суммой векторов (Ф1 и 2).
Важность коэффициента трансформации, класса точности, погрешности
Коэффициент трансформации (КТ) — определяет пропорциональность преобразования, задается при проектировании ТТ, при выпуске обязательно проверяется. На схеме это К1, определяемый соотношением l1/l2 (двумя векторами).
Эффективность коэффициентов собранных изделий отображает класс точности. При реальном функционировании токовые величины не постоянные, поэтому коэффициент обозначают номинальным. Пример: 1000/5 — при 1 кА рабочего тока (первичного) во вторичной цепи действует нагрузка 5 А. Именно по описанным значениям и проводится расчет продолжительность эксплуатации этого трансформаторного тока.
Погрешность ТТ влияет на класс его точности и определяется сечением, уровнем проницаемости материала магнитопровода, величинами магнитного пути.
Возрастание сопротивления нагрузки во вторичной цепи, превышающее возможности ТТ (при этом там генерируется повышенное напряжение), провоцирует пробой изоляции — трансформатор выходит из строя, перегорает. Поэтому важно правильно подбирать данный параметр. Предельное сопротивление есть в справочных материалах.
Монтаж, подключение, опасные факторы
При пробое изоляции обмоток возникает возможность поражения током, но риск предотвращается заземлением вывода (обозначается на корпусе) вторички.
На выводы вторичной катушки И1 и И2 токи полярные, они обязательно постоянно подсоединены на нагрузку. Идущая по первичной цепи энергия со значительным потенциалом (S=UI). В другой происходит трансформация, и при обрыве в ней там падает напряжение. Потенциал разомкнутых концов при протекании энергии большой, что представляет значительную опасность.
По описанным выше причинам все вторичные цепи ТТ собирают особо тщательно и надежно, на них и кернах, выведенных из функционирования, всегда ставят шунтирующие закоротки.
Как подключается ТТ
Есть несколько схем для изделий защитного типа. Рассмотрим подключение ТТ на трехфазное напряжение.
- самая распространенная, защита одно- и многофазных систем от КЗ;
- три ТТ соединяются в звезду.
Если ток ниже настроек на реле КА1–КА3, то это нормальная ситуация, защита не активируется. Ток на К0 — это сумма всех 3 фаз. При возрастании величин в одной из них растет ток и в ТТ. Произойдет сработка реле при КЗ и при превышении нагрузок.
- защита от межфазных замыканий для создания цепей с нейтралью с заземлением;
- для маломощных приемников с другими вариантами защиты.
Схема без обесточивания при КЗ на землю используется, но редко по этой же причине. Для защиты от замыканий между фазами и всплесков в одной из них.
ТТИ подсоединяются простым последовательным подключением первичных витков изделия.
Монтаж
Монтаж трансформаторов тока:
- Ревизия устройства, проверка изоляции (должно быть выше 1 кОм на 1 В);
- Отключают ЭУ;
- Убедится в обесточивании, зафиксировать заземления.
- Разметка, установка креплений. Запрещено размещать трансформатор вплотную к ЭУ (минимальный зазор — 10 см).
- Выставляются таблички, ограждения.
- Первичные витки подсоединяются последовательно, но с нагрузкой на вторичных. Если нет возможности подключить измеритель, то ее контакты замыкают, чтобы не было высоких мощностей на ней, которые приведут его повреждению.
ТТ не допускает холостого функционирования, его режим близок к КЗ: вторичные витки при подключении прибора к измеряемому току обязательно замыкаются. Иначе происходит перегревание, повреждающее изоляцию. Перед отсоединением измерителей сначала закорачивают катушки. У некоторых моделей для этого есть узлы клеммы, перемычки.
Расчет
Расчет трансформатора тока можно провести по онлайн-калькуляторам, подобрать по номиналу (например, для 10 кВ). Но это слишком упрощенные инструменты. Исчисления и параметры для выбора — чрезвычайно обширная тема, поэтому опишем основы.
Точность чрезвычайно важная, поэтому потребуются тщательные исчисления специалистами. Необходимо знать множество специфических нюансов, например:
- при разных схемах подсоединения, видах КЗ, есть разные формулы определения сопротивления;
- проверяют первичный ток на термо- и электродинамическую стойкость;
- есть свои нюансы для ТТ, для релейной защиты и для учетных целей, измерений.
Правила, как выбрать трансформатор тока в общих чертах:
- номинальное рабочее напряжение ТТ должно превышать или сравниваться с номиналом ЭУ (стандартные значения 0.66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750 кВ). Если обслуживаемое оборудование имеет 10 кВ, то изделие должно быть рассчитано на этот показатель;
- первичный ток ТТ — больше номинального тока у ЭУ, но учитывая перегрузочную способность;
- оценивают ТТ по номинальной мощности вторичной нагрузки, которая должны превышать расчетное ее значение. (Sном>=Sнагр);
- оценивают размеры и расположение для установки, номинальные нагрузки (есть таблица), наработка до отказа, срок службы, класс точности.
Проверка после расчета
- после расчета ТТ проверяют по загрузке при макс. и мин. значениях, протекающих через него нагрузок;
- по п. 1.5. 17 ПУЭ при макс. подключенной нагрузке ток во вторичной катушке — не менее 40 % номинала счетчика, при мин. — не менее 5 %;
- макс. загрузка должна быть от 40 %, а мин. — от 5 %, и в любом случае она не должна превышать 100 %, иначе возникнет перегрузка трансформатора;
- если рассчитанные величины макс./мин. загрузок меньше 40 % и 5 % соответственно, то надо подбирать изделие с меньшим номиналом, а если этого нельзя сделать по параметрам макс. нагрузки, надо предусмотреть монтаж двух счетчиков — для макс. и мин. нагрузки.
Самостоятельная сборка ТТ
Создание ТТ своими руками — отдельная тема, так как для процедуры потребуются широкое описание расчетов с формулами, но упрощенно процесс выглядит как наматывание рассчитанного количества витков медной проволоки на стержень (железо, сталь).
В основе лежит известный принцип. Токи на первичке и вторичке обозначают соотношением. Например, 100/5: величина на первой в 20 раз превышает таковую на второй, то есть, когда на ней есть 100 А, то на другой будет 5 А. Изделие 500/5 понижает 500 А до 5 А (на вторичных витках). Указанные величины зависят от соотношения количества витков.
Поверка
Поверка измерительных трансформаторов, трансформаторов напряжения, поверки трансформаторов тока всех возможных видов не имеют одного фиксированного срока. Разные типы и модели имеют свою периодичность поверочных мер.
Межповерочный интервал находится в диапазоне 4–16 лет. Например (модель — срок в годах):
- ТТИ-А — 5;
- ТОП — 8;
- ТШП — 16;
- ТОЛ-10 — 8;
- ТПЛ-10 — 8.
Узнать сроки можно из таких источников:
Поверки нужны для допуска к эксплуатации, мероприятие осуществляют специальные аккредитованные и лицензированные учреждения, лаборатории, структуры энергетических компаний. Исполнитель должен иметь соответствующее свидетельство. После мероприятия его проведение и состояние изделия подтверждается поверительным клеймом, пломбой, отметкой в паспорте, протоколом.
Основная цель поверки — определить погрешность. По непригодным изделиям гасят клеймо, вносят запись в паспорт, выдают извещение о непригодности, аннулируют предыдущие свидетельства.
При тестировании используют несколько методик и приборов (мегаомметры, вольтметры, амперметры, приборы сравнения токов). Подробно процедура прописана в ГОСТе 8.217-2003.
Где купить
Читайте также: