Как определить степень точности колеса
Конструкции зубчатых колес и технология их изготовления
Конструкции зубчатых колес
В зависимости от назначения, размеров и технологии получения заготовки зубчатые колеса могут иметь различную конструкцию.
Цилиндрические и конические шестерни выполняют заодно целое с валом (вал-шестерня). Это связано с малыми размерами шестерен и с тем, что раздельное изготовление снижает точность и увеличивает стоимость производства вследствие увеличения числа посадочных поверхностей, требующих точной обработки, а также вследствие необходимости применения соединений (шлицевых, шпоночных), снижающих точность передачи и прочностные свойства элементов механизма.
Насадные шестерни применяют при больших диаметрах и в тех случаях, когда они должны перемещаться вдоль вала по условиям работы или сборки.
При диаметре dа ≤ 150 мм колеса изготавливают в форме сплошных дисков из проката или из поковок (рис. 1).
Зубчатые колеса диаметром менее 500 мм получают ковкой (рис. 2), отливкой (рис. 3,а) или сваркой (рис. 3,б).
Колеса диаметром боле 500 мм выполняют отливкой или сваркой.
Иногда зубчатые колеса выполняют в виде узлов, образуемых сборкой отдельных частей (рис. 4). Так, венцы колес могут быть напрессованы на ступицу (бандажированные колеса) (рис. 4,а), крепиться резьбовым соединением (свертные колеса) (рис. 4,б) или приклепываться (клепаные колеса) (рис. 4,в).
Бандажированные, свертные или клепаные колеса применяют в целях экономии легированных сталей или цветных металлов, если таковые используются при изготовлении колеса.
Изготовление зубчатых колес
Заготовки зубчатых колес получают ковкой в штампах или свободной ковкой, реже литьем в зависимости от размеров, материала, формы и масштаба выпуска. Зубья эвольвентных колес изготавливают так, чтобы каждое колесо могло входить в зацепление с колесами того же модуля, имеющими любое число зубьев.
Зубья получают нарезанием или накатыванием.
Нарезание зубьев выполняют одним из двух методов – копированием или обкаткой.
Метод копирования заключается в прорезании впадин между зубьями модульными фрезами (рис. 5): дисковыми (а) или концевыми (б). После прорезания каждой впадины заготовку поворачивают на шаг зацепления. Профиль впадины является копией профиля режущих кромок фрезы, отсюда и название – метод копирования.
Точность нарезаемых зубьев невысокая, метод является малопроизводительным, поэтому его применяют, преимущественно, в ремонтном производстве.
Метод обкатки имеет основное применение. Нарезание зубьев по этому методу основано на воспроизведении зацепления зубчатой пары, одним из элементов которой является режущий инструмент – червячная фреза (рис. 6,а), долбяк (рис. 6,б) или реечный долбяк – гребенка (рис. 8.).
Червячная фреза имеет в осевом сечении форму инструментальной рейки. При нарезании зубьев заготовка и фреза вращаются вокруг своих осей, обеспечивая непрерывность процесса.
Нарезание зубьев червячными фрезами широко применяют для изготовления колес с внешним расположением зубьев.
Для нарезания колес с внутренним расположением зубьев применяют долбяки.
Гребенками (см. рис. 8) нарезают прямозубые и косозубые колеса с большим модулем зацепления.
Нарезание зубьев конических колес методом обкатки производят строганием (рис. 7,а), фрезерованием (рис. 7,б), резцовыми головками.
Накатывание зубьев применяют в массовом производстве. Предварительное формообразование зубьев цилиндрических и конических колес производят горячим накатыванием. Венец стальной заготовки нагревают токами высокой частоты (ТВЧ) до 1200 ˚С, а затем обкатывают между колесами-накатниками. При этом на венце выдавливаются зубья. Для получения колес более высокой точности производят последующую механическую обработку зубьев или холодное накатывание – калибровку. Холодное накатывание зубьев применяют при модуле до 1 мм.
Накатывание зубьев – высокопроизводительный метод изготовления колес с минимальным отходом металла в стружку.
Отделка (доводка) зубьев
Зубья колес точных зубчатых передач после нарезания подвергают отделке шевингованием, шлифованием, притиркой или обкаткой.
Шевингование применяют для тонкой обработки незакаленных зубьев.
Выполняют специальным инструментом – шевером, имеющим вид зубчатого колеса с узкими канавками на поверхности зубьев. Вращаясь в зацеплении с обрабатываемым колесом, шевер снимает режущими кромками канавок волосообразную стружку с зубьев колеса, доводя его форму до требуемой точности.
Шлифование применяют для обработки закаленных зубьев. Выполняют шлифовальными кругами способом копирования или обкатки.
Притирку используют для отделки закаленных зубьев колес. Выполняют притиром – чугунным точно изготовленным колесом с использованием притирочных паст.
Обкатку применяют для сглаживания шероховатостей на рабочих поверхностях зубьев незакаленных колес. В течение 1…2 минут зубчатое колесо обкатывают под нагрузкой с эталонным колесом высокой твердости.
Скольжение при взаимодействии зубьев
При работе колес зацепление двух зубьев происходит по рабочим участкам профилей, при этом рабочие участки профилей одновременно перекатываются и скользят друг по другу. Скольжение вызвано тем, что за один и тот же промежуток времени контактируют участки головок большей длины с соответствующими им участками ножек зубьев меньшей длины. Скорость скольжения зубьев в крайних точках зацепления имеет максимальное значение, и равна нулю в полюсе зацепления, при этом при переходе точки зацепления через полюс скорость скольжения меняет знак (рис. 10).
Точки профилей головок зубьев имеют бόльшие касательные скорости, чем точки ножек, следовательно, поверхности головок являются опережающими. Бόльшему изнашиванию подвержена ножка, меньшему – головка, что приводит к искажению профиля зуба, особенно в открытых передачах.
Неравномерное скольжение зубьев является недостатком эвольвентного зацепления. Малые значения скорости скольжения в околополюсной зоне увеличивают коэффициент трения в этой зоне, что создает предпосылки для выкрашивания рабочих поверхностей зубьев в результате контактных напряжений.
Влияние числа зубьев на форму и прочность зуба
Изменение числа зубьев приводит к изменению формы зуба. У рейки с числом зубьев z стремящимся к бесконечности зуб прямобочный (рис. 11,а); с уменьшением количества зубьев увеличивается кривизна эвольвентного профиля, а толщина зуба у основания и вершины уменьшается.
При уменьшении количества зубьев ниже предельного появляется подрез ножки зуба режущей кромкой инструмента (рис. 11, в), в результате чего прочность зуба резко снижается. Из-за среза части эвольвенты у ножки зуба (рис. 12) уменьшается длина рабочего участка профиля, в результате чего понижается коэффициент перекрытия εα и возрастает изнашивание.
Чтобы исключить подрезание ножки зуба при малом z инструментальной рейке необходимо сообщить смещение xm (рис. 13, а), при котором вершина ее зуба выйдет из зацепления с зубом колеса 2 в точке S и эвольвента профиля получится полной, не подрезанной (рис. 13, б). При этом избыточная часть рейки не будет подрезать зуб.
Величину xm называют абсолютным смещением рейки, величину x – относительным смещением рейки, или коэффициентом смещения.
Минимальное количество зубьев шестерни, у которой исключено подрезание зубьев без смещения рейки (т. е. при x = 0) можно определить по формуле:
При αw = 20˚ минимальное количество зубьев zmin = 17.
С увеличением количества зубьев возрастает коэффициент перекрытия εα , повышается плавность работы передачи, уменьшаются потери на трение и стоимость изготовления колес. Оптимальное количество зубьев колес, используемых в зубчатых передачах и редукторах, принимают равным zmin = 18…35.
Зубчатые передачи со смещением
Передачу со смещением образуют зубчатые колеса, у которых нарезание зубьев осуществляют со смещением рейки на величину xm (рис. 13). Изменение формы зуба по сравнению с исходным зацеплением при нарезании со смещением называют модификацией профиля.
Модифицированный профиль зуба очерчивается другим (смещенным) участком той же эвольвенты, что и профиль немодифицированного зуба.
Модификацию применяют:
- для устранения подрезания зубьев шестерни при малом количестве зубьев;
- для повышения изгибной прочности зубьев, что достигается увеличением их толщины;
- для повышения контактной прочности, что достигается увеличением радиуса кривизны в полюсе зацепления;
- для получения заданного межосевого расстояния передачи.
Положительным называют смещение рейки от центра зубчатого колеса, отрицательным – к центру.
При положительном смещении увеличивается толщина зуба у основания (рис. 14), что повышает его прочность на изгиб, но при этом заостряется головка зуба, что ограничивает величину смещения инструмента при нарезании.
При отрицательном смещении имеет место обратное явление.
У зубчатых колес со смещением толщина зуба и ширина впадины по делительной окружности неодинаковы, но в сумме остаются равными шагу р .
В зависимости от сочетания смещений при нарезании зубьев парных зубчатых колес модификация бывает высотной и угловой.
Высотная модификация
При высотной модификации шестерню изготовляют с положительным коэффициентом смещения, а колесо – с отрицательным, при этом абсолютные величины смещений должны быть равны, в результате чего суммарный коэффициент смещения будет равен нулю. Такие передачи называют равносмещенными.
При высотной модификации зубчатой пары диаметры делительных окружностей шестерни и колеса совпадают, как и в передаче без смещения, следовательно, межосевое расстояние, коэффициент перекрытия и угол зацепления остаются неизменными. Общая высота зубьев также не меняется по сравнению с ее нормальным значением, но изменяется соотношение между высотой головок и ножек зубьев. Поэтому такая модификация и называется высотной.
Высотную модификацию применяют при малом числе зубьев шестерни и большом передаточном числе, когда требуется обеспечить такие формы зубьев шестерни и колеса, при которых они будут примерно равнопрочными на изгиб.
Угловая модификация
Угловая модификация является общим случаем модифицирования, при котором суммарный коэффициент смещения пары колес не равен нулю, т. е. смещение у шестерни и у колеса неодинаковы по абсолютной величине.
Угловая модификация по сравнению с высотной дает значительно бόльшие возможности влиять на различные параметры зацепления (межосевое расстояние, угол зацепления, угол перекрытия и т. п.), поэтому она применяется чаще.
Модифицированные зубчатые колеса изготавливают тем же стандартным инструментом и на том же оборудовании, что и немодифицированные. Для получения нормальной высоты зуба диаметры заготовок соответственно увеличивают или уменьшают на величину удвоенного смещения инструмента.
Иногда модифицированные колеса называют корригированными (устаревшая терминология).
Точность зубчатых передач
При изготовлении зубчатых передач неизбежны погрешности, которые выражаются в радиальном биении зубчатого венца, отклонениях шага, профиля зуба, соосности осей колес, колебании межосевого расстояния и др.
Эти погрешности приводят к повышенному шуму во время работы передачи, потере точности вращения ведомого колеса, нарушению правильности и плавности зацепления, повышению динамичности и снижению равномерности распределения действующей в зацеплении нагрузки по длине контактных линий и, в конечном счете, определяют ресурс и работоспособность передачи.
Тем не менее, выполнять зубчатые передачи со слишком высокой точностью не всегда целесообразно, поскольку это приводит к удорожанию механизма в целом. Поэтому стандартом регламентируется точность зубчатых колес и передач в зависимости от их назначения и условий работы.
Допуски на цилиндрически зубчатые передачи определяются стандартом ГОСТ 1643–81.
Этим стандартом установлено 12 степеней точности зубчатых колёс и передач: 1, 2, 3 … 12 в порядке убывания точности. Для степеней точности 1 и 2 и 12 допуски стандартом не предусмотрены (для перспективы).
Для каждой степени точности установлены независимые нормы допускаемых отклонений параметров, определяющих:
- кинематическую точность колёс и передачи (регламентирует погрешность углов поворота зацепляющихся пар колес за один оборот);
- плавность работы (регламентирует колебания скорости за один оборот колеса, вызывающие шум и динамические нагрузки);
- контакт зубьев зубчатых колёс в передаче (регламентирует концентрацию нагрузки на зубьях, определяющую работоспособность силовых передач).
Также ГОСТ 1643–81 устанавливает шесть видов сопряжений определяющих гарантированный боковой зазор между неконтактирующими поверхностями смежных зубьев.
Боковой зазор необходим для предотвращения заклинивания зубьев передачи от нагрева, размещения смазочного материала и обеспечения свободного вращения колес.
Размер зазора задают видом сопряжения зубчатых колес в передаче: Н – нулевой зазор, Е –малый зазор, D и С – уменьшенные зазоры, В – нормальный зазор, А – увеличенный зазор.
В общем машиностроении чаще всего применяют вид сопряжения В, а для реверсивных передач – С.
Получение боковых зазоров связано с точностью изготовления колес.
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
Основные нормы взаимозаменяемости
ПЕРЕДАЧИ ЗУБЧАТЫЕ КОНИЧЕСКИЕ И ГИПОИДНЫЕ
Basic norms of interchangeability. Bevel and hypoid gears. Tolerances
Дата введения 1982-01-01
Постановлением Государственного комитета СССР по стандартам от 18 июня 1981 г. N 3000 срок введения установлен с 01.01.82
ПЕРЕИЗДАНИЕ. Январь 1987 г.
Настоящий стандарт распространяется на конические и гипоидные зубчатые передачи и пары (без корпуса) внешнего зацепления с прямыми, тангенциальными и криволинейными зубьями со средним делительным диаметром зубчатых колес до 4000 мм, средним нормальным модулем от 1 до 55 мм с прямолинейным профилем исходного контура и номинальным углом его профиля 20° (для зубчатых колес гипоидных передач за номинальный угол профиля принимается среднее арифметическое значение углов профиля на противоположных сторонах зубьев).
Стандарт полностью соответствует СТ СЭВ 186-75, а в части терминов и обозначений стандартам - СТ СЭВ 643-77 и СТ СЭВ 1161-78.
1. СТЕПЕНИ ТОЧНОСТИ И ВИДЫ СОПРЯЖЕНИЙ
1.1. Устанавливаются двенадцать степеней точности зубчатых колес и передач, обозначаемых в порядке убывания точности цифрами 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 и 12.
Примечание. Для степеней точности 1, 2 и 3 допуски и предельные отклонения не даны. Эти степени предусмотрены для будущего развития.
1.2. Для каждой степени точности зубчатых колес и передач устанавливаются нормы: кинематической точности, плавности работы и контакта зубьев зубчатых колес в передаче.
1.3. Допускается комбинирование норм кинематической точности зубчатых колес и передач, норм плавности работы и норм контакта зубьев различных степеней точности.
1.4. При комбинировании норм разных степеней точности, нормы плавности работы зубчатых колес и передач могут быть не более чем на две степени точнее или одну степень грубее норм кинематической точности; нормы контакта зубьев не могут назначаться по степеням точности более грубым, чем нормы плавности.
1.5. Устанавливаются шесть видов сопряжений зубчатых колес в передаче, обозначаемых в порядке убывания гарантированного бокового зазора буквами А, В, С, D, Е и Н (черт.1).
Виды сопряжений и гарантированные боковые зазоры
Примечание. Сопряжение вида В обеспечивает минимальную величину бокового зазора, при котором исключается возможность заклинивания стальной или чугунной передачи от нагрева при разности температур зубчатых колес и корпуса (чугунного или стального) в 25 °С.
Виды сопряжений зубчатых колес в передаче в зависимости от степени точности по нормам плавности работы указаны в табл.1.
Степень точности по нормам плавности работы
Примечание. Приведенные в табл.1 диапазоны степеней точности являются ориентировочными при выборе боковых зазоров. В необходимых случаях гарантированный боковой зазор может устанавливаться независимо от видов сопряжений, указанных в табл.1.
1.6. Точность изготовления конических и гипоидных зубчатых колес и передач задается степенью точности, а требования к боковому зазору - видом сопряжения по нормам бокового зазора*.
* См. дополнительно п.2 справочного приложения 4
Пример условного обозначения точности передачи или пары со степенью 7 по всем трем нормам точности, с видом сопряжения зубчатых колес С:
Пример условного обозначения точности передачи со степенью точности 7, гарантированным боковым зазором 400 мкм (не соответствующим ни одному из указанных видов сопряжения):
1.7. При комбинировании норм разных степеней точности точность зубчатых колес и передач обозначается последовательным написанием трех цифр и буквы. Первая цифра обозначает степень по нормам кинематической точности, вторая - степень по нормам плавности работы, третья - степень по нормам контакта зубьев и буква - вид сопряжения. Между собой цифры и буква разделяются тире.
Пример условного обозначения точности передачи со степенью 8 по нормам кинематической точности, со степенью 7 по нормам плавности работы, со степенью 6 по нормам контакта зубьев, с видом сопряжения В:
1.8. Термины и обозначения, используемые в настоящем стандарте, соответствуют стандартам СТ СЭВ 643-77 и СТ СЭВ 1161-78 и приведены в справочном приложении 1.
2. НОРМЫ ТОЧНОСТИ
2.1. Показатели кинематической точности устанавливаются по табл.2.
Показатели кинематической точности
Показатель точности или комплекс
Зубчатые пары (поставляемые без корпуса)
* Для колеса и шестерни пары и передачи
** Для зубчатых колес со средним делительным диаметром свыше 1600 мм
1. Допускается, чтобы одна из величин, входящих в комплекс и или и , превосходила предельное значение, если суммарное влияние обеих величин не превышает .
2. Допускается вместо в качестве показателя кинематической точности использовать:
колебание измерительного межосевого угла измерительной пары или относительного положения зубчатых колес измерительной пары по нормали за оборот зубчатого колеса . Допуски и устанавливаются равными 0,7.
2.1.1. Если кинематическая точность зубчатых колес относительно рабочей оси (см. п.2.10) соответствует требованиям настоящего стандарта и требование селективной сборки не выдвигается, контроль кинематической точности зубчатых передач не обязателен.
2.1.2. При соответствии кинематической точности окончательно собранной передачи требованиям настоящего стандарта контроль кинематической точности зубчатых колес не является необходимым.
2.2. Показатели плавности работы устанавливаются по табл.3 для степеней точности 4-8 в зависимости от граничных значений номинального коэффициента осевого перекрытия и степени точности по нормам контакта (табл.4), для степеней точности 9-12 независимо от .
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
Основные нормы взаимозаменяемости
ПЕРЕДАЧИ ЗУБЧАТЫЕ ЦИЛИНДРИЧЕСКИЕ МЕЛКОМОДУЛЬНЫЕ
Basic norms of interchangeability. Cylindrical fine-pitch gears. Tolerances
Дата введения 1982-01-01
Постановлением Государственного комитета СССР по стандартам от 23 июня 1981 г. N 3068 срок введения установлен с 01.01.82
ПЕРЕИЗДАНИЕ. Декабрь 1986 г.
Настоящий стандарт распространяется на эвольвентные цилиндрические зубчатые колеса и зубчатые передачи внешнего и внутреннего зацепления с прямозубыми и косозубыми зубчатыми колесами с модулем от 0,1 до 1,0 мм (исключительно), делительным диаметром до 400 мм (при модуле менее 0,5 мм - до 200 мм) и исходным контуром по ГОСТ 9587-81.
Требования стандарта распространяются на зубчатые колеса, используемые в винтовых передачах.
Стандарт полностью соответствует СТ СЭВ 642-77, а в части терминов и обозначений - стандартам СЭВ СТ СЭВ 643-77 и СТ СЭВ 644-77.
1. СТЕПЕНИ ТОЧНОСТИ И ВИДЫ СОПРЯЖЕНИЙ
1.1. Устанавливаются двенадцать степеней точности зубчатых колес и передач, обозначаемых в порядке убывания точности цифрами: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 и 12.
Примечание. Для + степеней точности 1 и 2 допуски и предельные отклонения не даны. Эти степени точности предусмотрены для будущего развития.
1.2. Для каждой степени точности зубчатых колес и передач устанавливаются нормы кинематической точности, плавности работы и контакта зубьев зубчатых колес в передаче.
1.3. Допускается комбинирование норм кинематической точности, норм плавности работы и норм контакта зубьев зубчатых колес и передач разных степеней точности.
1.4. При комбинировании норм разных степеней точности нормы плавности работы зубчатых колес и передач могут быть не более чем на одну степень точнее или грубее норм кинематической точности; нормы контакта зубьев могут назначаться по любым степеням более точным и не более чем на одну степень точности грубее норм плавности работы передач.
1.5. Для передач с нерегулируемым и регулируемым расположением осей устанавливается пять видов сопряжений D, E, F, G, Н, приведенных на чертеже, и четыре вида допуска на боковой зазор е, f, g, h. Обозначения даны в порядке убывания величины бокового зазора и допуска на него.
Виды сопряжений зубчатых колес в передаче в зависимости от степени точности по нормам плавности работы указаны в табл.1.
Зубчатые колеса изготавливают с погрешностями, вызываемыми погрешностями профиля зубообрабатывающих инструментов (фрез, долбяков), неточностью их установки на станке, отклонениями размеров и формы заготовки, а также неточностью установки заготовки на станке, погрешностями в кинематических цепях станка.
Совместное действие перечисленных погрешностей приводит к кинематической погрешности колеса, отсутствию плавности его работы и нарушению прилегания поверхностей зубьев, как по длине, так и по высоте зуба.
Предельные отклонения параметров зубчатого колеса ограничены системой допусков.
Степени точности цилиндрических зубчатых колес
По точности изготовления зубчатые колеса разделяют на 12 степеней точности в порядке убывания точности: 1, 2, 3, … , 12.
Степень точности – заданный уровень допустимого несоответствия значений действительных параметров их расчетным (номинальным) значениям.
Допуски установлены для степеней точности от 3-й до 12-й.
Допуски и отклонения для степеней 1-й и 2-й не установлены – это резервные степени.
Для дифференциации точности колес в зависимости от их служебного назначения зубчатые передачи подразделяют на четыре вида - отсчетные, скоростные, силовые и общего назначения.
- к отсчетным относят передачи с высокой кинематической точностью (кинематические). Основные требования – кинематическая точность, то есть соответствие угла поворота ведущего и ведомого колес. Это часовые, индикаторные, счетно-решающие устройства, делительные механизмы, колеса координатных измерительных машин, следящих устройств и т.д.;
- к скоростным относят передачи станков, автомобилей, двигателей, турбин. Важнейшим требованием их работы является плавность и бесшумность работы при высоких частотах вращения;
- к силовым относят передачи грузоподъемных машин, тракторов, штампов, землеройных машин и экскаваторов. Основным требованием в таких передачах является полнота контакта зуба.
В соответствии с перечисленными группами передач построена система допусков на зубчатые колеса. Все показатели точности передач и колес сгруппированы в три нормы точности:
- нормы кинематической точности зубчатого колеса и передачи;
- нормы плавности работы зубчатого колеса и передачи;
- нормы контакта зубьев колеса и передачи.
Нормы кинематической точности – определяют точность передачи вращения с одного вала на другой, то есть величину полной погрешности (ошибки) угла поворота ведомого зубчатого колеса в пределах его полного оборота. Обычно выражается величиной длины дуги делительной окружности в линейных единицах измерения.
Нормы плавности – характеризуют равномерность вращения или степени плавности изменения кинематических погрешностей передачи. Выражается погрешностью по шагу при повороте на один номинальный угловой шаг.
Нормы контакта – отражают полноту прилегания поверхностей зубьев, сопряженных колес передачи. Характеризуются величиной и расположением пятна контакта сопряженной пары.
Степени точности назначают для каждого вида норм точности дифференцированно с учетом того, к какой группе относится данная передача, т.е. три вида норм могут комбинироваться и назначаться из разных степеней точности с учетом ограничений, приводимых в стандартах.
Для передач общего назначения для всех норм точности назначают, как правило, одинаковую степень точности, например 7-ю.
Критерием для выбора степени точности по норме плавности является окружная скорость:
Степени 3, 4, 5, 6 назначаются на скоростные передачи, с окружной скоростью от 10 до св.50 м/с;
Степени 7, 8, 9 назначают на средние передачи, с окружной скоростью от 2 до 10 м/с;
Степени 10,11,12 назначают на тихоходные передачи, с окружной скоростью менее 2 м/с.
Области применения различных степеней точности :
- 3 - 5 степени – для цилиндрических зубчатых колес, измерительных приборов, для делительных механизмов зуборезного инструмента;
- 3 - 6 степени – для редукторов турбин, для прецизионных станков;
- 6 - 7 степени – для авиационных двигателей (4 -7), легковые автомобили (5 - 8), металлорежущие станки (3 - 8), редукторы;
- 8 - 9 степени – грузовые автомобили, тракторы, подъемные механизмы, краны, прокатные станы, ответственные шестерни сельскохозяйственных машин;
- 10 - 12 степени – тихоходные машины, лебедки, несоответственные шестерни сельскохозяйственных машин.
Стандарт допускает комбинированные нормы из разных степеней точности.
При комбинировании степеней точности требуется, чтобы:
- нормы плавности работы были не более чем на две степени точнее или на одну степень грубее нормы кинематической точности;
- нормы контакта зубьев могут быть такими же или любой более точной степени, чем нормы плавности, или иногда на одну степень грубее.
Таким образом, для средних и высокоскоростных передач (автомобильных, турбинных) степень точности по нормам плавности целесообразно назначить более точную, чем по нормам кинематической точности.
Для делительных, кинематических, отсчетных передач и механизмов целесообразно принимать одинаковые степени точности по нормам кинематической точности и плавности работы.
Для силовых (тяжелонагруженных) передач, работающих при малых и средних скоростях (шестеренные клети прокатных станов) степень точности по контакту должна быть точнее, чем по кинематической точности и по плавности.
Указанное комбинирование норм из разных степеней точности существенно и с точки зрения технологической, поскольку каждая отдельная операция улучшает качество колеса только лишь в отношении показателей одной нормы, а не всех трех норм точности вместе.
Боковой зазор. Вид сопряжения
Теоретически эвольвентные зубчатые зацепления являются двухпрофильными (в контакте оба профиля зуба).
Практически такие зацепления неработоспособны из-за наличия:
- погрешности изготовления и ошибок монтажа;
- температурных деформаций;
- изгиба зубьев под нагрузкой;
- из-за отсутствия смазки между сопряженными поверхностями.
Таким образом, работоспособным является однопрофильное зацепление, в котором передача вращения осуществляется парой сопряженных профилей, а другая пара профилей образует боковой зазор, необходимый для компенсации выше указанных погрешностей.
Боковой зазор jn обеспечивает небольшой люфт (поворот) зубчатого колеса в передаче при заторможенном или неподвижном втором колесе.
Боковой зазор измеряется вдоль линии зацепления между касательными к нерабочим профилям зубьев в сечении, перпендикулярном к направлению зубьев, и в плоскости, касательной к основным цилиндрам.
Для нормальной работы боковой зазор в передаче должен быть не меньше установленного гарантированного зазора jnmin и не больше наибольшего допустимого зазора.
Требования к боковому зазору между нерабочими профилями зубьев в собранной передаче, объединенные в норму бокового зазора, назначают дополнительно независимо от точности изготовления передач и колес.
Величина бокового зазора является характеристикой вида сопряжения.
Стандартом предусматривается шесть видов сопряжения и восемь видов допусков бокового зазора для зубчатых передач с модулем свыше 1 мм. Выбор вида сопряжения не зависит от степени точности зубчатого колеса, а зависит от межосевого расстояния, скорости вращения, и температурного режима работы передачи.
Для нерегулируемых передач с модулем св. 1 мм установлены шесть классов отклонений межосевого расстояния, обозначаемых в порядке убывания точности римскими цифрами I, II, III, IV, V, VI.
Гарантированный боковой зазор в каждом сопряжении обеспечивается при соблюдении предусмотренных классов отклонений межосевого расстояния.
Например, для передач с модулем св.1 мм сопряжения H и E обеспечиваются при II классе, а сопряжения D , C , B и A - соответственно при III, IV, V и VI классах соответственно.
Для гарантированного бокового зазора jnmin по ГОСТ 1643 установлены ряды значений, зависящие от вида сопряжения и равные допускам ( ITq ) определенных квалитетов по ГОСТ 25346 на соответствующее межосевое расстояние передачи.
Величина необходимого бокового зазора, соответствующая температурной компенсации, определяется по формуле:
где a – межосевое расстояние передачи, a = m( z1 + z2)/2 , мм;
α1 и α2 - коэффициенты линейного расширения для материала соответственно зубчатых колес и корпуса;
t1 и t2 – предельные температуры, для которых рассчитывается боковой зазор, соответственно зубчатых колес и корпуса.
Величина бокового зазора, обеспечивающая нормальные условия смазки, зависит от окружной скорости и способа подачи смазки. Ориентировочно ее можно определить в зависимости от модуля:
- для тихоходных передач: jnmin II = 0,01 m (до 0,2 м/с) ;
- среднескоростных: jnmin II = 0,02 m (до 10 м/с) ;
- высокоскоростных: jnmin II = 0,03 m (до 16 м/с) .
Тогда необходимый гарантированный боковой зазор рассчитывается как сумма двух слагаемых:
jnmin = jn I + jn II .
Наибольший боковой зазор не ограничивается стандартом. Это вызвано тем, что боковой зазор является замыкающим звеном размерной цепи, в которой допусками ограничены отклонения всех составляющих размеров (межосевое расстояние и смещение исходных контуров на шестерне и колесе, непараллельность и перекос осей), поэтому величина наибольшего зазора не может превзойти значения, получающегося при определенном сочетании составляющих размеров.
Кинематическая точность
Допуск кинематической погрешности зубчатого колеса за оборот зубчатого колеса. является комплексным параметром. Наибольшая кинематическая погрешность F’ir - разность между действительным и номинальным расчетным углами поворота зубчатого колеса на рабочей оси, ведомого измерительным (образцовым) зубчатым колесом в пределах одного поворота (измеряется на приборах для однопрофильного зацепления).
Кинематическая погрешность может рассматриваться как результат одновременного действия двух составляющих погрешностей: радиальной и тангенциальной (касательной). Радиальная составляющая является следствием эксцентриситета заготовки относительно оси вращения стола зуборезного станка, радиального биения стола, и зуборезного инструмента.
Тангенциальная составляющая является следствием погрешностей зуборезного станка, ведущих к нарушению равномерности обката инструмента и изделия а, особенно, кинематических погрешностей конечного звена кинематической цепи привода вращения стола (конечного делительного колеса, червячной пары и т.п.), которые целиком переносятся на обрабатываемое колесо.
Под номинальным положением исходного контура понимают положение исходного контура на зубчатом колесе, лишенном погрешностей, при котором номинальная толщина зуба соответствует плотному двухпрофильному зацеплению.
Плавность работы цилиндрических колес
Нормы плавности являются доминирующими для скоростных передач. Далее рассмотрим некоторые нормы плавности работы.
f'i - допуск на колебание измерительного межосевого расстояния на одном зубе.
Колебание измерительного межосевого расстояния на одном зубе fir ”– разность между наибольшим и наименьшим действительными расстояниями при двухпрофильном зацеплении измерительного зубчатого колеса с контролируемым колесом при повороте последнего на один угловой шаг.
Контролируется при повороте на один шаг в беззазорном зацеплении. Контроль осуществляется на межцентромерах.
fpb – допуск на отклонение шага зацепления (или основного нормального шага). Отклонение шага зацепления fpbr - разность между действительным и номинальным шагами зацепления. Отклонение шага зацепления ограничивается верхним +fpb и нижним -fpb предельными отклонениями.
Измеряют на шагомере в направлении, перпендикулярном направлению зубьев.
fpt – допуск на отклонение торцового (окружного) шага. Он ограничивает fptr - кинематическую погрешность зубчатого колеса при его повороте на один номинальный угловой шаг (измеряется на шагомерах).
ff – допуск на погрешность профиля зуба. Погрешность профиля зуба ffr определяется с помощью эвольвентомера.
Это расстояние по нормали между двумя ближайшими друг к другу номинальными торцовыми профилями зуба (т.е. эвольвентами), между которыми размещается активный действительный торцовый профиль зуба зубчатого колеса.
Под действительным торцовым профилем зуба понимают линию пересечения действительной боковой поверхности зуба колеса в плоскости, перпендикулярной его рабочей оси.
Нормы контакта зубьев в передаче
Долговечность и износостойкость зубчатых передач зависит от полноты контакта сопряженных боковых поверхностей зубьев колеса. Для обеспечения требуемой полноты контакта в передаче установлены наименьшие размеры суммарного пятна контакта.
Суммарное пятно контакта – часть активной боковой поверхности зуба колеса, на которой располагаются следы прилегания его к зубьям парного колеса после вращения под нагрузкой собранной пары при непрерывном контакте зубьев обоих колес.
Оно определяется относительными размерами в процентах:
- по длине: (b/B)×100% ,
где b – расстояние между крайними точками следов прилегания за вычетом разрывов; B – длина зуба (ширина венца);
- по высоте: (a/hp)×100% ,
где a – средняя высота следов прилегания; hp – высота активной боковой поверхности зуба.
Fβ - допуск направления зуба - другой показатель полноты контакта.
Погрешность направления зуба Fβr – это расстояние между двумя, ближайшими друг к другу номинальными делительными линиями зуба торцовых сечений, между которыми заключена действительная делительная линия зуба в пределах рабочей ширины зубчатого колеса. Измеряется на ходомерах.
Действительная делительная линия зуба – это линия пересечения действительной боковой поверхности зуба зубчатого колеса делительным цилиндром, ось которого совпадает с рабочей осью колеса.
Полнота контакта зубьев в передачах с нерегулируемым расположением осей оценивается показателями fx , fy , (непараллельность осей, перекос осей).
Отклонение от параллельности осей fxr - отклонение от параллельности проекций рабочих осей зубчатых колес в передаче на плоскость, в которой лежит одна из осей и точка второй оси в средней плоскости передачи, т.е. в плоскости, проходящей через середину рабочей ширины зубчатого венца. Оно определяется в торцовой плоскости в линейных единицах на длине, равной рабочей ширине зубчатого венца.
Перекос осей fyr - отклонение от параллельности проекции рабочих осей зубчатых колес в передаче на плоскость, параллельную одной из осей, и перпендикулярную плоскость, в которой лежит эта ось и точка пересечения второй оси со средней плоскостью передачи.
Читайте также: