Как определить растянута цепь или нет на паджеро 3 2 дид
16-клапанная ГБЦ на двигателе 4D56 появилась в 2005 году, а в 2007-м и 2010-м дебютировали самые мощные версии мощностью 167 и 178 л.с. с турбокомпрессором с изменяемой геометрией.
Все варианты двигателя 4D56 оснащены ременным приводом ГРМ, не имеют гидрокомпенсаторов в приводе клапанов. Также оснащены балансирными валами.
Дизель 4D56 нашел применение на всех крупных полноприводных автомобилях Mitsubishi: на всех вариантах Pajero, Delica, пикапе L200. Версию двигателя 4D56 с вихрекамерной ГБЦ и ТНВД распределительного впрыска выпускали до 2009 года, причем в последний год моторы имели ТНВД с электронным управлением.
На нашем YouTube-канале вы можете посмотреть разборку 2,5-литрового дизеля 4D56 c электронным ТНВД, снятого с Mitsubishi Pajero Sport 2005 года выпуска.
Надежность двигателя Mitsubishi 2.5 TD (4D56)
Мнения о надежности двигателя Mitsubishi 2.5 TD (4D56), а именно о его вихрекамерных версиях, очень разные. Немало людей считают его очень выносливым, надежным и ремонтопригодным. Однако много владельцев автомобилей с этим двигателем имели постоянные проблемы, в том числе и дорогие капремонты и замены погибших моторов. Конечно, все зависит от обслуживания. На практике оказывается, что этот двигатель исправно служит в руках знающих владельцев, которые также умеют правильно обслуживать этот мотор.
Вакуумный насос
Вакуумный насос приводится от генератора: он установлен позади его на одной оси. Вакуумный насос может течь по трубкам подачи и слива масла. Но чаще всего течь возникает по сальникам общего вала генератора вакуумного насоса. Сальники находятся в корпусе генератора, поэтому для их замены нужно снимать весь узел, отделять вакуумный насос, правильно располовинивать генератор – сальники установлены в его передней части.
Шкив коленвала
Нередко на двигателе 4D56 срезает шпонку коленвала, после чего прекращается привод навесного оборудования. Также на коленвале может разбить шпоночный паз, после чего фиксировать шкив на коленвале очень проблематично.
Если передний сальник коленвала часто просится на замену из-за постоянного подтекания масла или запотевания, то, вероятно, есть выработка на самом коленвале.
ТНВД Bosch VE
Версия двигателя 4D56 для Mitsubishi Pajero Sport долгое время выпускалась с механическим распределительным роторным топливным насосом высокого давления Bosch VE, выпускаемым под маркой Zexel.
Это надежный и ресурсный ТНВД, который способен прокачивать дизтопливо практически любого качества. Проблемы с этим насосом вызваны механическим износом его деталей.
При износе плунжерной пары возникает хорошо известные симптомы: двигатель прекрасно заводится на холодную, неплохо работает пока горячий, но на горячую не заводится. Все дело в том, что при нагреве увеличиваются зазоры в плунжере, плотность дизтоплива снижается, что не позволяет насосу создавать достаточное давление впрыска.
Поршень автомата опережения впрыска может подклинить из-за мусора, тогда двигатель заметно теряет в мощности, дымит, стучит при раннем впрыске и плохо набирает обороты.
В этом ТНВД нет никаких электронных элементов, он связан с педалью акселератора тросом. Все регулировки подачи топлива в зависимости от температуры двигателя, нагрузки, степени наддува производятся механически. Винт (1) регулировки холостого хода упирается в лопатку тросика газа. Этим винтом регулируется холостой ход прогретого мотора без нагрузки.
Обороты быстрого холостого хода регулируются двумя винтами (2 и 3) возле мембранного регулятора. Рядом с ним находится винт (8) подачи топлива на максимальных оборотах. Это очень важный винт, неправильная регулировка которого может расстроить работу всего ТНВД. Если все системы двигателя исправны, но он дымит черным при нагрузке, то стоит понемногу откручивать этот винт – тем самым уменьшается цикловая подача топлива.
Небольшой электрический элемент (7) на ТНВД Zexel VE связан с датчиком давления наддува и повышает дозировку впрыска топлива при увеличении наддува. От старости этот клапан выходит из строя – в нем трескается диафрагма, после чего двигатель очень неохотно тянет на высокой нагрузке.
ТНВД Zexel с электронным управлением едва ли капризнее, у него есть свои особенности. Например, серьезно глючит контроллер иммобилайзера, из-за чего двигатель не запускается: стартер крутит абсолютно вхолостую. Этот контроллер установлен в цепи клапана отсечки топлива, поэтому ТНВД не получает топлива. Сам клапан отсечки топлива может подвести из-за засорения сетки в нем. Из-за этого топливная система тоже перестанет функционировать.
На поздних версиях двигателя 4D56 не с системой Common Rail используется электронноуправляемый распределительный роторный топливный насос высокого давления Bosch VE, выпускаемый под маркой Zexel.
Этот ТНВД обвешан электронными исполнительными элементами, имеет электронную связь с педалью акселератора. Тем не менее, его нельзя назвать ненадежным. Прежде всего, здесь минимум механических регулировок. Кроме того, есть неплохая система самодиагностики, которая помогает в решении проблем с этим ТНВД.
Проблем не так уж и много. Этот топливный насос довольно всеяден и в целом не требователен к качеству дизтоплива.
На нем расположен клапан отсечки топлива, внутри которого есть небольшая фильтрующая сетка. При ее засорении двигатель заводится с очень большим трудом, либо вообще не заводится. Также проблемы с запуском возникают из-за выхода из строя этого клапана. Клапан либо начинает трещать при включении зажигания, либо не подает признаков жизни при непосредственной подачи напряжения на него. Все эти проблемы решаются заменой клапана отсечки подачи топлива. Также проблемы с этим клапаном возникают из-за обрыва его проводки или пропадания контакта в электрическом разъеме.
Сзади на ТНВД под топливными трубками находится клапан корректора угла опережения впрыска. При неисправности данного клапана двигатель 4D56 сильно дымит черным дымом из выхлопа. Также бывают случаи, когда в разъеме этого клапана пропадает контакт. Тогда двигатель работает жестко из-за слишком раннего впрыска топлива.
Отдельная неприятность двигателя 4D56 выражается в том, что на холодную он прекрасно заводится, а когда прогреется, то глохнет и не запускается, пока не остынет. Т.е. стартер прекрасно крутит, но двигатель не дает ни намёка на воспламенение. В этом виноват иммобилайзер, который управляет клапаном отсечки подачи топлива. Контроллер иммобилайзера установлен в цепи питания клапана отсечки. Этот контроллер просто удаляют, соединяя питание клапана напрямую с замком зажигания.
Течи масла
Двигатель 4D56 очень интенсивно истекает маслом по всем возможным уплотнениям: по прокладке клапанной крышки, по сальникам коленвала
Клапан EGR
Клапан EGR на двигателе 4D56 предельно простой – с пневматическим актуатором, никакой обратной связи не имеет, поэтому его глушат очень просто. Можно даже не заморачиваться с прокладкой на канал подачи отработавших газов. Если клапан не заклинивает, его можно оставить как есть и снять с актуатора трубку, закупорив ее.
При подклинивании клапана EGR в открытом положении двигатель плохо работает, со сниженной мощностью, дымлением, вибрациями. Эти симптомы чем-то похожи на проблемы с ТНВД, но нередко оказывается, что виновником является клапан EGR.
Регулировка клапанов
Каждые 20 000 км на двигателе 4D56 нужно проверять тепловые зазоры клапанов и регулировать их при необходимости. Величина зазоров для всех клапанов на холодном двигателе – 0.15 мм.
Турбокомпрессор
На вихрекамерных двигателях используется простой турбокомпрессор Mitsubishi TD04 c перепускной заслонкой. В зависимости от версии двигателя он может быть самоуправляемой или иметь управление от электровакуумного клапана. В первом случае при достижении давления наддува в 1,8 бара (т.е. избыток давления в 0,8 бара), это давление по трубке воздействует на диафрагму актуатора, который соединен со штоком перепускной заслонки.
Турбокомпрессор надежный и служит хорошо и долго. Верный признак его износа – это большое количество масла во впускном коллекторе, а также в интеркулере (при его наличии во впускной системе). Cлучаи разноса двигателя 4D56 из-за работы на этом масле очень редкие.
При сильном износе турбокомпрессора возникает очень сильный люфт вала, крыльчатки задевают за корпус, турбина гудит, мощность двигателя снижается.
Ремень ГРМ
В приводе ГРМ и топливного насоса используется зубчатый ремень. За ним проложен еще один ремень, приводящий оба балансирных вала. Оба ремня нужно менять каждые 80 000 км – столько служат оригинальные ремни. При этом производитель предусматривает процедуру подтяжки обоих ремней, которую стоит выполнять каждые 30 000 – 40 000 километров. Если забыть о подтяжке, то ремень может быстро износиться и порваться.
Вообще ремни ГРМ и балансиров – больное место на этом двигателе. Обрыв ремня происходит из-за использования низкокачественных заменителей или несоблюдения сроков замены ремня. Также ремень ГРМ может перескочить или порваться при обрыве ремня балансирных валов.
В этом случае поршни ударят по клапанам… Но в большинстве случаев клапана не погнутся. Весь удар примут на себя коромысла клапанов – они специально сделаны деформируемыми. Опытные паджероводы возят с собой запасной ремень и пару запасных коромысел. Говорят, в дороге можно отремонтировать мотор после перескока ремня ГРМ за пару часов.
Но важно, если ремень ГРМ порвался или перескочил, не заводить двигатель. В этом случае разрушения будут более серьезными – от ударов поршней по клапанам поломается ось коромысел.
А на моторе 4D56 с впрыском Common Rail при обрыве ремня ГРМ повреждения гораздо серьезнее: вырывает крепежные болты бугелей распредвала.
Прокладка ГБЦ
Двигатель 4D56 очень чувствителен к перегреву. При превышении рабочей температуры ГБЦ легко и непринужденно деформируется. Также могут появиться трещины в ГБЦ между клапанами и трещины в вихрекамерах.
Перегрев может случиться как при неисправности термостата, так и при утечке антифриза через трубки и штуцеры к отопителю салона.
Нередко при ремонте люди ограничиваются только заменой прокладки, т.к. считают, что дело только в ее пробитии.
Для ремонта недостаточно поменять прокладку, т.к. течь антифриза и масла между контурами и цилиндрами сохранится. Нужно проверять ГБЦ – наверняка понадобится шлифовка ее поверхности и установка прокладки ремонтного размера.
Балансирные валы
Также есть мнение, что ремень балансиров ни в коем случае нельзя удалять, так как это нагружает и без того проблемный коленвал, который испытывает еще более высокие нагрузки.
Разрушение коленвала на дизеле 4D56
Такая неприятность может произойти как на моторе, который никогда не ремонтировался, так и на откапиталенном двигателе. Причины поломки коленвала точно неизвестны, но есть следующие соображения.
Прежде всего, коленвал двигателя 4D56 с распределительным ТНВД слабый. Диаметр шеек малый, прочность вала недостаточная. Поэтому коленвал лопается, если испытывает на себе вибрации, связанные с разрушением демпферного шкива коленвала или из-за разбалансировки в случае удаления ремня балансирных валов.
После замены лопнувшего коленвала на новый эта же проблема может повториться уже в течение ближайших тысяч километров. При более тщательном изучении блока цилиндров выясняется, что нарушена соосность опор коленвала. Разница в несколько сотых миллиметра приводит к усиленному изгибанию коленвала, чего он не выдерживает.
Также очень быстро лопается оригинальный коленвал, если при капремонте двигателя с заменой вкладышей были отшлифованы шейки коленвала. Т.е. этот слабенький коленвал становится еще слабее при снятии крохотного слоя металла с его шеек.
Также есть мнение о заводском браке. С другой стороны, некоторые двигатели 4D56 смогли пройти с родным коленвалом более 500000 км.
Коленвал двигателя 4D56 с Common Rail имеет более толстые шейки, поломок такого усиленного вала не замечено.
Здесь по ссылкам вы можете посмотреть наличие на авторазборке конкретных автомобилей Mitsubishi заказать с них автозапчасти.
Насколько я понимаю, теория вас мало интересует например, такие вопросы как: устройство ГРМ, разновидности цепей ГРМ, их надежность и ресурс и так далее. Если вы читаете это — значит, либо у вашего движка проблемы с цепью, либо вы ломаете голову над вопросом менять цепь ГРМ или нет. Следовательно, всю теорию я пропускаю, и перехожу непосредственно к самой сути вопроса: как определить степень износа цепи ГРМ, или как понять, что цепь ГРМ пора менять?
Как понять, что цепь ГРМ пора менять?
- Первые признаки, зачастую проявляются в виде перебоев работы мотора. При запуске двигателя, из-под капота могут доноситься шаркающие, трущие или лязгающие звуки, которые могут исчезать по мере прогрева двигателя. Общий шум работающего мотора может существенно повыситься. Однако отмечу, что все перечисленные в этой статье симптомы не всегда свидетельствуют о том, что у вас проблемы с цепью ГРМ. Нередко одни и те же симптомы могут свидетельствовать о совершенно разных неисправностях. Бывает, что шум цепи, при запуске связан с давлением масла. Дело в том, что в первые секунды после запуска, когда масляный насос только начал создавать оптимальное давление в масляной системе, натяжитель может издавать вышеупомянутые звуки. Также обращаю ваше внимание на тот факт, что порой растянутую цепь ГРМ ничего не выдает, в итоге наступает критический момент и она перескакивает на один-два или более зубов.
- Шестой способ определить состояние цепи — тест на провисание. Это самый сложный, но при этом, пожалуй, самый наглядный способ оценить состояние цепи ГРМ и степень ее износа. Для проверки потребуется демонтаж цепи и две линейки. Сама проверка заключается в следующем: берем цепь, укладываем ее на край стола, на ребро, то есть в то положение, в котором цепь не сгибается. Дальше берем две линейки, одну укладываем на стол рядом с цепью, чтобы видеть горизонт и плоскость. А второй линейкой измеряем насколько провисающий край цепи отклонился от горизонтали, то есть, как сильно он провисает. Если это значение превышает 1-2 сантиметра — цепь непригодна для дальнейшего использования и требует немедленной замены. Это то случай, когда лучше один раз увидеть, чем сто раз услышать.
Теперь несколько дельных советов…
Через сколько менять цепь ГРМ?
Что касается периодичности замены цепи ГРМ, тут все еще сложнее чем с ремнем. Сейчас уже нету какого-то единого километража, после которого необходимо производить замену, также как и в вопросе с ремнем. Разные производители пишут абсолютно разные числа. Скажу лишь, что диапазон периодичности замены цепи ГРМ стартует с отметки 100 тысяч км пробега, хотя есть не мало тех, кто советует менять цепь уже после 70 тысяч. Есть также немало движков, на которых цепи спокойно живут 150-200 тысяч и больше. Тут, как я уже говорил сложно давать какие-либо советы. Могу посоветовать лишь одно: следуйте рекомендациям производителя, а также регламенту замены, который есть в техничке каждого авто.
У меня все, спасибо за просмотр! Друзья, надеюсь на вашу поддержку, если статья понравилась, ставьте добавляйте в закладки и делитесь с друзьями! Если есть какие-то замечания, или желание дополнить меня, не стесняйтесь, пишите ваш конструктив в комментариях, я всегда искренне рад каждому из них!
Видеоверсия статьи:
У этого двигателя алюминиевая ГБЦ с двумя распредвалами, приводящими 16 клапанов, но гидрокомпенсаторов в их приводе нет. Привод ГРМ комбинированный – с шестернями и однорядной роликовой цепью.
3,2-литровый турбодизель выпускался только в турбированном варианте и имел непосредственный впрыск топлива. До 2006 года мотор оснащался впрыском с распределительным ТНВД Zexel VRZ. В таком исполнении этот двигатель устанавливали только на Mitsubishi Pajero 3. На Pajero 4-го поколения дебютировал мотор 4М41 c новой ГБЦ, в которую были помещены форсунки системы Common Rail от компании Denso.
На нашем YouTube-канале вы можете посмотреть разборку двигателя 4M41, снятого с Mitsubishi Pajero 3 2000 года выпуска.
Шкив коленвала
Шкив коленвала двигателя 4M41 является демпферным, т.е. оснащен резиновой обоймой, гасящей колебания. Резиновый демпфер не вечный – он лопается, трескается. При этом сначала внешняя обойма шкива перекашивается, что приводит к появлению постороннего звука трения ремней навесного оборудования. Далее демпфер целиком обрывается, что приводит к остановке внешней части шкива. При этом слышен отчетливый скрежет или скрип, а привод навесного оборудования (генератора, помпы и компрессора кондиционера) не осуществляется.
Ремень генератора и помпа
Генератор и помпу системы охлаждения на двигателе 4М41 приводят сразу два поликлиновых ремня. Еще один ремень приводит компрессор кондиционера. Все ремни имеют неавтоматический механический натяжитель, поэтому периодически ремни нуждаются в регулировке их натяжения. На необходимость регулировки в первую очередь указывает свист ремней. Если и после подтяжки скрип возобновляется, то придется менять ремни. Каждый раз необходимо проверять шкив коленвала на предмет биения, а помпу – на предмет люфта. Оригинальная помпа служит около 100 000 км, при возникновении люфта она поскрипывает и шуршит.
Данная заслонка обычно проблем не создаёт. Она имеет обратную связь, поэтому ЭБУ сразу сигнализирует о любых неполадках, вызванных, как правило, нарушением ее подвижности.
Турбокомпрессор MHI
На двигателях 4M41 с распределительным ТНВД используется очень живучий турбокомпрессор MHI TF035HL с перепускной заслонкой. Ресурс этой детали – 250 000 км и более. Турбокомпрессор вызывает минимум жалоб.
Течь масла по кронштейну масляного фильтра
Бывают случаи возникновения течи масла по кронштейну масляного фильтра и теплообменнику. Масло давит оттуда во время работы двигателя. Если владелец вовремя не заметит вытекания в этом месте, то двигатель может выдавить почти весь объем масла, что приведёт к печальным последствиям для всех пар трения.
Для устранения течи нужно заменить три уплотнительных кольца на кронштейне фильтра, которые продаются единым комплектом (MH035094).
Клапан EGR
Масляные пары и сажа, поступающая во впуск, оседают на внутренней поверхности впускного трубопровода, значительно уменьшая его сечение. Это значит, что со временем двигатель 4М41 будет задыхаться, получая меньше воздуха. Естественно, при этом значительно снижается при попытках ускориться на полном газу. Одним словом, если этот турбодизель стал плохо тянуть на высокой скорости работы, настала пора снять и тщательно почистить впускной коллектор.
Кроме того, известны редкие случаи появления трещин в теплообменнике EGR, из-за чего на впуск попадает антифриз. При этом двигатель парит из выхлопной трубы.
Цепь ГРМ
Если владелец не замечает посторонний звон, который можно услышать на холостом ходу. Кроме шума двигатель никак не намекает на то, что нужно отправляться на замену цепи ГРМ. Все параметры работы мотора будут в норме вплоть до обрыва цепи. Обрывы случаются на рубеже 250 000 км. Поэтому цепь ГРМ двигателя 4M41 следует менять каждые 200 000 км или даже раньше.
Оригинальная инструкция по замене цепи ГРМ на этом двигателе подразумевает снятие ГБЦ, т.к. иначе не получается сбросить цепь с распредвалов. Однако есть хорошее и более простое решение – размыкание старой цепи с выпрессовыванием одного из пальцев. Новые цепи поставляются разомкнутыми. Таким образом, новую цепь можно установить, не снимая ГБЦ.
При обрыве цепи ГРМ на двигателе Mitsubishi 3,2 Di-D поршни ударяют по клапанам, что влечёт за собой серьезный ремонт. Загнутся не только клапаны, но и могут оторваться бугеля распредвалов.
ТНВД Zexel
Радиально-плунжерный ТНВД Zexel VRZ c электронным управлением считается самым слабым местом ранних двигателей 4М41, которые еще не были оснащены впрыском типа Common Rail от Denso. Этот насос высокого давления становится жертвой некачественной и плохо очищенной солярки, в результате нередко в нём изнашиваются практически все детали.
Mitsubishi 4M41 11
Однако и без очевидных кодов неисправностей мотор будет долго запускаться, затем будет дымить сизым дымом. Вдобавок значительно ухудшится разгонная динамика, появятся провалы мощности.
Такие симптомы появляются при выходе из строя автомата опережения впрыска – этот узел буквально впитывает в себя все примеси, содержащиеся в топливе, и продукты износа пар трения ТНВД.
К тому автомат опережения впрыска, в частности его муфта, быстро выходит из строя при проблемах с подачей топлива в сам ТНВД. Проблемы могут быть вызваны как завоздушиванием топливной системы, так и загустением дизтоплива в сильные морозы. Эксплуатация ТНВД Zexel при нарушении подачи топлива приводит к появлению частого стука в его корпусе – это в отсутствие топлива стучит поршень опережения. При этом из выхлопной трубы валит светло-синий дым.
К пробегу в 200 000 км в ТНВД Zexel наступал критический износ вала и дозирующего кольца, в результате снижалась производительность насоса. При этом двигатель начинает неровно работать на холостом ходу, в жару будет плохо заводиться, плохо тянуть и глохнуть на ходу. Но если охладить ТНВД, полив его водой, мотор на время будет работать хорошо. На сегодняшний день ротор, его втулки и дозирующее кольцо поддаются ремонту.
Топливные форсунки
Топливные форсунки двигателя 4M41 чисто механические, но способны производить два впрыска топлива за цикл. Для этого в их конструкции предусмотрены две пружины, благодаря которым первый впрыск топлива происходит при давлении 180 бар, а второй при 240 бар.
Эти форсунки обладают большим ресурсом, распылители к ним есть в продаже.
Регулировка тепловых зазоров
В приводе клапанов двигателя 4M41 отсутствуют гидрокомпенсаторы, этот двигатель нуждается в проверке тепловых зазоров клапанов каждые 15 000 км. Тепловые зазоры регулируются при помощи отвертки и гаечного ключа. Зазоры впускных клапанов – 0,1 мм, а выпускных – 0,15 мм.
Трещины в ГБЦ
Редко на двигателях 4M41 появляется трещина в ГБЦ, о чём, как правило, говорит появление пара из выхлопной трубы и сопутствующее снижение уровня охлаждающей жидкости. К сожалению, в этом случае ГБЦ придётся менять. Шансы хорошо и надолго заварить образовавшуюся трещину очень малы.
Из-за трещин в ГБЦ, захватывающих масляные каналы, в этом моторе может появиться повышенный расход масла и повышенное дымление сизого цвета. Вина трещин в случае жора масла всегда неочевидна, поэтому до снятия и проверки ГБЦ владельцы успевают перепроверить множество других версий, включая замену маслосъемных колпачков.
Также известны редкие случаи пробивания прокладки ГБЦ (MD03020S), из-за чего антифриз также попадает в один или несколько цилиндров.
Кроме того, иногда голову мотора 4М41 приходится поднимать для замены направляющих втулок клапанов – из-за их износа клапаны сильно люфтят.
Балансирные валы
Двигатель 4М41, как и многие другие турбодизели Mitsubishi, оснащён парой балансирных валов. Правый балансир входит в корпус масляного насоса и приводится через его шестерню. На практике, балансирные валы 3,2-литрового турбодизеля Mitsubishi никаких проблем не создают. Однако при капремонте мотора с огромным пробегом обращают внимание на люфт балансиров. Этот люфт можно устранить заменой вкладышей балансиров, которые продаются как отдельная деталь.
Здесь по ссылкам вы можете посмотреть наличие на авторазборке конкретных автомобилей Mitsubishi заказать с них автозапчасти.
Главная опасность слабого натяжения привода ГРМ – риск перескока цепи, что приведет к встрече клапанов с поршнями и дорогостоящему капитальному ремонту. Давайте рассмотрим, как определить растянутую цепь по выходу натяжителя и при помощи компьютерной диагностики. Покажем, какие коды неисправности косвенно свидетельствуют о рассинхронизации меток газораспределительного механизма (ГРМ). Упомянем методы косвенной проверки износа цепи на двигателях TSI от VAG-Group.
Признаки растянутой цепи ГРМ
- Треск, цоканье, звон и прочие посторонние звуки со стороны привода ГРМ. На ранних стадиях характерный шум появляется на несколько секунд после запуска на холодную. За время простоя масло из каналов ГБЦ, блока цилиндров стекает в поддон, поэтому чем больше растянута цепь ГРМ, тем дольше натяжитель взводит ее в рабочее состояние. Если растяжение цепи настолько большое, что вылета штока недостаточно для обеспечения должного натяжения, посторонние звуки будут слышны и на холодную, и на горячую.
- Потеря динамики, трудный запуск на холодную или горячую. Растяжение цепи ГРМ приводит к смещению фаз газораспределения. Нарушение газообмена в цилиндрах ведёт к неэффективному наполнению камеры сгоранию и нарушению сгорания топливовоздушной смеси. Как следствие, увеличивается расход топлива, снижается мощность, возникают проблемы с запуском двигателя.
- На приборной панели горит индикатор Check Engine. При этом актуальные ошибки в памяти неисправностей говорят о рассинхронизации, запаздывании/опережении одного из распредвалов либо о неисправности датчика распределительного/коленчатого вала.
Как определить растянутую цепь?
Существует несколько методов проверки износа цепи ГРМ:
- измерение вылета штока натяжителя. Для контроля растяжения на многих авто в защитной крышке газораспределительного механизма предусмотрен лючок. На натяжителе нанесены отметки, по которым рассчитывается степень выхода штока. Если сервисный лючок отсутствует, для визуального осмотра необходимо снимать защитную крышку ГРМ ибо клапанную крышку;
Информацию о максимально допустимом вылете штока вы можете найти в сервисной документации по ремонту и эксплуатации автомобиля.
- визуальная оценка провисания цепи между звездочками распределительных валов, а также оценка люфта цепи на зубьях шестерен. Способ не обеспечивает математической точности, но при должном опыте позволяет определить сильно растянутую цепь;
- замер рассинхронизации привода ГРМ по сигналам с датчика положения коленчатого вала (ДПРВ) и датчика скорости вращения коленчатого вала. Одновременно записанные сигналы демонстрируют фактическое положение валов относительно друг друга. Недостаток такого метода в том, что вам потребуется двухканальный осциллограф, а также эталонный образец сигнала с заведомо исправного двигателя. Огромное преимущество такого метода проверки растяжения цепи в отсутствии необходимости добираться до привода ГРМ. При наличии оборудования и понимания процесса проверка занимает не более 30-50 минут;
- определение рассинхронизации с помощью диагностического оборудования через интерфейс OBD-II. Такая функция доступна лишь на некоторых авто, оборудованных фазовращателями. По фактическому углу поворота фазовращателя на холостом ходу можно косвенно оценить, насколько сильно растянута цепь ГРМ.
Печальные последствия растяжения цепи ГРМ
- Повышенный износ зубчатых шестерен, башмаков и успокоителей. Растянутая цепь ГРМ сильнее поддается колебательным воздействиям, из-за чего детали привода переносят избыточные механические нагрузки. Происходит ускоренный износ зубьев шестерен, разрушение пластиковых башмаков, успокоителей. Откалывающийся пластик попадает в поддон, рискуя забить сетку маслоприемника и нарушить работу системы смазки двигателя. В особо запущенных случаях цепь может соприкасаться с защитной крышкой ГРМ;
- Неправильный газообмен в цилиндрах. Нарушение фаз приводит к ударным нагрузкам на детали шатунно-поршневой группы, увеличивает термическую нагрузку на детали ГБЦ и может стать причиной прогара поршней, клапанов;
- Перескок цепи ГРМ на 1 или несколько зубьев. При смещении на 1 зуб возможны проблемы с запуском двигателя, потеря динамики и увеличение расхода топлива. Если цепь перескакивает на 2 и более зубьев, в 95% это приведет к встрече поршней с клапанами. Последствие такого соприкосновения – загибание клапанов и повреждение поршней. Двигатели с растянутой цепью ГРМ не рекомендуется оставлять с включенной передачей на спусках и подъемах.
Особенности работы цепного привода ГРМ
Цепной привод газораспределительного механизма состоит из цепи, успокоителя, зубчатых шкивов, башмака и натяжителя. Поскольку скорость вращения коленчатого вала непостоянна, цепь поддается колебательным воздействиям. Успокоитель гасит колебания, предотвращая цикличное ослабевание цепи.
Рабочее состояние цепи обеспечивается натяжителем, шток которого давит на башмак. По принципу работы натяжители делятся на механические и гидравлические.
Гидравлический натяжитель представляет собой цилиндрический корпус, в одной из частей которого установлен клапанный узел, а во второй плунжер. Между двумя полостями образуется замкнутая рабочая зона, в которую через клапан под давлением подается моторное масло. Давление масла воздействует на плунжер, перемещая его к передней части корпуса. Внутренняя часть корпуса в рабочей зоне плунжера имеет специальные насечки, под стопорное кольцо. При перемещении плунжера стопорное кольцо перемещается по насечкам, блокируя обратное перемещение плунжера при заглушенном двигателе. Благодаря этому цепь сохраняет натяжение в первые секунды запуска, когда давление масла в системе смазки может быть недостаточным.
Внутри корпуса клапана установлен подпружиненный шарик. Когда двигатель запущен, давление масла преодолевает усилие возвратной пружины, отодвигая шарик и открывая доступ маслу к рабочей полости. На заглушенном двигателе возвратная пружина прижимает шарик к посадочному месту, перекрывая масляный канал и препятствуя тем самым оттоку масла из рабочей полости.
Башмак прикреплен к блоку двигателя на подвижной оси. Толкатель плунжера давит на противоположную сторону башмака, тем самым натягивая цепь между звездочками. Выше нами описан принцип работы гидронатяжителя на основе запорного кольца и канавок. В конструкции современных двигателей нередко применяются различные вариации подобного устройства. Добавление в конструкцию перепускного дросселя или резервной полости улучшает демпфирующие свойства и повышает надежность гидронатяжителя, хоть кардинально и не изменяет принцип его работы.
Почему растягивается цепь?
При растягивании цепь оказывает меньшее давление на башмак. Сложившееся противодействие движению плунжера приводит к его перемещению под воздействие давления масла. Шток натяжителя отодвигается, компенсируя тем самым растяжение цепи.
Вылет штока гидронатяжителя фиксирован, поэтому степень компенсации растяжения цепи ограничен. Длина цепи ГРМ увеличивается из-за выработки между составными частями цепи. Из-за огромного количества таких частей даже микроскопический люфт суммарно может привести к значимому удлинению цепи.
По-прежнему основной фактор ресурса цепи ГРМ – конструкция деталей газораспределительного механизма и качество материала комплектующих.
Впору вспомнить о цепных моторах начала 90-х конца 2000-х, в которых благодаря 2-х и даже 3-х рядным цепям их ресурс нередко ограничивался несколькими сотнями тысяч километров.
Из-за особенностей компоновки и ужесточившихся требований к топливной экономичности на современные двигатели часто устанавливают однорядные цепи, ресурс которых иногда не превышает 60-100 тыс. км. Поэтому интервалы технического обслуживания, стиль езды и состояние зубчатых шестерен хоть и влияют на скорость износ цепи ГРМ, но главным фактором по-прежнему остается заложенный конструкторами запас прочности.
Читайте также: