Как найти лямбду в физике
Сегодня поговорим, что такое лямбда-зонд и зачем он нужен в автомобили. Разберем принцип его работы, где его устанавливает. Постараюсь все рассказать простым языком.
Назначение
Где находится
Следуя из его назначения можно предположить, где он устанавливается. Так как он призван измерять выхлопные газы, значит, его необходимо ставить в выпускном коллекторе двигателя.
Как он функционирует
Лямбда-зонд работает на основе гальванического элемента, погруженного внутрь выхлопной трубы. На поверхности элемента протекают химические реакции, вырабатывающие внутри его электрический ток. Этот сигнал усиливается самим зондом. Он подается через провод к блоку управления двигателем.
Интересный факт. Эти реакции начинают происходить, датчик начинает работать при достижении температуры окружающей среды 300 градусов. То есть, пока выхлопные газы не нагрелись, лямбда-зонд не работает.
При холодном запуске двигателя зонд не функционирует. Ему нужно время для его разогрева . Поэтому, на рынке автозапчастей существуют датчики с подогревом и без него. В первом случае к лямбда-зонду подается электрический ток, внутри его находится нагревательный элемент. За счет этого напряжения повышается температура рабочей поверхности датчика.
Зачем он нужен в автомобиле
Его устанавливают для двух случаев:
- Правильно организовать приготовление топливовоздушной смеси;
- Правильная работа катализатора.
Разберем подробно эти случаи.
Если в выхлопных газах содержится кислород, значит, неправильно была приготовлена топливовоздушная смесь. С чем это связано? Для того, чтобы в камерах сгорания произошел взрыв топливной смеси, требуется подать определенное количество кислорода. Когда эти пропорции соблюдены, то происходит правильное сгорания смеси. Она превращается в выхлопные газы.
Поэтому, если в выхлопе присутствует кислород, это говорит о том, что не хватает топлива. Его содержание выше, чем бензина. Этот датчик, измеряя содержание кислорода, подает сигнал в блок управления двигателем, который принимает решение об изменении состава топливовоздушной смеси. Он добавляет больше топлива в камеру сгорания.
Так регулируется работы мотора автомобиля. Поэтому, если не работает лямбда-зонд, наблюдается эффекты:
- Повышенного расхода топлива;
- Снижение мощности;
- Нестабильная работа силового агрегата.
Второй случай – катализатор. Его устанавливают для приведения химического состава выхлопа к определенным экологическим нормам. Он дожигает выхлопные газы до определенной нормы, позволительные требованиями экологии.
Буквой λ (лямбда) обозначается длина волны того или иного излучения. Эту величину можно измерить, можно рассчитать теоретически, а если излучение является видимым, то даже определить на глаз.
Чтобы рассчитать длину волны излучения, зная частоту и скорость распространения этого излучения, поделите вторую величину на первую. Если же вместо частоты известен период, умножьте его на скорость распространения излучения. Наконец, если известна циклическая частота излучения, умножьте скорость на 2π, а затем результат поделите на циклическую частоту.
Чтобы результат получился в системе СИ, предварительно переведите в нее же все величины из условия задачи. Затем переведите результат обратно в удобные для вас единицы.
Если излучение является световым, длину его волны в вакууме определите на глаз: красный - от 635 до 690 нм, оранжевый - 590, желтый - от 570 до 580, зеленый - от 510 до 520, синий - от 440 до 480, фиолетовый - от 380 до 400.
Имея специальный прибор - спектрометр, определить длину волны света можно точнее, чем на глаз. Если он является полихроматическим, определить его спектральный состав можно только с помощью этого прибора Для этого направьте световой поток во входное окно прибора. Он пройдет через щель, перпендикулярную призме, а затем и через саму призму, а затем попадет либо на шкалу, либо на линейку датчиков. Во втором случае, обработку результата измерения осуществит электронный блок прибора.
Для нахождения длины волны излучения дециметрового или сантиметрового диапазона подключите антенну к волномеру, после чего начните плавно менять ее размер. Когда он станет равен половине длины волны, показания волномера окажутся максимальными.
Направьте тонкий луч света строго перпендикулярно дифракционной решетке. На экране появится ряд пятен. Измерьте угол между воображаемой линией, продолжающей ход луча после решетки, линией, соединяющей точку входа луча в решетку с первым из пятен. Найдите синус этого угла, а затем умножьте на расстояние между двумя соседними линиями решетки. Получится длина волны, которая будет выражена в тех же единицах, что и расстояние между линиями.
Вопрос для взрослого человека, может, и не актуальный, а вот для учащегося, который столкнулся с физикой только-только, очень важный. И дети не могут его сформулировать, а тем более ответить на него.
Величин в физике много, ситуаций, в которых их можно измерять – и того больше, а букв в латинском и греческом алфавитах – мало. Поэтому неудивительно, что одна и та же буква обозначает разные величины. Как в нашем примере λ. Или, ещё например, R обозначает и радиус, и электросопротивление.
Системы в этих обозначениях, кажется, никакой.
На самом деле этот вопрос - порождение формульного подхода ученика к изучению физики. Ученик пытается запомнить формулу, а в ней - что какие буквы значат. При таком подходе действительно очень тяжело различить лямбды в формулах:
В какой ситуации?
Физик же даже не задастся этим вопросом, потому что он отталкивается от физического явления. Физические вопросы вот какими были бы:
Что происходит (какое явление)? - Распространение волн.
Что можно измерять в этом процессе? - Частоту, скорость, длину волны, период
Как обозначается длина волны? - "λ"
То есть, вопрос не что означает "λ", а противоположный, заданный с другого конца - "как обозначается длина волны?" Обычно эта цепочка промелькивает за доли секунды, и физик даже не осознаёт её. А учителю приходится осознавать, потому что его ученик пытается всё делать задом наперёд.
В одной ситуации
В физике иногда возникает ситуация, при которой в одном явлении могут измеряться величины, имеющие одинаковое обозначение. Например, в электродинамике можно измерять потенциальную энергию и напряжённость электрического поля. Например, в задаче о потенциальной энергии взаимодействия заряженной частицы и электрического поля. Здесь и энергия и напряжённость поля обозначаются буквой "Е".
Таких ситуаций в физике - можно посчитать по пальцам, поэтому физики просто договорились до обозначений в них.
Так, энергия всегда обозначается буквой "E" ("Eₚ", "Eₖ"), но в электродинамике потенциальная энергия обозначается буквой "W" ("Wₚ").
Лямбда и стехиометрия двигателя
Название датчика происходит от греческой буквы λ (лямбда), которая обозначает коэффициент избытка воздуха в топливно-воздушной смеси. Для полного сгорания смеси соотношение воздуха с топливом должно быть 14,7:1 (λ=1). Такой состав топливно-воздушной смеси называют стехиометрическим — идеальным с точки зрения химической реакции: топливо и кислород в воздухе будут полностью израсходованы в процессе горения. При этом двигатель произведёт минимум токсичных выбросов, а соотношение мощности и расхода топлива будет оптимальным.
Если лямбда будет 1 (избыток воздуха) смесь называют обеднённой. Чересчур богатая смесь — это повышенный расход топлива и более токсичный выхлоп, а слишком бедная смесь грозит потерей мощности и нестабильной работой двигателя.
Из графика видно, что при λ=1 мощность двигателя не пиковая, а расход топлива не минимален — это лишь оптимальный баланс между ними. Наибольшую мощность мотор развивает на слегка обогащённой смеси, но расход топлива при этом возрастает. А максимальная топливная эффективность достигается на слегка обеднённой смеси, но ценой падения мощности. Поэтому задача ЭБУ (электронного блока управления) двигателя — корректировать топливно-воздушную смесь исходя из ситуации: обогащать её при холодном пуске или резком ускорении, и обеднять при равномерном движении, добиваясь оптимальной работы мотора во всех режимах. Для этого блок управления ориентируется на показания датчика кислорода.
Зачем нужен кислородный датчик
Где находится кислородный датчик
Датчик кислорода установлен в выпускном коллекторе или приёмной трубе глушителя двигателя, замеряя, сколько несгоревшего кислорода находится в выхлопных газах. На многих автомобилях есть ещё один лямбда-зонд, расположенный после каталитического нейтрализатора выхлопа — для контроля его работы.
Устройство кислородного датчика
Классический лямбда-зонд порогового типа — узкополосный — работает по принципу гальванического элемента. Внутри него находится твёрдый электролит — керамика из диоксида циркония, поэтому такие датчики часто называют циркониевыми. Поверх керамики напылены токопроводящие пористые электроды из платины. Будучи погружённым в выхлопные газы, датчик реагирует на разницу между уровнем кислорода в них и в атмосферном воздухе, вырабатывая на выходе напряжение, которое считывает ЭБУ.
Причины и признаки неисправности лямбда-зонда
Основная причина поломок кислородных датчиков — некачественный бензин: свинец и ферроценовые присадки оседают на чувствительном элементе датчика, выводя его из строя. На состояние лямбда-зонда влияет и нестабильная работа двигателя: при пропусках зажигания от старых свечей или пробитых катушек несгоревшая смесь попадает в выхлопную систему, где догорает, выжигая и катализатор, и датчики кислорода. Приговорить датчик также может попадание в цилиндры антифриза или масла.
Самый очевидный признак неисправности лямбда-зонда — индикатор Check Engine на приборной панели. Считав код ошибки с помощью сканера или самодиагностики, можно проверить, какой именно датчик вышел из строя, если их несколько. Иногда всё дело в повреждённой проводке датчика — с проверки цепи и стоит начать поиск поломки.
Проблемы с датчиком кислорода нарушают всю систему обратной связи и лямбда-коррекции, вызывая целый букет неисправностей. Прежде всего, это увеличение расхода топлива и токсичности выхлопа, снижение мощности и нестабильный холостой ход. Если вовремя не заменить лямбда-зонд, следом выйдет из строя каталитический нейтрализатор, осыпавшись из-за перегрева от обогащённой смеси.
Универсальные кислородные датчики
Цена на оригинальные датчики кислорода вряд ли обрадует автомобилистов, но все лямбда-зонды работают по единому принципу, что позволяет без труда подобрать замену. Главное, чтобы соответствовал типа датчика (широкополосный/узкополосный), количество проводов и резьбовая часть. В продаже есть универсальные кислородные датчики без разъёма, которые можно использовать на десятках моделей автомобилей — подобрать и купить лямбда-зонд не составляет проблемы.
Чтобы избежать проблем с кислородными датчиками, следите за состоянием двигателя, заправляйтесь качественным топливом и регулярно выполняйте компьютерную диагностику, которая позволит выявить неисправности на ранней стадии.
Почему твердое тело становится жидким?
Но давайте для начала разберем, как происходит сам процесс плавления на атомно-молекулярном уровне. Как мы знаем, в любом твердом теле все атомы и молекулы находятся четко и упорядочено в узлах кристаллической решетки, благодаря этому твердое тело и является твердым.
Но что происходит, если мы начинает это самое гипотетическое твердо тело сильно нагревать – под действием температуры атомы и молекулы резко увеличивают свою кинетическую энергию и по достижении определенных критических значений, они начинают покидать кристаллическую решетку, вырываться из нее. А само твердое тело начинает буквально распадаться, превращаясь в некое жидкое вещество – так происходит плавление.
При этом процесс плавления происходит не резким скачком, а постепенно. Также стоит заметить, что плавление относится к эндотермическим процессам, то есть процессам, при которых происходит поглощение теплоты.
Процесс обратный к плавлению называют кристаллизацией – это когда тело из жидкого состояния наоборот превращается в твердое. Если вы оставите воду в морозилке, она через какое-то время превратится в лед – это самый типичный пример кристаллизации из реальной жизни.
Определение
Формула удельной теплоты плавление выглядит так:
Где m – масса плавящегося вещества, а Q – количество тепла, переданное веществу при плавлении.
Зная значение удельной теплоты плавления, мы можем определить, какое количество тепла необходимо передать для тела с той или иной массой, для его полного расплавления:
Для разных веществ удельная теплота плавления была определена экспериментально.
Единица измерения
Многих интересует вопрос, в каких единицах измеряется удельная теплота плавления. Так вот, удельная теплота плавления измеряется в Джоулях на килограмм – Дж/кг.
Таблица удельной теплоты плавления
Значение удельной теплоты для разных веществ: золота, серебра, цинка, олова и многих других металлов можно найти в специальных таблицах и справочниках. Обычно эти значения приводятся в виде таблицы.
Вашему вниманию таблица удельной теплоты плавления разных веществ
Вещество | 10 5 * Дж/кг | ккал/кг | Вещество | 10 5 * Дж/кг | ккал/кг |
Алюминий | 3,8 | 92 | Ртуть | 0,1 | 3,0 |
Железо | 2,7 | 65 | Свинец | 0,3 | 6,0 |
Лед | 3,3 | 80 | Серебро | 0,87 | 21 |
Медь | 1,8 | 42 | Сталь | 0,8 | 20 |
Нафталин | 1,5 | 36 | Цинк | 1,2 | 28 |
Олово | 0,58 | 14 | Платина | 1,01 | 24,1 |
Парафин | 1,5 | 35 | Золото | 0,66 | 15,8 |
Интересный факт: самым тугоплавким металлом на сегодняшний день является карбид тантала – ТаС. Для его плавления необходима температура 3990 С. Покрытия из ТаС применяют для защиты металлических форм, в которых отливают детали из алюминия
Рекомендованная литература и полезные ссылки
Видео
Автор: Павел Чайка, главный редактор журнала Познавайка
Читайте также: