Электродвигатели какого типа применяются в качестве стартеров двс
Электростартер – это вспомогательный электрический прибор, предназначенный для запуска двигателя внутреннего сгорания. Он представляет собой двигатель постоянного тока, питающийся от аккумуляторной батареи подзаряжаемой генератором. При подаче питания стартер создает вращательное движение коленвала двигателя внутреннего сгорания, создав тем самым необходимые условия для розжига топлива и дальнейшей стабильной работы цилиндров.
Как работает электростартер
Для запуска двигателя внутреннего сгорания требуется создание оптимальных условий для розжига топливной смеси. Для этого важно раскрутить коленчатый вал до минимально необходимых оборотов, требуемых для воспламенения топлива в цилиндрах. Чтобы раскрутить коленчатый вал применяется сторонний источник механической энергии, в качестве которого и выступает стартер.
По сути он является электрическим двигателем постоянного тока с коллекторно-щеточным узлом. Стартер воздействует на двигатель только в период его запуска. После стабилизации работы он отключается. Специально для этого в устройстве предусматривается механизм управления.
За механическое управление электрического стартера отвечает втягивающее реле. Оно выполняет две функции. В первую очередь реле замыкает электрическую цепь, которая обеспечивает питание электродвигателя. Также оно вводит в зацепление шестерни, передающие вращательное движение на коленвал. Фактически оно выполняет такую же функцию, как коробка передач между колесами и двигателем.
Принцип работы электрического стартера в автотранспорте
При повороте ключа зажигания водителем, выполняется замыкание цепи втягивающего реле. Напряжение от аккумулятора поступает на обмотку реле, в результате чего образовывается сильное магнитное поле. Оно воздействует на якорь, тот сдвигается и реле соответственно втягивается. Зацепленная вилка смещает бендикс (обгонная муфта) по роторному валу. Как следствие шестеренка состыковывается с зубьями маховика.
После срабатывания втягивающее реле прекращает питание цепи. С обратной стороны на нем установлено 2 провода. Один идет для подключения питающего кабеля, а второй передает напряжение на электрический мотор.
Как только происходит срабатывание реле, то якорь втягивается и замыкает пятаки, являющиеся разрывными элементами цепи питания мотора. В результате на двигатель подается напряжение, и якорь двигателя начинает вращаться. В тоже время шестерня бендикса находится в зацеплении, поэтому передаточное усилие заставляет коленчатый вал вращается, двигая тем самым поршня в цилиндрах.
После запуска мотора, коленвал начинает обгонять по скорости вращение стартера. Тогда в устройстве срабатывает обгонная муфта, которая и прекращает контакт с валом. Это позволяет предотвратить механические повреждения обеих систем. В противном случае при продолжении подачи питания два механизма просто противодействовали бы друг другу.
Как только двигатель автомобиля переходит в штатный режим работы и водитель отпускает ключ замка зажигания, то пропадает питание стартера. От этого втягивающее реле срабатывает обратно. Отсутствие магнитного поля приводит к тому, что пружина возвращает якорь в штатное положение, пятаки размыкаются и бендикс спускается на место.
Электростартер, работающий по данной схеме, сейчас считается устаревшей конструкцией, главным недостатком которой выступает значительный вес и размер. Для реализации такой конструкции требовалось использование мощного электродвигателя, способного выдавать высокие тяговые усилия. При этом электромотор должен вращаться медленно. Такие стартеры плохо подходят для современных автомобилей, спецтехники, генераторов и прочих устройств, где требуется их установка.
Электростартер с редуктором
Более современные стартеры оснащаются редуктором. Благодаря этому возможно использование высокооборотистого, но мелкого мотора. Редуктор понижает обороты, переводя их количество в качество. Он увеличивает силу стартера, позволяя создать достаточный крутящий момент для раскручивания коленчатого вала. Такая система не просто компактная, но и экономичная. Она позволяет завести ДВС большее количество раз на одном заряде аккумулятора.
Современные стартеры могут оснащаться различными типами редукторов, но в подавляющем большинстве случаев применяются устройства с так называемой планетарной передачей. Ее достоинством является компактность и надежность. Характерной чертой планетарного редуктора выступает наличие дополнительного вала для установки бендикса. Это исключает прямую связь якоря с бендиксом. Они способны взаимодействовать между собой только через редуктор.
Классическая схема планетарного редуктора:
Основные неисправности электростартеров
Электростартер выступает ремонтопригодным механизмом, в случае неисправности который можно восстановить практически до первоначального рабочего состояния. Поскольку он состоит из вращающихся деталей, для него выпускаются ремкомплекты, в состав которых входят мелкие детали, нуждающиеся в периодической замене. Большинство остальных комплектующих, склонных к поломкам, можно найти в свободной продаже. Однако такие части электростартера как корпус в продаже в новом виде не встречаются. Их можно приобрести для ремонта в б/у состоянии. Отсутствие данных комплектующих обусловлено исключением их износа. Если они и нуждаются в замене, то только по причине нештатной ситуации, к примеру, механического повреждения сильным ударом, что бывает при аварии.
Чаще всего электростартера выходят из строя по причине:
- Износ подшипников.
- Подгорание пятаков.
- Стирание зубьев шестерни.
- Заклинивание якоря.
- Износ и/или заклинивание обгонной муфты.
Перечисленные неисправности относятся к механической части стартера. Большинство из них решаются заменой поврежденной детали. Исключением являются только заклинивание частей механизмов. В таком случае требуется их очистка и смазка. Также простым обслуживанием решается проблема подгорания пятака. Она устраняется механической чисткой.
Более сложными в диагностировании и решении выступают проблемы электрической части. Электростартер может быть неисправен по причине:
Кроме этого неисправность может вызвать износ щеток контактных пластин коллектора. Это определяется по их размеру. По мере износа они стираются и становятся меньше, поэтому со временем перестают доставать до контактных пластин. Конструкция большинства стартеров предусматривает простой механизм их замены, поскольку данная проблема является самой частой.
Неисправности обмотки стартера могут устраняться только специалистом. С помощью специального оборудования возможна перемотка якоря, что обходится дешевле, чем его замена на новый агрегат.
Оптимальный режим работы стартера и диагностирование поломки
Чтобы минимизировать частоту поломок стартера и увеличить его ресурс, требуется придерживаться некоторых правил. В первую очередь при запуске двигателя нельзя передерживать электростартер включенным. В противном случае тот может сгореть от перегрева. Именно это и выступает основной причиной выхода якоря из строя. Обычно на стартерах имеется табличка, на которой указывается рекомендуемая максимальная длина работы и частота перезапусков.
В большинстве случаев если двигатель не запускается больше 5 сек с момента начала работы стартера, то это говорит об неисправности последнего. Исключением может быть только сильный мороз, при котором топливо в двигателе плохо воспламеняется. Если дело именно в этом, то не стоит крутить стартер подолгу, чтобы он не сгорел. В таком случае у дизельных моторов нужно лучше прогреть свечи, а в бензиновых применить специализированную стартовую аэрозольную жидкость для пуска холодных двигателей.
Плохой запуск ДВС может быть связан не только с плохой работой стартера, но и множеством других причин:
- Недостаточный заряд аккумулятора.
- Поломка двигателя.
- Отсутствие подачи топлива.
- Засорение системы выхлопа.
Однако по определенным признакам можно без диагностики определить, что неисправен именно стартер. Говорить о его поломки могут:
- Задержка в работе после поворота ключа зажигания.
- Характерный треск.
- Слышен звук запуска электродвигателя, не сопровождаемый вращением коленвала ДВС.
- Полное отсутствие реакции на поворот ключа зажигания.
- Стартер не отключается после запуска ДВС.
В целом уход за электростартером подразумевает соблюдение 2-х основных правил:
- Делать перерывы между безуспешными пусками мотора не менее 30 сек.
- Не применять электростартер для движения авто.
Запуск стартера при включенной передаче автомобиля приводит к его движению. Этим часто пользуются при неисправности мотора или отсутствии топлива, чтобы продвигаться вперед. Такой способ движения быстро истощает аккумуляторную батарею, а кроме этого перегревает стартер. Таким способом можно вполне безопасно проехать несколько метров, но не более.
Хотя рекомендуемая пауза между поворотами ключа в замке зажигания составляет 30 сек, но в жару этот период лучше увеличивать. Короткая пауза не проблема если стартер запустил мотор со второй попытки, но при множественных повторениях подряд это повлечет сгорание якоря.
В автомобильном электростартере нового поколения электродвигатель не имеет статорных обмоток возбуждения, которые заменены на постоянные магниты, а механический привод дооборудован понижающим планетарным редуктором, который установлен непосредственно в корпусе стартера. Это позволило сделать стартер высоко-оборотистым, легким, малых размеров и более эффективным в работе.
Стартерный электродвигатель
Классический электростартер автомобиля — это устройство, состоящее из электродвигателя (ЭДВ) постоянного тока с последовательной обмоткой возбуждения, который на время пуска двигателя внутреннего сгорания (ДВС) подключается к аккумуляторной батарее (АКБ) с помощью пускового тягового реле (ПТР). Это же реле посредством рычага с вилкой перемещает по оси стартера муфту свободного хода (МСХ) и тем самым механически сочленяет шестерню на валу стартерного электродвигателя непосредственно с венечной шестерней маховика ДВС.
Конструкция автомобильного стартера, при которой вал электродвигателя соединяется прямо с маховиком ДВС, имеет ряд недостатков. Так, передаточное число главного редуктора, состоящего из венечной шестерни маховика и шестерни МСХ, не может быть достаточно высоким. Ограничения накладываются расчетным размером диаметра маховика, а также числом, размером и прочностью зубцов шестерни МСХ. В такой редукторной паре — соотношение зубцов не может быть более 16—18.
От указанных недостатков свободны ЭДВ с независимым (от тока якоря) возбуждением.
Рис 1 б) С независимым возбуждением.
Независимое возбуждение магнитного поля на статоре ЭДВ можно получить тремя способами: обмоткой возбуждения, которая подключена к отдельному от якоря источнику электрической энергии (управляемое независимое возбуждение — рис. 1, б);
Рис 1 в) С параллельным возбуждением обмоткой возбуждения, подключенной параллельно якорю ЭДВ (параллельное возбуждение — рис. 1, в);
Рис 1 д) С возбуждением от постоянного магнита постоянными магнитами на статоре (возбуждение от постоянных магнитов относится к неуправляемому независимому возбуждению — рис. 1, д).
Электродвигатель с питанием обмотки возбуждения от независимого источника (рис. 1, б) в автомобильной системе электростартерного пуска не используется, так как на борту автомобиля один пусковой источник электрической энергии — аккумуляторная батарея.
Электродвигатели с чисто параллельным возбуждением (рис. 1, в) в автомобильных электростартерах неэффективны, так как напряжение АКБ при пуске ДВС в зимнее время (при температуре ниже — 20 °С) резко падает до 8—9 В. При этом намагничивающая сила параллельной обмотки возбуждения, а следовательно и крутящий момент стартера, значительно ослабевают, пуск ДВС становится невозможным. Кроме того, характеристика ЭДВ с параллельным возбуждением жесткая, что недопустимо при низком передаточном соотношении между оборотами стартерного ЭДВ и оборотами коленвала ДВС, так как это может привести к ударным перегрузкам и поломкам в зубцах механического привода.
Рис 1 г) Со смешанным возбуждением.
Однако жесткость характеристики ЭДВ обеспечивает плавность хода стартера, а также ограниченность оборотов холостого хода, и поэтому параллельное возбуждение иногда вводится в ЭДВ классического электростартера дополнительно к последовательному (рис. 1, г). Такое возбуждение обеспечивает ЭДВ усредненную (умеренно жесткую) механическую характеристику и называется смешанным. Используется, например, в стартерах для автомобилей ВАЗ.
Такие стартеры имеют следующие преимущества:
- главное магнитное поле электродвигателя с постоянными магнитами на статоре не зависит ни от тока якоря, ни от падения напряжения АКБ при пуске ДВС.
- система постоянных магнитов на статоре электродвигателя делается многополюсной (не менее шести полюсов), что позволяет заметно уменьшить габариты магнитной системы (постоянные магниты значительно меньше электромагнитов), а следовательно и всего стартера в целом. КПД и обороты стартерного электродвигателя с многополюсным статором также выше.
- сами постоянные магниты выполняются не из сплавов дорогостоящих металлов, а из спекаемых ферритовых порошков с большой коэрцитивной силой, что делает магниты легкими, прочными, технологичными и, как следствие, дешевыми.
- наличие дополнительного понижающего редуктора в электростар-терной системе пуска позволяет оптимально согласовать жесткую механическую характеристику электродвигателя независимого возбуждения с минимальной пусковой частотой вращения коленвала ДВС при максимальной механической нагрузке стартера.
- И наконец, стартерный ЭДВ с независимым возбуждением от постоянных магнитов и с дополнительным редуктором может работать в режиме повышенных оборотов при пуске холодного двигателя, потребляя при этом от АКБ меньший ток по сравнению с классическим стартером. КПД стартерного режима АКБ и надежность пуска ДВС увеличиваются.
Как и любая новая техника, электростартеры с планетарным редуктором и с возбуждением от постоянных магнитов на начальном этапе внедрения обладали некоторыми недостатками: они были значительно дороже классических за счет высокой стоимости постоянных магнитов и планетарного редуктора; в них быстрее изнашивались щетки из-за более высоких оборотов; их работа сопровождалась повышенным шумом.
Современная технология изготовления стартеров нового поколения исключает эти недостатки. Так, постоянные магниты, как уже отмечалось, стали ферритовыми. Главная шестерня планетарного редуктора изготавливается литьем под давлением из термореактивной пластмассы. Пластмассу армируют бронзой, что делает планетарную шестерню прочной, износостойкой, технологичной и дешевой. Остальные детали дополнительного редуктора обычного исполнения. Планетарный редуктор с пластмассовой шестерней не шумит. Быстрый износ коллекторных щеток устранен применением в них более жесткого графита и удалением из него порошковой меди.
Последнее стало возможным за счет понижения величины якорного тока. Уменьшена сила прижатия щеток к коллектору.
Следует однако заметить, что стоимость стартера нового поколения пока еще несколько выше стоимости классического. Но если 25 лет назад разница в цене была около 150 %, то в последнее время она не превышает 50 %.
В стартерах применяются электродвигатели постоянного тока. Для анализа особенностей их работы в системе пуска рассмотрим основные характеристики электродвигателей постоянного тока, которые подразделяются на двигатели последовательного, параллельного, смешанного и независимого возбуждения. Тип возбуждения определяется схемой включения обмоток возбуждения по отношению к якорной пени. Электромеханические параметры электродвигателя определяются выражениями:
где U—напряжение, подводимое к электродвигателю от источника питания; RЯ — активное сопротивление цепи якоря; Е— противо-ЭДС якоря; Ф — магнитный поток; п — частота вращения якоря; М— момент электродвигателя; Iя —ток якоря; Се. См —конструктивные постоянные;
р — число пар полюсов; а — число пар параллельных ветвей обмотки якоря; N — число проводников обмотки якоря.
Из выражений (1) - (3) можно получить формулы для определения частоты вращения:
В электродвигателях, с последовательным возбуждением обмотка возбуждения включается последовательно с обмоткой якоря, и поэтому Iя = IВ (рис. 2, а).
Рисунок 2 Схема двигателя с последовательным возбуждением (а) и его электромеханические (б) и механическая (в) характеристики
Следовательно, магнитный поток двигателя Ф является некоторой функцией тока якоря IЯ. Характер этой функции изменяется в зависимости от нагрузки двигателя. При токе якоря IВ < (0,8 - 0,9) Iном (Iном — номинальный ток якоря), когда магнитная система машины насыщена, можно считать, что поток линейно зависит от IЯ :
где кф — коэффициент пропорциональности, имеющий размерность индуктивности (Гн), остается практически постоянным в значительном диапазоне нагрузок. Подставляя (6) в уравнения (3) и (4), получим токоскоростную и моментную характеристики , в этом диапазоне в виде:
- постоянные, т.е. в диапазоне от 0 до Іном зависимость имеет гиперболический характер (при ), а зависимость - параболический (рис.2, б).
При дальнейшем возрастании тока якоря поток Ф растет медленнее, чем , и при больших нагрузках ( > Іном) можно считать Ф = const.
В этом случае скоростная и моментная характеристики становятся линейными аналогично характеристикам двигателя с независимым возбуждением.
Механическая характеристика (рис. 2, в) может быть построена на основании уравнений (7) и (8). При токе якоря, меньшем (0,8 . 0,9) Іном, частота вращения изменяется по закону
При токе якоря, большем Іном, зависимость становится линейной.
Поэтому при изменении нагрузочного момента в широких пределах, что характерно для пуска ДВС, мощность Рс, а следовательно, и электрическая мощность , и ток у двигателей с последовательным возбуждением изменяются в меньших пределах, чем у двигателей с параллельным возбуждением. Кроме того, они лучше переносят перегрузки. Двигатель с последовательным возбуждением развивает больший пусковой момент, чем двигатель с параллельным возбуждением.
Таким образом, в стартерах используются двигатели постоянного тока с последовательным возбуждением. В отдельных случаях, рассмотренных ниже, используются двигатели со смешанным возбуждением. В последние годы на стартерах стали применяться электродвигатели с возбуждением от постоянных магнитов, которые имеют пониженное энергопотребление вследствие отсутствия тока возбуждения. Однако такие стартеры имеют недостатки, характерные для электродвигателей независимого (параллельного) возбуждения. Кроме того, материал для изготовления постоянных магнитов еще очень дорог. Постоянные магниты используются только в маломощных стартерах.
Изучение устройства и принципа работы автомобильного электростартера.
2. Краткие сведения
Электростартер предназначен для осуществления пуска автомобильного двигателя.
Электростартер конструктивно объединяет в себе электродвигатель постоянного тока с последовательным или смешанным возбуждением, электромагнитное тяговое реле и механизм привода. Применение смешанного возбуждения позволяет снизить частоту вращения якоря поверхностей и облегчить работу механизма привода.
Наибольшее распространение на автомобилях получили электростартеры с принудительным электромеханическим включением и выключением шестерни, имеющие роликовые муфты свободного хода и управляемые дистанционно с помощью тягового электромагнитного реле, установленного на корпусе или на крышке со стороны привода.
Основными узлами и деталями электростартера являются корпус 1 (рис. 2.1) с полюсами 2 и катушками 4 обмотки возбуждения; якорь 3 с коллектором 36, механизм привода с муфтой свободного хода 12, электромагнитное тяговое реле 25, крышка 17 со стороны привода (передняя крышка), крышка 33 со стороны коллектора (задняя крышка) и щеточный узел с щеткодержателями 32.
Корпусы электростартеров изготавливают из трубы или стальной полосы с последующей сваркой стыка. К корпусу винтами крепятся полюсы 2, на которых располагаются катушки 4 обмотки возбуждения. Практически все стартерные электродвигатели выполняются четырехполюсными. В стартерных электродвигателях смешанного возбуждения катушки последовательной и параллельной обмоток возбуждения устанавливаются на отдельных полюсах.
Рис. 2.1. Стартер с принудительным электромеханическим перемещением шестерни привода с роликовой муфтой свободного хода.
1 – корпус; 2 — полюсный сердечник; 3 — якорь; 4 — обмотки возбуждения; 5 — фланец; 6 — запорное кольцо; 7— упорный фланец; 8 — поводковое кольцо; 9— поводковая муфта; 10 — буферная пружина; 11 — шлицевая втулка; 12 — муфта свободного хода; 13 — шестерня; 14 — упорное кольцо; 15 – замочное кольцо; 16— регулировочные шайбы; 17 и 33 — крышки; 18— рычаг; 19— резиновая заглушка; 20— палец поводка; 21 — поводок; 22 — возвратная пружина; 23 — якорек; 24 — шпилька крепления реле; 25— тяговое реле; 26 — обмотка; 27 — контактная пластина; 28— крышка реле; 29 — штекерный вывод обмотки реле; 30 — зажимы; 31 — защитная лента; 32— щеткодержатель; 34 — тормозной диск; 35 — конус; 36 — коллектор; 37 — шпилька; 38 — изоляционная трубка.
Катушки последовательной обмотки возбуждения имеют небольшое число витков неизолированного медного провода прямоугольного сечения марки ПММ. Между витками катушки прокладывают электроизоляционный картон толщиной 0,2. 0,3 мм. Катушки параллельной обмотки наматываются изолированным круглым проводом ПЭВ-2. Снаружи катушки изолируют хлобчатобумажной лентой, пропитываемой лаком.
Ток к обмотке возбуждения проводится через главные контакты тягового реле по многожильному проводу или медной шине, проходящим через изоляционные втулки в корпусе или задней крышке.
Сердечник якоря представляет собой пакет стальных пластин. Применение шихтованного сердечника уменьшает потери на вихревые токи. Пакет якоря напрессован на вал.
Полузакрытые или закрытые пазы якорей имеют прямоугольную или грушевидную форму. Прямоугольная форма обеспечивает лучшее заполнение паза прямоугольным проводом. Грушевидные пазы удобны для размещения двухвитковых секций.
Обмотка якоря укладывается в пазы сердечника. Применяются простые волновые и простые петлевые обмотки с одно- и двухвитковыми секциями. Двухвитковые секции характерны для электродвигателей небольшой мощности. Одновитковые секции выполняются из неизолированного прямоугольного провода марки ПММ. Обмотки с двухвитковыми секциями наматываются круглым изолированным проводом. Одновитковые секции закладываются в пазы с торца пакета якоря. Проводники в пазах изолируются друг от друга и от пакета пластин электроизоляционным картоном. По схеме волновой обмотки число пазов якоря четырехполюсного электродвигателя должно быть нечетным и у отечественных электростартеров находится в пределах 23. 33.
На лобовые части обмотки якоря накладывают бандажи из нескольких витков стальной проволоки, намотанных на прокладку из электроизоляционного картона и скрепленных металлическими скобамии, хлобчатобумажного или капронового шнура.
Концы секций обмотки якоря припаиваются в прорезях петушков к пластинам коллектора. В электростартерах применяются сборные цилиндрические коллекторы на металлической втулке, цилиндрические и торцевые коллекторы на пластмассе.
Цилиндрические коллекторы набирают в виде пакета медных пластин, изолированных прокладками из миканита, слюдината или слюдопласта.
Замена цилиндрических коллекторов торцевыми снижает расход коллекторной меди и повышает срок службы щеточно-коллекторного узла. Якорь вращается в двух или трех опорных с бронзографитовыми или металлокерамическими подшипниками скольжения.
Задние крышки электростартеров с цилиндрическими коллекторами отливаются из цинкового, алюминиевого сплава или штампуются из стали. К крышке 33 крепятся четыре коробчатых щеткодержателя 32 радиального типа с щетками и спиральными пружинами. Щеткодержатели изолированных щеток отделены от крышки прокладками из текстолита или другого изоляционного материала. В стартерах с торцевыми коллекторами щетки размещаются в пластмассовой или металлической траверзе и прижимаются к рабочей поверхности коллектора цилиндрическими пружинами.
В 12-вольтовых стартерах используются меднографитные щетки марок МГСО и МГС20 с добавкой олова и свинца, которые улучшают коммутацию, уменьшают износ коллектора и падение напряжения под щетками. Щетки МГC5 и МГС51 устанавливаются в двадцатичетырехвольтовых стартерах. Плотности тока в стартерных щетках на рабочих режимах достигают 50. 120 А/см 2 . Щетки имеют канатики и присоединяются к щеткодержателям с помощью винтов. Обычно щетки устанавливаются на геометрической нейтрали. На некоторых стартерах против направления вращения. Волновая обмотка якоря имеет две параллельных ветви и позволяет ограничиться установкой двух щеток, однако на стартерах с целью уменьшения плотности тока устанавливается полное число щеток, равное числу полюсов.
Алюминиевые или чугунные передние крышки 17 имеет установочные фланцы с двумя или большим числом отверстий под болты или шпильки крепления стартера к картеру маховика или сцепления и посадочные пояски. Фланцевое крепление обеспечивает необходимую точность взаимного расположения шестерни стартера относительно венца маховика при снятии и повторной установке стартера.
Передняя и задняя крышки крепятся к корпусу стяжными болтами.
Дистанционно управляемое тяговое реле 25 обеспечивает ввод шестерни 13 в зацепление с венцом маховика и подключает стартерный электродвигатель к аккумуляторной батарее. Реле имеет одну или две обмотки (вытягивающую и удерживающую), намотанные на латунную втулку, в которой свободно перемещается стальной якорь с контактной пластиной 27. Два неподвижных контакта в виде контактных болтов 30 установлены в пластмассовой или металлической крышке реле. Втягивающая обмотка 26, подключенная параллельно контактом реле, при включении реле действует согласно с удерживающей обмоткой и создает достаточную притягивающую силу, когда зазор между якорем и сердечником максимален. При замыкании главных контактов втягивающая обмотка замыкается накоротко и выключается из работы. В двухобмоточном реле удерживающая обмотка, рассчитанная в основном на удержание якоря реле в притянутом состоянии, намотана проводом меньшего сечения, чем втягивающая обмотка.
Механизм привода стартера расположен на шлицевой части вала. Муфта свободного хода 12 привода обеспечивает передачу вращающего момента от вала якоря маховику в период пуска и препятствует вращению якоря маховиком после пуска двигателя.
Электростартеры с принудительным перемещением шестерни имеют роликовые, фрикционные и храповые муфты свободного хода. Наибольшее распространение получили роликовые муфты (рис. 2.2), бесшумные в работе и технологичные по конструкции, способные при небольших размерах передавать значительные вращающие моменты.
Рис. 2.2. Приводной механизм стартера с плунжерной муфтой свободного хода.
1 – ролик; 2 – плунжер; 3 – пружина прижимная; 4 – упоры пружины; 5 – обойма наружная ведущая; 6 – кольцо замковое; 7- чашка; 8 – вспомогательная пружина; 9 – втулка отвода; 11 – пружина буферная; 12 – втулка; 13 – кольцо центрирующее; 14 – обойма ведомая; 15 – пластина металлическая; 16 – кожух муфты; 17 – шестерня привода; 18 – вкладыш.
Рабочие поверхности ведущей звездочки 5 представляют собой логарифмическую спираль, спираль Архимеда или окружность со смещенным центром, что позволяет получить постоянный угол заклинивания в 4. 6°. При включении муфты в работу ведущая обойма 5 поворачивается относительно еще неподвижной ведомой 14, ролики 1 под действием прижимных пружин 3 и сил трения перемещаются в узкую часть клиновидного пространства и муфта заклинивается. После пуска двигателя частота вращения шестерни 17 привода и связанной с ней ведомой обоймы превышает частоту вращения ведущей обоймы, ролики переходят в широкую часть клиновидного пространства между обоймами, поэтому передача вращения от венца маховика к якорю исключается.
Воздействие центробежных сил на ролики и плунжеры 2 требует применения прижимных пружин с большими установочными усилиями. При неустойчивом пуске возникают значительные ускорения. Действующие на ролики и плунжеры центробежные силы могут превысить усилия прижимных пружин и привести к динамической пробуксовке муфты.
При резких динамических ударах роликов по плунжерам деформируются юбка и дно плунжера 2, упоры 4 в плунжерном отверстии обоймы и пружины. Результатом является неравномерное заклинивание роликов, перегрузка отдельных элементов, снижение надежности работы.
Шестерню 17 привода и обоймы муфт свободного хода для повышения механической прочности и износоустойчивости изготавливают из высоколегированной стали. Чтобы предотвратить смещение пружин 3 и обеспечить стабильность прижимного усилия, используют специальные упоры 4. Центрирующее кольцо 13 уменьшает радиальное биение обоймы, ограничивает перекос муфты при заклинивании роликов и улучшает работу привода в режиме обгона.
Электромагнитное тяговое реле воздействует на механизм привода с помощью рычага включения через разрезную поводковую муфту, состоящую из двух половин. Со стороны втулки отвода 9 расположена вспомогательная пружина 8, упирающаяся в чашку 7. Такое устройство позволяет разомкнуть главные контакты тягового реле путем сжатия вспомогательной пружины при перемещении втулки отвода возвратной пружиной в тех случаях, когда шестерню привода заедает в зубчатом венце маховика после отключения стартера.
Схема дистанционного управления стартером приведена на рис. 2.3. При переводе включателя зажигания S1 в положение стартования, контакты KV1:1 дополнительного реле KV1 подключают втягивающую КА2:1 и удерживающую КV2 обмотки тягового реле к аккумуляторной батарее GB. Под действием намагничивающей силы двух обмоток якорь тягового реле перемещается и с помощью рычага включения вводит шестерню стартера в зацепление с венцом маховика. В конце хода якоря реле замыкаются основные контакты КА2:1 тягового реле и GB оказывается соединенной со стартерным электродвигателем М.
Контакты КА2:1замыкаются раньше, чем шестерни полностью войдет в зацепление с венцом маховика. Дальнейшее перемещение шестерни до упорного кольца на валу происходит за счет осевого усилия в винтовых шлицах вала якоря и направляющей муфты втулки свободного хода.
Рис. 2.3. Электрическая схема дистанционного управления стартером.
S1 – выключатель зажигания; KV1 – обмотка дополнительного реле; KV1:1 – контакты дополнительного реле; КА2 – втягивающая обмотка тягового реле стартера; KV2 – удерживающая обмотка тягового реле стартера; КА2:1 – контакты тягового реле стартера; GB – аккумуляторная батарея; М – якорь стартера.
Если при запуске шестерня стартера упирается в венец маховика, якорь реле все равно продолжает двигаться, сжимая буферную пружину, и замыкает контакты КА2:1. Якорь стартера вместе с приводом начинают вращаться, и как только зуб шестерни устанавливается напротив впадины зубчатого венца маховика, шестерня под действием буферной пружины и осевого усилия в шлицах входит в зацепление с маховиком.
Шестерня остается в зацеплении до тех пор, пока водитель не отключить питание дополнительного реле стартера. После размыкания контактов КV1:1 дополнительного реле втягивающая КА2 и удерживающая KV2обмотки тягового реле оказываются включенными последовательно, получая питание через контакты КА2:1. Число витков обеих обмоток одинаково и по ним проходит один и тот же ток. Так как направление тока во втягивающей обмотке в этом случае изменяется, обмотки действуют встречи и создает два равных, но противоположно направленных магнитных потока. Сердечник электромагнита размагничивается и возвратная пружина, перемещая якорь реле в исходное положение, размыкает главные контакты и выводит шестерню из зацепления с венцом маховика.
3. Учебные пособия, приспособления и инструменты
3.1. Стартеры в сборе, разрезанные образцы, щиты с деталями и плакаты.
3.2. Приспособления и инструменты, необходимые для разборки и сборки электростартера.
4. Порядок выполнения работы
4.1. Разобрать стартер.
4.2. Нарисовать схему внутренних соединений катушек обмотки возбуждения и обмотки якоря.
4.3. Нарисовать эскиз магнитной системы стартерного электродвигателя.
4.4. Определить число пазов, число витков в секциях обмотки якоря, число коллекторных пластин.
4.5. Нарисовать схему обмотки якоря и рассчитать её шаги.
4.6. Привести частичную разборку тягового реле.
4.7. Нарисовать магнитную систему тягового реле.
4.8. Нарисовать схему соединения обмоток реле.
4.9. Собрать тяговое реле в порядке, обратном разборке.
4.10. Собрать стартер в порядке, обратном разборке.
5. Содержание отчета
5.1. Тип изучаемого стартера и его техническая характеристика.
5.2. Краткое описание особенностей устройства и принципа работы стартера.
5.3. Схема внутренних соединений катушек обмотки возбуждения и обмотки якоря.
5.4. Эскиз магнитной системы стартерного электродвигателя.
5.5. Эскиз магнитной системы тягового электромагнитного реле.
5.6. Схема соединений обмоток тягового реле.
5.7. Схема управления электростартером.
6. Контрольные вопросы
6.1. Из каких основных реле узлов и деталей состоит электростартер?
6.2. Какие возможны схемы внутренних соединений обмоток возбуждения и якоря в электростартерах?
6.3. Почему пакет якоря набирается из стальных пластин?
6.4. Почему пакеты якорей четырехполюсных стартерных электродвигателей с волновой обмоткой имеют нечетное число пластин?
6.5. Какой тип щеткодержателей пршленяется в электростартерах?
6.6. Какие типы коллекторов применяются в электростартерах?
6.7. Почему удерживающая и втягивающая обмотки тягового реле имеют одинаковое число витков, но намотаны проводами разного сечения?
6.8. Каково назначение пружин привода?
6.9. Можно ли в четырехполюсном электродвигателе с волновой обмоткой ограничиться установкой двух щеток?
Свойства электродвигателей оценивают по рабочим и механическим характеристикам. Рабочие характеристики - совокупность зависимостей напряжения на выводах стартера Uct; полезной мощности Р2; полезного момента на валу стартера М2; частоты вращения n; угловой скорости w; КПД n от тока якоря Iя. Эти характеристики строятся на одном графике. Механические характеристики - n =f(М2);
Скоростная, моментная и механическая характеристики зависят от магнитного потока и его изменения с изменением режима работы электродвигателя, то есть от способа возбуждения электродвигателя.
Магнитный поток в рабочем воздушном зазоре зависит от МДС на пару полюсов, т.е. от силы тока возбуждения IВ и числа витков в обмотке возбуждения.
|
26. Особенности конструкции и преимущества стартеров с постоянными магнитами и встроенным редуктором
При использовании постоянных магнитов исключается сопротивление обмотки возбуждения, которое составляет 0.3..0.5 суммарного сопротивления стартера. Как выше отмечалось мощность стартера определяется величиной суммарного сопротивления всех элементов цепи пусковой системы. Исключение обмотки возбуждения позволяет применить АКБ с большим внутренним сопротивлением и соответственно меньшей емкости при сохранении той же мощности. В результате можно сделать вывод, что применение постоянных магнитов в стартере позволяет снизить потребную емкость аккумуляторной батареи.
Еще одним положительным свойством стартеров с постоянными магнитами является меньшее проявление действия реакции якоря. Как выше отмечалось за счет анизотропных свойств магнита поток реакции якоря замыкается через корпус и поэтому получается значительно меньшим по величине по сравнению с аналогичной конструкцией с электромагнитным возбуждением. В стартерах с постоянными магнитами этот поток может быть еще больше ослаблен за счет выполнения прорезей вдоль корпуса по центру магнита, что еще больше увеличит магнитное сопротивление потоку поперечной реакции якоря. Уменьшение потока реакции якоря благотворно сказывается на коммутации.
Преимуществом стартеров с редуктором является возможность сделать электродвигатель стартера более высокооборотным, а следовательно и меньших габаритов, чем стартер той же мощности без редуктора. При этом резко снижается расход дефицитной и дорогостоящей меди. Еще большая экономия меди возможна благодаря применению постоянных магнитов вместо обмоток возбуждения.
Повышение быстроходности электродвигателя и применение редуктора требует для обеспечения надежной работы стартера:
· более высокого уровня технологии изготовления деталей стартера;
· применения новых конструктивных решений в конструкции стартера;
· применения новых материалов и новых технологий их получения.
Все это делает изготовление узлов стартера более дорогостоящим. Однако, затраты на производства окупаются за счет снижения металлоемкости и улучшения эксплуатационных качеств стартера. Стартер меньших габаритов и меньшей массы более удобен при компоновке его на ДВС. Решение задач связанных с производством стартеров с редуктором требует больших капитальных затрат, но несмотря на это производство стартеров со встроенным редуктором экономически выгодно.
Анализ конструкции и технологии стартеров с редукторами показывают, что для зарубежных фирм, решивших указанные выше конструкторские, материаловедческие и технологические проблемы, их производство не только дает экономию металла, но и является более выгодным, чем современное производство стартеров классической конструкции.
При одинаковой мощности масса стартера со встроенным редуктором на 25 40 % ниже массы стартера классической конструкции.
Стартеры с редуктором использовались на автомобиле уже давно, но до последнего времени встречались очень редко. Повышение мощностей двигателей, устанавливаемых на автомобилях, требовало использовать более мощные стартеры, а повышение компактности ДВС требует и более компактные стартеры. Дополнительно возникли проблемы с материальными ресурсами, в частности дефицит меди. В то же время возросший уровень технологии производства сделал возможным реализовать в массовом производстве конструкции стартеров с редукторами. Все эти причины привели к широкому использованию в настоящее время стартеров с редуктором.
Передаточное отношение редуктора, как правило, лежит в пределах 2,5. 4, в среднем 3,3.
Для стартеров с возбуждением от постоянных магнитов передаточное отношение выполняют более высоким (5 – 6).
В ряде случаев применение встроенного в стартер редуктора позволяет применить приводную шестерню с увеличенным числом зубьев до z=12, против обычного для стартеров без редуктора z =9. 10. Это улучшает условия зацепления шестерни стартера с зубчатым венцом маховика ДВС за счет увеличения степени перекрытия передачи и, в некоторой степени, КПД этой передачи.
Основные схемы редукторов стартера
Разработаны и серийно выпускаются стартеры с редукторами следующих типов:
Тип I цилиндрический редуктор с внешним зацеплением;
Тип II цилиндрический редуктор с внутренним зацеплением;
Тип III планетарный редуктор;
Тип IV Цилиндрический редуктор с паразитной шестерней.
Все редукторы этих типов выполняются одноступенчатыми, с прямозубыми шестернями. Схематическое изображение редукторов различных типов и их кинематические схемы показано на Рис. Помимо этого встречаются конструкции стартеров с двухступенчатыми редукторами.
За счет большого смещения шестерен стартер с редуктором типа I имеет значительный поперечный габарит, который возрастает с увеличением передаточного отношения. Преимуществом редуктора такого типа является технологичность изготовления его шестерен.
К недостаткам относится:
· значительное увеличение поперечного габарита по сравнению со стартерами без редуктора;
· радиальная нагрузка на якорь стартерного электродвигателя, что требует обязательного применения подшипников качения.
Стартер с редуктором типа II цилиндрический с внутренним зацеплением имеет несколько меньший поперечный габарит, чем стартер с редуктором типа I. Редуктор типа II несколько сложнее в изготовлении за счет наличия шестерни с внутренним зубом.
Стартер с планетарным редуктором (тип III) не имеет смещения оси корпуса относительно крышки со стороны привода, что позволяет наиболее просто компоновать стартер на двигателе и исключает сложности в его применении взамен стартеров без редуктора.
Внешне стартер с планетарным редуктором практически идентичен стартеру без редуктора. Габариты и масса стартера с планетарным редуктором значительно меньше стартеров без редуктора при тех же характеристиках. Планетарный редуктор имеет более высокий коэффициент полезного действия, чем редукторы типа I и II. Кроме того, он значительно снижает радиальные нагрузки на вал якоря стартерного электродвигателя, что улучшает условия работы подшипников якоря и дает возможность применить для вала подшипники скольжения. Технологически этот редуктор несколько сложнее редукторов типа I и II, однако, его сборка несколько проще по сравнению с ними за счет соосности основных деталей стартера. Коронная шестерня выполняется как правило из пластмассы.
Стартеры в редуктором типа IV цилиндрический с паразитной шестерней имеют продольный габарит близкий к габариту стартера без редуктора. Это достигается тем, что реле стартера расположено соосно приводной шестерне. КПД редуктора несколько ниже, чем у редукторов типа I и II. Отличительной особенностью редуктора является применение паразитной шестерни, расположенной между ведущей шестерней, закрепленной на наружной обойме роликовой муфты свободного хода. Все шестерни выполняются прямозубыми, с наружными зубьями. Паразитная шестерня установлена на роликовом подшипнике на оси, закрепленной в корпусе редуктора, в котором также размещен привод.
Типовая конструкции планетарного редуктора.
Основной конструктивной особенностью стартеров является их компоновка, отличающаяся от классической конструкции соосным расположением привода тягового реле стартера. При этом оси стартерного электродвигателя и привода не совпадают. Кинематически вал стартерного электродвигателя связан с выходным валом стартера посредством цилиндрического прямозубого редуктора с внешним зацеплением. По компоновочной необходимости в редуктор введена промежуточная паразитная шестерня. Ведущая шестерня редуктора выполнена заодно целое с валом стартерного электродвигателя. Ведомая шестерня расположена на приводе и выполнена заодно целое с наружной обоймой муфты свободного хода. Промежуточная шестерня вращается на роликовом подшипнике состоящем из пяти роликов установленных в пластмассовом сепараторе. Ось промежуточной шестерни запрессована в крышку редуктора.
С целью повышения компактности, ось промежуточной шестерни не лежит в плоскости осей электродвигателя и привода.
Ведущая шестерня редуктора съемная, соединяется с валом электродвигателя с помощью прямых накатных шлицев.
Подавляющие большинство современных стартеров с редуктором, разработанных и выпускаемых или подготавливаемых к выпуску зарубежными фирмами, имеют ПЛАНЕТАРНЫЙ РЕДУКТОР, что может быть объяснено хорошими компоновочными свойствами и достаточной надежностью и долговечностью стартеров с таким типом редуктора.
Читайте также: