В цилиндре двигателя автомобиля при сгорании топлива образуются газы температура которых 1000к
В цилиндрах двигателей внутреннего сгорания с воспламенением от сжатия при такте сжатия сжимается чистый воздух. Вблизи от ВМТ в цилиндр двигателя впрыскивается распыленное топливо, которое в среде горячего воздуха самовоспламеняется и сгорает. Процесс подвода теплоты к рабочему телу принимается в этом случае изобарным. [19]
В цилиндре двигателя внутреннего сгорания горючая смесь сжимается до давления 16 бар. [20]
В цилиндрах двигателей внутреннего сгорания с воспламенением от сжатия при такте сжатия сжимается чистый воздух. Вблизи от ВМТ в цилиндр двигателя впрыскивается распыленное топливо, которое в среде горячего воздуха самовоспламеняется и сгорает. Процесс подвода теплоты к рабочему телу принимается в этом случае изобарным. [22]
В цилиндрах двигателей внутреннего сгорания с воспламенением от сжатия при такте сжатия сжимается чистый воздух. [24]
В цилиндрах двигателей внутреннего сгорания при прямом взаимодействии кислорода и азота образуется оксид азота ( II), который выделяется автомобилем в выхлопных газах в количестве 1 5 г на 1 км пробега. [25]
В цилиндре двигателя внутреннего сгорания находится воздух при температуре 500 С. [26]
В цилиндре двигателя внутреннего сгорания бензино-воздушная смесь вначале сжимается и при некотором верхнем положении поршня воспламеняется. При нормальной работе мотора смесь выгорает по направлению от зажигающей ее искры с измеримой скоростью - примерно 20 - 25 л1 / сек. Возникающее при этом повышение давления превращается в механическую работу мотора. При стуке двигателя смесь сгорает со скоростью, приблизительно в сто раз большей, и поэтому выгорает преждевременно. Поэтому в цилиндре на короткий промежуток времени возникает чрезмерно высокое давление. Слышится известный резкий стук, мотор выходит из режима и мощность его снижается. [27]
В цилиндре двигателя внутреннего сгорания при сильном сжатии и высокой температуре наряду со спокойным горением углеводородов может происходить внезапное, очень быстро охватывающее всю смесь, разложение молекул. Это явление называют детонацией моторного топлива. Внешним проявлением детонации является стук мотора. [28]
В цилиндрах двигателей внутреннего сгорания взрывной характер горения называют тоже детонацией. В этом случае пламя от запала свечи распространяется со скоростью до 1500 м / с вместо 5 - 10 м / с при нормальном режиме горения. [29]
Подачу в цилиндры двигателя внутреннего сгорания воздуха или смеси воздуха и паров топлива под давлением, превышающим давление окружающей среды, принято называть наддувом. [30]
Вопрос по физике:
Помогите решить:
Температура газов, образующихся при сгорании топлива в цилиндрах двигателя автомобиля, 800 °С; температура выхлопных газов 80 °С. Расход топлива на 100 км при скорости 90 км/ч равен 10(-²) м³; теплота сгорания топлива 3,2*10^10 Дж/м^3. Какую мощность мог бы развить двигатель, если бы представлял собой идеальную тепловую машину, работающую с максимально возможным коэффициентом полезного действия?
- 13.08.2015 07:03
- Физика
- remove_red_eye 14970
- thumb_up 6
Ответы и объяснения 1
Решил на бумаге, нужно написать какого-нибудь бреда на 20 символов
Крокодилы ходят лёжа
- 14.08.2015 03:53
- thumb_up 31
Знаете ответ? Поделитесь им!
Как написать хороший ответ?
Чтобы добавить хороший ответ необходимо:
- Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
- Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
- Писать без грамматических, орфографических и пунктуационных ошибок.
Этого делать не стоит:
- Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
- Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
- Использовать мат - это неуважительно по отношению к пользователям;
- Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Физика.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Физика — область естествознания: естественная наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении.
Считается, что ключевым моментом при переводе автомобиля на газ является экономический аспект. Что вполне объяснимо, поскольку газ практически в два раза дешевле высокооктанового бензина и его, что очень важно, можно использовать даже в самых современных автомобилях.
В ряде европейских стран (например, в Бельгии и Германии) переоборудование автомобилей под газомоторное топливо является весьма распространенным способом сэкономить на эксплуатации автотранспорта, причем без какого-либо вреда для экологии. А в Южной Корее практически все «таксишные» авто и вовсе сходят конвейера уже с топливной аппаратурой, приспособленной для работы на газе-бензине.
Что касается нашей страны, то последний принятый у нас техрегламент заставляет автовладельцев регистрировать газовое оборудование в машине, что несколько сдерживает рост газифицированного автопарка. Однако, с другой стороны, российское правительство с лета нынешнего года запустило государственную программу льготного субсидирования при переводе бензиновых авто на метан.
Напомним, что в ходе реализации этой программы, владельцу машины вроде как обязаны компенсировать до 90% стоимости установленного газового оборудования. Правда, программа действует не во всех регионах, да и получение самой компенсации потребует определенных моральных и временных затрат, связанных с хождением по инстанциям.
Впрочем, купить автомобиль с метановым ГБО в России уже можно непосредственно с завода (через дилера), однако применительно к легковушкам выбор тут весьма ограничен. Например, сегодня это может быть продукция АВТОВАЗа, например, LADA Largus CNG или Vesta CNG. Кроме того, готовятся к выпуску «газовые» модификации Renaul Logan, и есть сведения, что сейчас «обкатку» проходит заводская газовая версия KIA Rio.
Но, все равно, считают эксперты, этого явно недостаточно. И потом, к сожалению, ценники на заводские версии не радуют. Так, например, Vesta с фирменным ГБО стоит почти на 180 000 рублей дороже бензинового аналога.
Хитрости при замене моторного масла, о которых мало, кто знает
Как быстрее всего зарядить сильно разряженный аккумулятор в машине
Еще одно важное преимущество газа — экологичность. Сгорание газа оказывается значительно более чистым, значит и двигатель всегда в чистоте. При этом износ его деталей снижается раза в полтора и, стало быть, ресурс увеличивается примерно на столько же. Уменьшается нагрузка на катализатор, чище выхлоп и, соответственно, воздух на улицах. В общем, плюсы в части экологии и экономии значительные, однако достигнуты они могут быть лишь при соблюдении ряда условий.
Первое — это повышенный контроль за температурой движка. Дело в том, что газ при сгорании выделяет несколько меньше энергии, чем бензин. Значит, его расход будет на 7—10% больше, при тех же нагрузках. А вот температура в цилиндрах при сгорании газа выше, чем при горении бензина.
Это приводит к большему нагреву седел клапанов, самих клапанов и головки блока. Что на двигателях старой классической конструкции зачастую вызывало трещины в тарелках клапанов, «выгорание» седел и повреждения верхней части цилиндров. На современных моторах используются более термостойкие материалы, и такие проблемы хотя и сведены до минимума, но до сих пор полностью не изжиты.
Второй момент — выбор моторного масла. Долгое время считалось, что двигатели, переоборудованные под газ, не нуждаются в специальных маслах. Но современный очищенный газ содержит малое количество серы, влияющей на скорость старения моторного масла. А стало быть, нет необходимости в нейтрализации большого количества агрессивных веществ, образующихся в процессе сгорания.
Для таких случаев подходят масла с низкой щелочностью, а бонусом является то, что низкощелочные масла обладают еще и малой зольностью. То есть дают малое количество абразивных частиц при сгорании и дополнительно уменьшают износ двигателя.
Поэтому для двигателя, переоборудованного под газ, прекрасно подходят масла классов Low SAPS&Mid SAPS, изготовленные на базе термически устойчивого современного гидрокрекинга (НС-синтетические). К таковым, например, следует отнести современные продукты линейки Тор Тес, выпускаемые фирмой Liqui Moly. Они уже поставляются и в Россию, а на их «газовую» спецификацию указывает специальный стикер CNG/LPG.
Готовим машину к зиме: какие расходники надо поменять в первую очередь и не разориться
5 «дырочек» в автомобиле, которые обязательно нужно смазать перед наступлением холодов
Следующий момент — бензин. Именно на нем производится запуск и прогрев двигателя, после чего ГБО переключается на газ. Иначе говоря, бензин расходуется крайне медленно, отчего он застаивается в форсунках, топливной рампе и в баке. В итоге там создаются условия для термической деградации горючего с образованием смол и шламов, а в баке и вовсе может произойти расслоение топлива.
Чтобы не допускать этого, следует регулярно пользоваться очистителями системы впрыска, а в бак добавлять присадку, препятствующую расслоению горючего. Такими средствами, например, могут служить очиститель инжектора Langzeit Injection Reiniger, а также стабилизатор бензина от уже упомянутой выше Liqui Moly.
Наконец, еще один важный нюанс — утечки газа, отчего любой автовладелец сразу же впадает в беспокойство. Проблема эта решаема, главное тут — понять, откуда именно идет утечка. А быстро определить место дефекта поможет спрей Leck-Such-Spray. Выяснив это, водитель может сам подтянуть нужные соединения и ликвидировать утечку. Поэтому такой баллончик надо обязательно иметь в багажнике любого «газового» авто.
Для автомобиля рабочая температура двигателя, в зависимости от типа двигателя: бензинового или дизельного она может отличаться. Зная правильные показатели, можно сделать вывод исправно ли работает двигатель, понять не слишком низкая температура или высокая.
В бензиновых вариантах в камере сгорания рабочая температура двигателя может подниматься до 2000 градусов, это считается нормальным: только так топливная смесь будет сгорать оптимально, давая наибольшую мощность. Однако для нормализации температуры каждый автомобиль оснащен системой охлаждения, она нужна для поддержания 90 градусов, иначе все жидкости начнут закипать. Некоторые модели нормально работают при показателях 110 градусов. Обычно это старотипные конструкции, оснащенные только воздушным охлаждением.
Если режим температуры оптимален, цилиндры будут работать лучше, мотор прослужит дольше, при этом будет стабильно запускаться. При нагреве многие элементы могут расширяться, поэтому конструктивно для них предусмотрены специальные тепловые зазоры. При перегреве детали перекрывают допустимые зазоры, трение становится более сильным, некоторые элементы могут перестать двигаться, и тогда мотор заклинит. Менее опасными явлениями являются мелкие поломки, образование зазоров в цилиндрах, из-за чего их мощность падает, наполнение цилиндров происходит плохо. Топливо может начать детонировать в неподходящий момент самостоятельно, что приводит к разрушению конструкции.
Причины повышения показателя температуры
Существует несколько причин, из-за которых температура двигателя повышается:
- Наиболее распространенной причиной повышения температуры мотора является неисправность клапана термостата. Его может заклинить в закрытом состоянии.
- Сломан электрический вентилятор, предназначенный для искусственного охлаждения системы. Выйти из строя может сам моторчик, гидромуфта, нередко перегорает предохранитель. Стоит проверить проводку, возможно, где-то произошел обрыв, если все остальное исправно. Отказать может и датчик температуры, в этом случае его требуется заменить.
- Стоит проверить радиатор: он периодически забивается разнообразным мусором.
- В крышке расширительного бачка имеются клапана, они могут неправильно работать или забиться.
- Пробой прокладки блока цилиндра или трещина на его корпусе
- Кроме этого, помпа может начать протекать и вызывать повышение термальных условий.
- Дополнительные механизмы могут иметь собственные ремни, при ослаблении натяжки которых возникают разнообразные проблемы.
- Система охлаждения в исправном состоянии должна быть герметично, но при ее разгерметизации температура мотора может резко повышаться.
Многих интересует, какая рабочая температура двигателя должна быть минимально. В некоторых случаях мотор не перегревается, а, наоборот, не греется до рабочей температуры, это не так опасно, однако в этом случае не стоит ожидать от силового агрегата эффективной работы. Дело в том, что топливо не будет сгорать до конца, тяга станет слабой. Конденсат от топливной смеси попадет сначала на стенки цилиндров, затем в картер. Последнее приводит к разжижению масла и ухудшению его свойств. Из-за этого смазываться и очищаться детали изнутри будут хуже, что приведет к их повышенному износу. Больше всего страдает от этого ЦПГ, распредвал и вкладыши коленвала, могут выйти из строя и балансировочные валы.
Детонация
В двигателях с искровым зажиганием при определенных условиях работы двигателя возникает быстрый, приближающийся к взрыву процесс сгорания рабочей смеси. Называется он детонацией. Признаки, указывающие на детонацию при работе двигателя: звонкие металлические стуки в цилиндрах, перегрев двигателя, снижение мощности, появление черного дыма (сажи) в отработавших газах.
Основные причины появления детонации:
- применение топлива, октановое число которого ниже рекомендованного для данного двигателя;
- повышение степени сжатия, вызванное низким качеством ремонта или обслуживания;
- увеличение угла опережения зажигания; качество рабочей смеси не соответствует требованиям, которые предъявляются к топливу для данного двигателя. Наиболее склонна к детонации рабочая смесь при а = 0,9.
На появление детонации также влияет материал головки цилиндров и поршней. Двигатели, у которых эти детали изготовлены из алюминиевых сплавов, меньше склонны к детонации, чем двигатели, у которых эти детали изготовлены из чугуна. Так как чугун обладает худшей теплоотдачей, то в жаркую погоду детали перегреваются, и это приводит к детонации.
Детонация повышает давление и температуру в цилиндрах, вызывает вибрацию двигателя. Вследствие этого ухудшается смазка трущихся поверхностей, обгорают клапаны, поршни, разрушаются подшипники коленчатого вала.
Отличия по типу двигателя
Существуют разные модели, температурный режим которых будет отличаться. Например, встречаются обычные моторы и форсированные, второй тип более сильно греется. Процессы горения в них происходят иначе, поэтому клапан термостата срабатывает в разное время. Кроме этого, у разных моделей устанавливаются различные системы охлаждения, работающие с конкретной скоростью и интенсивностью.
От того, как настроен и когда срабатывает датчик температуры, зависит момент включения вентилятора с электроприводом. Обратите внимание на то, что модели авто с инжектором и карбюратором имеют разные настройки, и термостат даже для одной и той же машины, но с разной системой питания требуется свой. Этот прибор напрямую влияет на нагрев двигателя, поэтому выбору в случае замены требуется уделить особенное внимание.
Частые проблемы дизелей: момент впрыска и компрессия
Если сжатие смеси в цилиндре оказывается недостаточным, во время работы двигателя можно услышать шумы и металлические стуки. Дело в том, что в таком случае смеси нужно больше времени, чтобы нагреться до температуры воспламенения.
Получается, снижение компрессии дизельного двигателя увеличивает время до воспламенения заряда.
При этом в цилиндре несгоревшей смеси будет больше, чем нужно. В результате в момент возгорания такого заряда процесс горения приобретает взрывной характер, давление резко увеличивается, появляется ударная волна и детонация, разрушая ЦПГ и оказывая значительные нагрузки на детали мотора.
Затем поршень идет вниз, температура и давление дополнительно снижаются, нет условий для горения. Получается, несгоревшая солярка испаряется и далее попадает в выпускную систему
То же самое происходит и в том случае, если впрыск дизтоплива слишком поздний. Другими словами, компрессия в цилиндрах нормальная, но подача топлива с опозданием приводит к тому, что поршень уже идет вниз, нет нужного сжатия и давления для самовоспламенения.
Если же выхлоп черный, это может указывать на то, что форсунки «переливают», то есть подача горючего происходит в большем объеме, чем необходимо. Простыми словами, дизтоплива много, а кислорода просто недостаточно на такое количество горючего.
Имеющийся кислород позволяет выгореть только части топлива, а несгоревшие остатки превращаются в углерод, что и проявляется в виде характерного черного дыма из выхлопной трубы.
Еще отметим, что к похожим проблемам может приводить недостаточная подача воздуха (например, забит воздушный фильтр), завоздушивание системы питания дизельного двигателя и т.д.
В итоге, если нарушается нормальный процесс смесеобразования, это закономерно влияет на момент воспламенения и последующую эффективность сгорания топливного заряда в цилиндрах.
Рабочая температура дизельного двигателя
Дизельные агрегаты имеют другую конструкцию, поэтому температура в камере сгорания при их работе в несколько раз ниже. Температура работы зависит от того, какого типа сам двигатель. При работе температура сначала значительно повышается, потом снижается, так как горючая смесь начинает воспламеняться быстрее. Она сгорает раньше, процесс становится более плавным и полноценным, почти не остается невоспламенившейся жидкости. За счет этого рабочая температура становится стабильной, больше делается КПД двигателя, сами выхлопы становятся менее токсичными.
Влияние угла опережения зажигания
Рис. Влияние угла фз, опережения зажигания на форму индикаторной диаграммы карбюраторного двигателя: 1 — ф1 = 0°; 2 — ф2 = 7°; 3 — ф3 = 22°; 4 — ф4 = 27°.
Величину угла опережения зажигания фз устанавливают при конструировании двигателя. Оптимальное его значение указывают в руководстве по эксплуатации. Нарушение этого угла ведет к ухудшению процесса сгорания и снижению эксплуатационных показателей двигателя.
При уменьшении угла опережения (запаздывании зажигания) период задержки воспламенения увеличивается. В результате этого рабочая смесь сгорает после прохождения поршнем в.м.т., когда объем над ним увеличится. Это приводит к увеличению поверхности теплоотдачи и снижению вихревых движений в камере. Так, например, при оптимальном значении угла фз опережения зажигания, равном 27° до в.м.т., максимальное давление сгорания Pz равно 4 МПа и находится у в.м.т. По мере запаздывания зажигания, в нашем случае при фз = 0°, давление сгорания снижается до 2,6 МПа и смещается в сторону запаздывания.
Вследствие этого двигатель перегревается, а мощность и экономичность его снижаются. Оптимальное значение угла опережения зажигания для данного двигателя составляет 22° (кривая 5). При этом ф3 рабочая смесь хорошо подготовлена к сгоранию, вихревые движения обеспечивают перемешивание горючей смеси. Все это способствует наиболее полному сгоранию топлива вблизи в.м.т., когда объем камеры минимальный.
Сгорание рабочей смеси в двигателях с искровым зажиганием
О протекании процесса сгорания можно судить по индикаторным диаграммам, показывающим графически изменение давления Р в цилиндре в зависимости от угла ф поворота коленчатого вала. Площадь индикаторной диаграммы пропорциональна работе, совершенной при сгорании рабочей смеси внутри цилиндра за один цикл. Если зажигание выключено, то давление в цилиндре при вращении коленчатого вала изменяется почти симметрично относительно в.м.т. (нижняя кривая). Для нормальной работы двигателя зажигание должно включаться тогда, когда должна возникнуть искра между электродами свечи. Момент искрообразования соответствует положению точки 1 на диаграмме, а давление в камере сжатия — ординате P1.
Рис. Индикаторная диаграмма карбюраторного двигателя: ф3 — угол опережения зажигания; Q1 — начальная фаза сгорания; Q2 — основная фаза сгорания; Q3 — завершающая фаза сгорания; 1 — начало образования искры; 2 — начало отрыва линии сгорания от линии сжатия; 3 — момент достижения максимального давления в цилиндре.
Процесс сгорания условно делят на три фазы.
Начальная фаза — Q1 начинается в момент образования искры. Возле электродов свечи зажигания воспламеняется небольшой объем рабочей смеси. Она горит сравнительно медленно. Давление в цилиндре на протяжении этого периода остается практически таким же, как и при выключенном зажигании.
Заканчивается первая фаза тогда, когда сгорает 6…8% общего объема смеси, находящейся в камере сгорания. Температура повышается настолько, что начиная от точки 2 давление резко возрастает, наступает основная фаза быстрого сгорания (участок 2… 3). Скорость распространения пламени в средней части камеры сгорания достигает 60…80 м/с. Вдоль стенок камеры скорость сгорания ниже, а сгорание — неполное. Продолжительность второй фазы для быстроходных двигателей составляет 25…30° угла поворота коленчатого вала. В этой фазе выделяется основная часть тепла.
Третья фаза Q3 — фаза сгорания смеси на периферийных участках камеры в такте расширения. За начало этой фазы принимают точку 3. Давление в цилиндре в этот момент будет максимальным.
От интенсивности тепловыделения в основной фазе зависит скорость нарастания давления по углу поворота коленчатого вала, или, иначе, жесткость работы двигателя. В современных автомобильных двигателях скорость повышения давления колеблется в пределах 0,12…0,25 МПа на 1° угла поворота вала. Чем круче нарастает давление на участке 2..3, тем жестче работает двигатель и тем больше износ кривошипно-шатунного механизма.
Продолжительность первой фазы зависит от ряда факторов.
Чем ближе величина коэффициента избытка воздуха а к оптимальному значению, тем лучше состав смеси и тем короче продолжительность первой фазы. При значительном обеднении смеси воспламенение ее ухудшается и экономичность работы двигателя снижается. Чем мощнее искровой разряд, тем интенсивнее распространение пламени и тем короче первая фаза.
На продолжительность второй фазы сгорания оказывают влияние те же факторы, что и на продолжительность первой фазы. Кроме того, вторая фаза зависит от величины угла опережения зажигания и частоты вращения коленчатого вала.
Процесс сгорания топлива в двигателе
При сгорании рабочей смеси в поршневых двигателях увеличивается температура и повышается давление в цилиндрах. Для повышения эффективности работы двигателя желательно, чтобы сгорание происходило вблизи в.м.т. поршня, когда рабочая смесь занимает минимальный объем, имеет наименьшую поверхность соприкосновения со стенками цилиндра. Чем меньше поверхность теплоотвода, тем меньше тепла уходит в окружающую среду и тем большая доля его превращается в полезную работу.
Смесь сгорает не мгновенно, а в течение некоторого времени. Продолжительность и характер протекания процесса сгорания зависят от типа смесеобразования. Рассмотрим процесс сгорания рабочей смеси для двигателей с искровым зажиганием и для дизелей.
Температура внутри цилиндра бензинового двигателя
Главное меню
Судовые двигатели
Процесс передачи тепла от газов к охлаждающей жидкости в цилиндре двигателя разбивается на три этапа: теплоотдача от газов к стенке цилиндра; теплопередача через стенки цилиндра и теплоотдача от наружной поверхности стенок цилиндра к охлаждающей среде. Теплоотдача от газов к стенке цилиндра происходит главным образом путем соприкосновения. Радиационная составляющая теплообмена принимается равной около 5% . Однако некоторые исследования последних лет показывают, что лучистый теплообмен в цилиндре дизеля достигает 15% от всего передаваемого тепла. При установившемся тепловом потоке, и если принять стенку цилиндра плоской, согласно закону Ньютона, количество теплоты, переданное от газов к 1 м 2 поверхности стенки в течение часа, будет равно
1126. Объясните причину вращения колеса (рис. 277). Какие преобразования энергии происходят при этом?
Колесо вращается за счет давления истекающего из трубки пара на его лопасти. Внутренняя энергия пара идет на работу по его расширению, которая, в свою очередь, идет на совершение работы по вращению колеса.
1127. Относится ли огнестрельное оружие к тепловым двигателям?
Да, поскольку при выстреле часть внутренней энергии топлива превращается в тепловую энергию снаряда.
1128. Какой вид энергии используется в установке, изображенной на рисунке 277; при выстреле из пушки?
В установке на рис. 277 используется энергия пара. При выстреле из пушки используется тепловая (внутренняя) энергия сгорающего взрывчатого вещества.
1129. Почему доливать воду в радиатор перегревшегося двигателя трактора следует очень медленно и только при работающем двигателе?
При быстром доливании воды в радиатор происходит процесс интенсивного парообразования, выделяется большое количество энергии. Двигатель выходит из строя.
1130. Выполняя домашнее задание, ученик записал: «К машинам с тепловыми двигателями относятся: реактивный самолет, паровая турбина, мопед». Дополните эту запись другими примерами.
К машинам с тепловым двигателем относятся: автомобиль, тепловоз.
1131. Выполняя задание, ученик записал: «Двигатель внутреннего сгорания применяется в мотосанях, бензопилах». Дополните эту запись другими примерами.
Двигатель внутреннего сгорания применяют в автомобилях, дизельных тепловозах.
1132. Почему двигатели внутреннего сгорания не используются в подводной лодке при подводном плавании?
В подводных лодках не используют двигатели внутреннего сгорания из-за недостатка воздуха для создания рабочей смеси двигателя.
1133. В каком случае газообразная горючая смесь в цилиндре двигателя внутреннего сгорания обладает большей внутренней энергией: в начале такта «рабочий ход» или в конце его?
Горючая смесь обладает большей внутренней энергией в начале такта «рабочий ход».
1134. В каком случае жидкое распыленное топливо в цилиндре двигателя внутреннего сгорания обладает большей внутренней энергией: к концу такта всасывания или к концу такта сжатия?
Горючая смесь обладает большей внутренней энергией в конце такта сжатия.
1135. Почему температура газа в двигателе внутреннего сгорания в конце такта «рабочий ход» ниже, чем в начале этого такта?
Во время такта «рабочий ход» расширяющийся газ совершает работу за счет внутренней энергии смеси. Ее температура понижается.
1136. Почему в паровой турбине температура отработанного пара ниже, чем температура пара, поступающего к лопаткам турбины?
Часть внутренней энергии поступающего в турбину пара идет на совершение механической работы по ее вращению.
1137. Зачем в цилиндры дизельного двигателя (двигателя с воспламенением топлива от сжатия) жидкое топливо подается в распыленном состоянии?
Распыленное топливо обладает большей поверхностью. Это способствует более полному сгоранию топлива.
1138. Во время каких тактов закрыты оба клапана в четырехтактном двигателе внутреннего сгорания?
Во втором и третьем такте.
1139. Отражается ли неполное сгорание топлива в двигателе внутреннего сгорания на его КПД; на окружающей среде?
КПД уменьшается; окружающая среда сильнее загрязняется.
1140. Первый гусеничный трактор конструкции А. Ф. Блинова, 1888 г., имел два паровых двигателя. За 1 ч он расходовал 5 кг топлива, у которого удельная теплота сгорания равна 30 • 10 6 Дж/кг. Вычислите КПД трактора, если мощность двигателя его была равна около 1,5 кВт.
1141. В одной из паровых турбин для совершения полезной работы используется 1/5 часть энергии, выделяющейся при сгорании топлива, в другой — 1/4 часть. КПД какой турбины больше? Ответ обоснуйте.
КПД тем больше, чем больше часть полезной работы по отношению к затраченной. Поэтому КПД второй турбины больше.
1142. Вычислите КПД турбин, описанных в предыдущей задаче.
1143. Определите КПД двигателя трактора, которому для выполнения работы 1,89 • 107 Дж потребовалось 1,5 кг топлива с удельной теплотой сгорания 4,2 • 10 6 Дж/кг.
1144. Двигатель внутреннего сгорания совершил полезную работу, равную 2,3 • 10 4 кДж, и при этом израсходовал бензин массой 2 кг. Вычислите КПД этого двигателя.
1145. За 3 ч пробега автомобиль, КПД которого равен 25%, израсходовал 24 кг бензина. Какую среднюю мощность развивал двигатель автомобиля при этом пробеге?
1146. Двигатель внутреннего сгорания мощностью 36 кВт за 1 ч работы израсходовал 14 кг бензина. Определите КПД двигателя.
Сколько молекул воздуха находится в комнате размерами 1554 м 3 при температуре 13С и давлении 100 кПа? Универсальная газовая постоянная 8,31 Дж/(мольК), число Авогадро 610 23 моль -1 .
Вакуумная система заполнена водородом при давлении 10 -3 мм рт.ст. Определите среднюю длину свободного пробега молекул водорода, Еcли температура t = 50С.
Какова внутренняя энергия водяного пара массой 10 3 кг, молекулы которого имеют среднюю кинетическую энергию, равную 1,510 -20 Дж?
Вычислите удельные теплоемкости при постоянном объеме сv и при постоянном давлении ср для водорода и неона, принимая эти газы за идеальные.
Воздух, занимавший объем V1 = 10 л при давлении р1 = 100 кПа, был адиабатно сжат до объема V2 = 1 л. Под каким давлением р2 находится воздух после сжатия?
Какое количество льда, взятого при -20С, можно расплавить, если использовать все тепло, выделяющееся при образовании из протонов и нейтронов 0,2 г гелия
? Дефект массы ядра гелия 4,8110 -29 кг, удельная теплоемкость льда 2100 Дж/(кгК), удельная теплота льда 3,310 5 Дж/кг, скорость света в вакууме 310 8 м/с, постоянная Авогадро 6,0210 23 моль -1 . Результат представьте в тоннах (т) и округлите до целого числа.
В цилиндре двигателя внутреннего сгорания при работе образуются газы, температура которых 1000 К. Температура отработанного газа 373 К. Двигатель расходует в час 36 кг топлива (q = 4310 6 Дж/кг). Какую максимальную полезную мощность может развивать этот двигатель?
Определите плотность водяных паров в критическом состоянии.
Вариант № 4
На диаграмме V - T изображен процесс, который произошел с идеальным газом при постоянном давлении и постоянном объеме. Как при этом изменилась масса газа? (Во сколько раз увеличилась или уменьшилась?)
Два баллона с объемами V1 и V2 = 2V1 соединены трубкой с краном. Баллоны заполнены воздухом при давлении р1 = 0,3 МПа и р2 соответственно, и одинаковой температуре. Если кран открыть, то в баллонах установится давление 0,5 МПа. Чему равно давление воздуха во втором баллоне (в МПа)?
Определите среднюю кинетическую энергию поступательного движения и полную кинетическую энергию одной молекулы азота при температуре 600 К.
При изохорном нагревании кислорода объемом 50 л давление газа изменилось на р = 0,5 МПа. Найдите количество теплоты, сообщенное газу.
Водород занимает объем V1 = 10 м 3 при давлении р1 = 100 кПа. Газ нагрели при постоянном объеме до давления р2 = 300 кПа. Определите изменение внутренней энергии U газа, работу газа А, теплоту Q, сообщенную газу.
Найдите показатель адиабаты для смеси газов, содержащей гелий массой m1 = 10 г и водород массой m2 = 4 г.
Температура нагревателя тепловой машины 500 К. Температура холодильника 400 К. Определите к.п.д. тепловой машины, работающей по циклу Карно, и полезную мощность машины, если нагреватель ежесекундно передает ей 1675 Дж теплоты.
Кислород массой m = 2 кг увеличил свой объем в 5 раз сначала Изотермически, затем – адиабатно. Найдите изменение энтропии.
Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.
У бензиновых двигателей после прохождения поршнем ВМТ давление и температура в цилиндре за счет сгорания топливо-воздушной смеси достигают максимума - давления порядка 3-6 МПа и температуры свыше 2500 К. Весь процесс сгорания происходит вблизи ВМТ, длится 4060° угла поворота коленчатого вала (ПКВ), объем камеры сгорания при этом изменяется мало. Именно поэтому бензиновые двигатели с искровым зажиганием в литературе называют иногда двигателями с подводом тепла при постоянном объеме или двигателями Отто (работающими по циклу Отто).
Для дизелей условно принимают, что часть теплоты подводится при постоянном объеме, а часть - при постоянном давлении. Поскольку у дизелей степень сжатия существенно выше, чем у бензиновых двигателей (е = 21-22), то максимальное давление при сгорании также выше и достигает 5,5 МПа. При этом температура газов в цилиндре меньше и, как правило, не превышает 2000-5-2200 К.
Процесс сгорания топливо-воздушной смеси в двигателе очень сложен и до конца не изучен. При горении происходят химические реакции с выделением тепла и образованием продуктов сгорания. Процесс горения существенно зависит от большого числа физических явлений в цилиндре: от геометрии (формы) камеры сгорания до состава, скорости и направления движения смеси в цилиндре в данный момент времени в данной точке.
Для осуществления процесса горения необходимо, чтобы количество топлива, подаваемого в цилиндр, строго соответствовало количеству воздуха, поступающего в цилиндр на такте впуска. Соотношение количеств воздуха и топлива в смеси определяется коэффициентом избытка воздуха. где 15 - постоянный (стехиометрический) коэффициент для данного топлива - теоретически необходимое количество воздуха (кг) для полного сгорания 1 кг топлива. При а = 1, когда количество топлива точно соответствует количеству воздуха, необходимому для полного сгорания этого топлива, состав смеси называют стехиометрическим.
При сгорании коэффициент избытка воздуха а смеси для бензиновых двигателей традиционных конструкций должен находиться в интервале от 0,70-0,75 до 1,05-1,15 в зависимости от режимов работы двигателя. Для этого система питания двигателя должна строго дозировать топливо. Например, при разгоне целесообразно иметь, а меньше 1 ("богатая" смесь и большой крутящий момент), в то время как для установившегося режима движения автомобиля желательно, чтобы а было близко к 1 (нормальная или слегка обедненная смесь, высокая экономичность, а также приемлемая токсичность отработавших газов).
Для воспламенения и горения смеси у двигателей традиционных схем необходимо, чтобы топливо хорошо испарилось и перемешалось с воздухом еще на также сжатия, т. е. перед искровым разрядом. Это достигается внешним смесеобразованием, т. е. подачей топлива заранее во впускной трубопровод (с помощью карбюратора или форсунок системы впрыска). При этом топливо успевает практически полностью испариться перед воспламенением. После воспламенения смеси искровым разрядом образуется фронт пламени, распространяющийся по объему камеры сгорания.
Коэффициент избытка воздуха а существенно влияет не только на экономичность и мощность, но и на состав отработавших газов. Например, если основная часть продуктов сгорания - это углекислый газ СО2 и водяные пары Н20, то при работе на богатых смесях двигатель выделяет повышенное количество оксида углерода СО, а также несгоревшие углеводороды CnHm (СН). На некоторых режимах продукты сгорания содержат также повышенное количество оксидов азота NOx, что особенно характерно для двигателей с высокой степенью сжатия (оксиды азота образуются при высоких температурах).
Очень важное значение для состава отработавших газов имеет конструкция головки блока двигателя и особенно камеры сгорания - пространства между головкой и днищем поршня. От того, как организовано движение смеси по камере сгорания перед и во время сгорания, сильно зависит количество вредных выбросов типа СО, NOx и СН.
В конечном счете, все указанные факторы влияют и на количество выделившегося при сгорания тепла - чем оно больше, тем выше основные параметры двигателя. Например, двигатель, имеющий на определенном режиме большое количество СО и несгоревших углеводородов СН в отработавших газах, вряд ли обеспечит на этом режиме хорошую мощность или экономичность. С другой стороны, сгорание должно также происходить в строго определенной фазе цикла - слишком раннее или позднее сгорание приводит к уменьшению давления в цилиндре и, в конечном счете, к ухудшению основных параметров двигателя.
При сгорании в цилиндре выделяется большое количество тепла. Часть его уходит с отработавшими газами, другая часть передается в стенки головки и гильзу цилиндра, в поршень. Если бы конструкция поршня не позволяла отводить тепло от днища, то поршень очень быстро бы расплавился и прогорел. В самом деле, температура газа в камере сгорания превышает 1800-2000°С, в то время как рабочая температура деталей из алюминиевого сплава не должна быть больше 300-350°С. Для работы в таких условиях наиболее важна передача тепла через поршневые кольца в стенки цилиндра. При этом через верхнее кольцо уходит до 50-60% всего тепла, переданного из камеры в поршень, а через среднее - до 15-20%. Для того, чтобы обеспечить передачу тепла через кольца, необходимо точное (плотное) прилегание кольца к канавке поршня и к поверхности цилиндра. Дефекты кольца (плохое прилегание к цилиндру, поломки) и поршня (деформация или разрушение перемычек) приводят к снижению потока тепла от поршня и, соответственно, к его перегреву с последующим разрушением. Другая часть тепла от поршня передается через его юбку в стенку цилиндра, а также через палец в шатун и далее рассеивается в картере. Незначительная часть тепла уходит в картер в результате вентиляции внутри поршневого пространства при возвратно-поступательном движении поршня.
Тепловое состояние (т.е. распределение температуры) поршня в значительной степени зависит от его конструкции и материала. Эти факторы влияют на такие параметры, как зазор между поршнем и цилиндром, износ юбки и др. Чем хуже отвод тепла, тем больше температура поршня, тем больше его тепловое расширение и тем больше необходимый зазор. Если зазор между поршнем и цилиндром окажется меньше, чем надо, поршень в цилиндре может заклинить. При очень малом зазоре увеличивается трение юбки поршня о стенки цилиндра, из-за чего вместо отвода тепла может происходить его подвод (разогрев юбки от трения). После заклинивания и последующего остывания поршень, как правило, деформируется (сжимается по юбке), а на поверхности цилиндра появляются глубокие царапины (задиры), иногда со следами алюминия, перенесенного с поршня на материал гильзы.
При определенных условиях в эксплуатации бензиновых двигателей могут возникать нарушения процесса сгорания. К ним относятся детонация и преждевременное воспламенение.
Явление детонации широко известно. Внешние проявления детонации - характерный стук, появляющийся при работе на низкооктановом топливе с увеличением нагрузки (т. е. при открытии дроссельной заслонки).
Суть детонации заключается в ненормально быстром (в сотни раз быстрее обычного) сгорания части смеси. При этом образуются ударные волны, с большой скоростью распространяющиеся по камере сгорания. В ударной волне происходит скачкообразный рост давления и температуры среды, в которой распространяется волна. А это вызывает воспламенение смеси не в результате обычного распространения пламени (скорость порядка 20-30 м/с), а из-за ее разогрева в ударной волне, движущейся со скоростью более 1000 м/с.
Механизм возникновения детонации поддается изучению с большими трудностями. Опытным путем установлено, что компактные камеры сгорания с вытеснителями имеющие форму, близкую к сферической, менее склонны к образованию детонационных процессов, чем длинные и узкие камеры с острыми углами и выступами. Однако в каждом конкретном случае при разработке нового двигателя определить наилучшую форму камеры сгорания - дело очень ответственное, долгое и кропотливое.
В эксплуатации детонация наиболее часто возникает на низкооктановом топливе при малых и средних частотах вращения и больших нагрузках. Детонация изменяет характер протекания давления в цилиндре по углу поворота, резко увеличивает максимальное давление, температуру и нагрузки на детали двигателя. Последствия длительной работы двигателя с детонацией весьма тяжелы. В первую очередь это - поломка поршней и поршневых колец из-за ударных нагрузок. Наиболее подвержены поломкам перемычки поршней между канавками колец. Ударная волна, вызывая резкое повышение давления в зазоре между днищем поршня и цилиндром, бьет по верхнему поршневому кольцу. Удар передается на перемычку поршня, причем одновременно не по всей окружности кольца, а в конкретной достаточно узкой области, что облегчает поломку деталей.
Детонация вызывает не только поломку перемычек, но и перегрев и разрушение краев днища поршня (каверны на поверхности), поломку поршневых колец. Последующий перегрев поршня обычно настолько велик (из-за уменьшения теплоотвода через кольца), что выгорает огневой пояс поршня от днища до верхнего и даже нижнего поршневого кольца.
После поломки деталей падает давление в цилиндре и мощность двигателя, увеличивается прорыв газов в картер (и давление в картере), расход масла. Результатом длительной работы двигателя с детонацией может быть также износ по торцу верхней канавки поршня и верхнего кольца, износ поверхностей сопряжения поршня и поршневого пальца. Эти случаи встречаются довольно часто, но ускоренные износы не всегда удается связать с детонацией.
Режимы детонации ограничивают углы опережения зажигания на некоторых режимах. Это значит, что при увеличении опережения зажигания основные параметры двигателя повышаются, однако, работа на этих режимах недопустима из-за опасности поломки деталей. Электронные системы управления двигателем точно отлеживают эти режимы, в том числе с помощью датчиков детонации.
На некоторых двигателях (TOYOTA, NISSAN) вместо одной свечи устанавливают две на один цилиндр. Такая конструкция является достаточно эффективной для уменьшения склонности двигателя к детонации при повышении степени сжатия за счет сокращения длины пути фронта пламени по камере сгорания. Снижает вероятность возникновения детонации более низкая температура поверхностей камеры i сгорания и днища поршня. Это достигается интенсификацией i охлаждения камеры путем уменьшения толщины стенок, увеличения скорости течения охлаждающей жидкости у стенок и даже некоторым снижением уровня температуры охлаждающей жидкости (например, с 90-95°С до 80-85 0 С) за счет схемы и конструкции системы охлаждения двигателя.
У двигателей с впрыском топлива температура топливо-воздушной смеси на входе в цилиндр обычно меньше, чем у карбюраторных двигателей, поскольку у последних необходим подогрев смеси на впуске (иначе не будет качественного испарения и сгорания топлива). Поэтому двигатели с впрыском топлива при прочих равных условиях менее склонны к детонации, что позвопяет несколько увеличить у них степень сжатия. Аналогичное влияние оказывает промежуточное охлаждение воздуха у двигателей с наддувом.
Кроме детонации, на практике встречается явление преждевременного воспламенения, называемое также калильным зажиганием. При калильном зажигании происходит воспламенение смеси не от искрового разряда свечи, а от нагретых до очень высоких температур (более 700°С) поверхностей камеры сгорания. В качестве таких источников воспламенения могут выступать электроды свечи зажигания, тарелка выпускного клапана или частицы нагара, если нагар лежит на деталях достаточно толстым слоем.
Обычно калильное зажигание возникает из-за несоответствия характеристики свечи, рекомендованной изготовителем автомобиля, в частности, когда для двигателя с высокой степенью сжатия использована "горячая" свеча от низкофорсированного двигателя. При этом смесь в цилиндре самовоспламеняется несколько раньше, чем происходит искровой разряд, но процесс сгорания протекает нормальным образом. С ростом нагрузки и частоты вращения момент самовоспламенения отодвигается в раннюю сторону, из-за чего тепловое и силовое воздействие на детали двигателя, особенно, на поршень, значительно возрастает.
Опасность калильного зажигания заключается в том, что на начальной стадии его практически невозможно отличить "на слух" от обычного сгорания, в то время как с течение времени (обычно от нескольких десятков секунд до нескольких минут), когда у двигателя появляется посторонний звук и он начинает терять мощность, детали поршневой группы уже могут быть повреждены. Вследствие этого на двигателях современных автомобилей замена свечей зажигания оказывается весьма небезопасной для двигателя, если ставятся первые попавшиеся свечи.
В данный момент вы не можете посмотреть или раздать видеоурок ученикам в личном кабинете
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно его приобрести.
Получите невероятные возможности
Конспект урока "Тепловые двигатели. Коэффициент полезного действия теплового двигателя"
Данная тема посвящена решению задач на тепловые двигатели и коэффициент полезного действия тепловых двигателей.
Задача 1. В идеальном тепловом двигателе абсолютная температура холодильника вдвое меньше температуры нагревателя. Если, не меняя температуры нагревателя, температуру холодильника понизить второе, то во сколько раз увеличится КПД двигателя?
КПД идеального теплового двигателя определяется по формуле
Применим данную формулу к рассматриваемому тепловому двигателю для двух случаев
Тогда искомое соотношение
Ответ: КПД двигателя увеличится в 1,7 раза.
КПД теплового двигателя
Полезная работа двигателя
Количество теплоты полученное двигателем
КПД идеального теплового двигателя
Ответ: автомобиль проехал 472 км.
Задача 3. В калориметр, содержащий 0,5 кг воды и 0,1 кг льда при температуре 273 К, поместили электрический нагреватель при такой же температуре. Общая теплоемкость калориметра и нагревателя 100 Дж/К. Сколько времени необходимо пропускать ток через нагреватель, чтобы вода в калориметре нагрелась до 373 К и 0,2 кг ее обратились в пар? Нагреватель потребляет мощность 500 Вт, а КПД — 90%.
Запишем формулу, по которой можно рассчитать коэффициент полезного действия рассматриваемой установки
Количество теплоты, выделяемое нагревателем
Количество теплоты для
нагревания калориметра и нагревателя:
Тогда КПД установки
Ответ: ток необходимо пропускать 27,6 мин.
Задача 4. Абсолютная температура нагревателя идеального теплового двигателя в 3 раза выше температуры холодильника. Если за один цикл двигатель поднимает поршень массой 5 кг на высоту 20 м и сжимает при этом пружину жесткостью 625 кН/м на 8 см, то какое количество теплоты получает рабочее тело от нагревателя за один цикл?
КПД идеального теплового двигателя
Полезная работа двигателя представляет собой сумму работы силы тяжести поршня, при его подъеме на заданную высоту, и работы силы упругости пружины при ее сжатии
Искомое количество теплоты
Ответ: рабочее тело за один цикл получает 4,5 кДж теплоты.
Задача 5. Кожух станкового пулемета наполнен 4 кг воды при температуре 0 о С. Скорость стрельбы 10 выстрелов в секунду. Заряд пороха в патроне 3,2 г. За какое время выкипит половина воды в кожухе при непрерывной стрельбе? Считать, что на нагревание ствола идет 30% теплоты, выделенной при сгорании топлива. Какова начальная скорость пули, если ее масса 9,6 г, а КПД пулемета 20%?
Читайте также: