Схема проводки тойота аурис
Двигатели, устанавливаемые на автомобили Toyota Corolla, оборудованы электронной системой управления двигателем с распределенным впрыском топлива. Эта система обеспечивает выполнение современных норм по токсичности выбросов и испарениям при сохранении высоких ходовых качеств и низкого расхода топлива.
Управляющим устройством в системе является электронный блок управления (ЭБУ).
На основе информации, полученной от датчиков, ЭБУ рассчитывает параметры регулирования впрыска топлива и управления углом опережения зажигания. Кроме того, в соответствии с заложенным алгоритмом ЭБУ управляет работой электродвигателей вентилятора системы охлаждения двигателя и электромагнитной муфты включения компрессора кондиционера, выполняет функцию самодиагностики элементов системы и оповещает водителя о возникших неисправностях.
При выходе из строя отдельных датчиков и исполнительных механизмов ЭБУ включает аварийные режимы, обеспечивающие работоспособность двигателя.
Количество топлива, подаваемого форсунками, определяется продолжительностью электрического сигнала от ЭБУ. Электронный блок отслеживает данные о состоянии двигателя, рассчитывает потребность в топливе и определяет необходимую длительность подачи топлива форсунками (длительность сигнала). Для увеличения количества подаваемого топлива длительность сигнала увеличивается, а для уменьшения подачи топлива – уменьшается.
Система управления двигателем наряду с электронным блоком управления включает в себя датчики, исполнительные устройства, разъемы и предохранители.
Датчики фазы индуктивного типа установлены в верхней левой части головки блока цилиндров. При вращении распределительного вала выступ его задающего диска изменяет магнитное поле датчика, наводя импульсы напряжения переменного тока. Сигналы датчика используются контроллером для организации фазированного впрыска топлива в соответствии с порядком работы цилиндров, а также для управления изменением фаз газораспределения в зависимости от режима работы двигателя. При возникновении неисправности в цепи датчика положения распределительных валов контроллер заносит в свою память ее код и включает сигнализатор.
Датчик температуры охлаждающей жидкости установлен в системе охлаждения двигателя. Чувствительным элементом датчика является термистор, электрическое сопротивление которого изменяется обратно пропорционально температуре. При низкой температуре охлаждающей жидкости (–20 °С) сопротивление термистора составляет 15–30 кОм, при повышении температуры до +80 °С – уменьшается до 320 Ом.
Электронный блок питает цепь датчика температуры постоянным опорным напряжением. Напряжение сигнала датчика максимально на холодном двигателе и снижается по мере его прогрева. По значению напряжения электронный блок определяет температуру двигателя и учитывает её при расчете регулировочных параметров впрыска и зажигания.
При отказе датчика или нарушениях в цепи его подключения ЭБУ устанавливает код неисправности и запоминает его.
Помимо описанного, датчик косвенным образом служит и как датчик указателя температуры охлаждающей жидкости в комбинации приборов. По информации этого датчика электронный блок управления двигателем изменяет показания указателя. Для устранения неисправности проверьте надежность контактных соединений в проводке к датчику или замените датчик.
Датчик массового расхода и температуры поступающего воздуха установлен в воздушном рукаве между воздушным фильтром и дроссельным узлом. Принцип работы датчика массового расхода воздуха основан на поддержании постоянной температуры резисторов (чем выше скорость потока воздуха, тем больший ток необходим для поддержания температуры резистора). Принцип работы датчика температуры поступающего воздуха аналогичен принципу работы датчика температуры охлаждающей жидкости. В зависимости от показаний этих датчиков ЭБУ корректирует количество топлива, впрыскиваемого в цилиндр, для получения оптимальной рабочей смеси.
Датчик положения дроссельной заслонки выполнен за одно целое с крышкой дроссельного узла. Принцип действия датчика основан на эффекте Холла. Когда дроссельная заслонка поворачивается (от воздействия на педаль управления), изменяется напряжение на выходе датчика. При закрытой дроссельной заслонке оно ниже 2,5 В. Когда заслонка открывается, напряжение на выходе датчика растет, при полностью открытой заслонке оно должно быть более 4 В.
Отслеживая выходное напряжение датчика, ЭБУ корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (т.е. по желанию водителя).
Датчик положения дроссельной заслонки не требует регулировки, так как блок управления воспринимает холостой ход (т.е. полное закрытие дроссельной заслонки) как нулевую отметку.
Датчики концентрации кислорода (лямбда-зонды) ввернуты в резьбовые отверстия катколлектора и приемной трубы системы выпуска отработавших газов.
Датчик на входе в катколлектор служит для управления составом топливовоздушной смеси…
…а датчик на приемной трубе – для оценки эффективности работы нейтрализатора.
В металлических колбах датчиков расположен гальванический элемент, омываемый потоком отработавших газов. В зависимости от содержания кислорода в отработавших газах в результате сгорания топливовоздушной смеси изменяется напряжение сигналов датчиков.
Информация от каждого датчика поступает в блок управления в виде сигналов низкого и высокого уровней. При сигнале высокого уровня (около 4,2 В) датчика на входе в катколлектор блок управления получает информацию о высоком содержании кислорода.
Сигнал низкого уровня (около 2,2 В) этого датчика свидетельствует о низком содержании кислорода в отработавших газах. Характеристики датчика на выходе из катколлектора другие: высокому содержанию кислорода соответствует сигнал низкого уровня (около 0,1 В), а низкому содержанию кислорода – сигнал высокого уровня (около 0,9 В) Постоянно отслеживая напряжение сигнала датчиков, блок управления корректирует количество впрыскиваемого форсунками топлива.
При высоком уровне сигнала датчика на входе в катколлектор (бедная топливовоздушная смесь) количество подаваемого топлива увеличивается, при низком уровне сигнала (богатая смесь) – уменьшается. Если уровень сигнала датчика на выходе нейтрализатора не соответствует значениям, допустимым при данном режиме работы, блок управления идентифицирует неисправность катколлектора.
Датчик детонации прикреплен к верхней части блока цилиндров между 2-м и 3-м цилиндрами и улавливает аномальные вибрации (детонационные удары) в двигателе. Чувствительным элементом датчика детонации является пьезокристаллическая пластинка. При детонации на выходе датчика генерируются импульсы напряжения, которые увеличиваются с возрастанием интенсивности детонационных ударов.
Контроллер по сигналу датчика регулирует опережение зажигания для устранения детонационных вспышек топлива.
В процессе работы электронный блок управления двигателем использует также данные о скорости автомобиля, получаемые от блока управления ABS.
Двигатели, устанавливаемые на автомобили Toyota Corolla, оборудованы электронной системой управления двигателем с распределенным впрыском топлива. Эта система обеспечивает выполнение современных норм по токсичности выбросов и испарениям при сохранении высоких ходовых качеств и низкого расхода топлива.
Управляющим устройством в системе является электронный блок управления (ЭБУ).
На основе информации, полученной от датчиков, ЭБУ рассчитывает параметры регулирования впрыска топлива и управления углом опережения зажигания. Кроме того, в соответствии с заложенным алгоритмом ЭБУ управляет работой электродвигателей вентилятора системы охлаждения двигателя и электромагнитной муфты включения компрессора кондиционера, выполняет функцию самодиагностики элементов системы и оповещает водителя о возникших неисправностях.
При выходе из строя отдельных датчиков и исполнительных механизмов ЭБУ включает аварийные режимы, обеспечивающие работоспособность двигателя.
Количество топлива, подаваемого форсунками, определяется продолжительностью электрического сигнала от ЭБУ. Электронный блок отслеживает данные о состоянии двигателя, рассчитывает потребность в топливе и определяет необходимую длительность подачи топлива форсунками (длительность сигнала). Для увеличения количества подаваемого топлива длительность сигнала увеличивается, а для уменьшения подачи топлива – уменьшается.
Система управления двигателем наряду с электронным блоком управления включает в себя датчики, исполнительные устройства, разъемы и предохранители.
Датчики фазы индуктивного типа установлены в верхней левой части головки блока цилиндров. При вращении распределительного вала выступ его задающего диска изменяет магнитное поле датчика, наводя импульсы напряжения переменного тока. Сигналы датчика используются контроллером для организации фазированного впрыска топлива в соответствии с порядком работы цилиндров, а также для управления изменением фаз газораспределения в зависимости от режима работы двигателя. При возникновении неисправности в цепи датчика положения распределительных валов контроллер заносит в свою память ее код и включает сигнализатор.
Датчик температуры охлаждающей жидкости установлен в системе охлаждения двигателя. Чувствительным элементом датчика является термистор, электрическое сопротивление которого изменяется обратно пропорционально температуре. При низкой температуре охлаждающей жидкости (–20 °С) сопротивление термистора составляет 15–30 кОм, при повышении температуры до +80 °С – уменьшается до 320 Ом.
Электронный блок питает цепь датчика температуры постоянным опорным напряжением. Напряжение сигнала датчика максимально на холодном двигателе и снижается по мере его прогрева. По значению напряжения электронный блок определяет температуру двигателя и учитывает её при расчете регулировочных параметров впрыска и зажигания.
При отказе датчика или нарушениях в цепи его подключения ЭБУ устанавливает код неисправности и запоминает его.
Помимо описанного, датчик косвенным образом служит и как датчик указателя температуры охлаждающей жидкости в комбинации приборов. По информации этого датчика электронный блок управления двигателем изменяет показания указателя. Для устранения неисправности проверьте надежность контактных соединений в проводке к датчику или замените датчик.
Датчик массового расхода и температуры поступающего воздуха установлен в воздушном рукаве между воздушным фильтром и дроссельным узлом. Принцип работы датчика массового расхода воздуха основан на поддержании постоянной температуры резисторов (чем выше скорость потока воздуха, тем больший ток необходим для поддержания температуры резистора). Принцип работы датчика температуры поступающего воздуха аналогичен принципу работы датчика температуры охлаждающей жидкости. В зависимости от показаний этих датчиков ЭБУ корректирует количество топлива, впрыскиваемого в цилиндр, для получения оптимальной рабочей смеси.
Датчик положения дроссельной заслонки выполнен за одно целое с крышкой дроссельного узла. Принцип действия датчика основан на эффекте Холла. Когда дроссельная заслонка поворачивается (от воздействия на педаль управления), изменяется напряжение на выходе датчика. При закрытой дроссельной заслонке оно ниже 2,5 В. Когда заслонка открывается, напряжение на выходе датчика растет, при полностью открытой заслонке оно должно быть более 4 В.
Отслеживая выходное напряжение датчика, ЭБУ корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (т.е. по желанию водителя).
Датчик положения дроссельной заслонки не требует регулировки, так как блок управления воспринимает холостой ход (т.е. полное закрытие дроссельной заслонки) как нулевую отметку.
Датчики концентрации кислорода (лямбда-зонды) ввернуты в резьбовые отверстия катколлектора и приемной трубы системы выпуска отработавших газов.
Датчик на входе в катколлектор служит для управления составом топливовоздушной смеси…
…а датчик на приемной трубе – для оценки эффективности работы нейтрализатора.
В металлических колбах датчиков расположен гальванический элемент, омываемый потоком отработавших газов. В зависимости от содержания кислорода в отработавших газах в результате сгорания топливовоздушной смеси изменяется напряжение сигналов датчиков.
Информация от каждого датчика поступает в блок управления в виде сигналов низкого и высокого уровней. При сигнале высокого уровня (около 4,2 В) датчика на входе в катколлектор блок управления получает информацию о высоком содержании кислорода.
Сигнал низкого уровня (около 2,2 В) этого датчика свидетельствует о низком содержании кислорода в отработавших газах. Характеристики датчика на выходе из катколлектора другие: высокому содержанию кислорода соответствует сигнал низкого уровня (около 0,1 В), а низкому содержанию кислорода – сигнал высокого уровня (около 0,9 В) Постоянно отслеживая напряжение сигнала датчиков, блок управления корректирует количество впрыскиваемого форсунками топлива.
При высоком уровне сигнала датчика на входе в катколлектор (бедная топливовоздушная смесь) количество подаваемого топлива увеличивается, при низком уровне сигнала (богатая смесь) – уменьшается. Если уровень сигнала датчика на выходе нейтрализатора не соответствует значениям, допустимым при данном режиме работы, блок управления идентифицирует неисправность катколлектора.
Датчик детонации прикреплен к верхней части блока цилиндров между 2-м и 3-м цилиндрами и улавливает аномальные вибрации (детонационные удары) в двигателе. Чувствительным элементом датчика детонации является пьезокристаллическая пластинка. При детонации на выходе датчика генерируются импульсы напряжения, которые увеличиваются с возрастанием интенсивности детонационных ударов.
Контроллер по сигналу датчика регулирует опережение зажигания для устранения детонационных вспышек топлива.
В процессе работы электронный блок управления двигателем использует также данные о скорости автомобиля, получаемые от блока управления ABS.
Подробная расшифровка с фото, электрической схемы блоков предохранителей и реле у автомобилей марки Тойота.
В состав системы питания входят элементы:
– системы подачи топлива, включающей в себя топливный бак, модуль электрического топливного насоса, трубопроводы, шланги, топливную рампу с форсунками и компенсатором пульсаций давления топлива;
– системы воздухоподачи, состоящей из воздушного фильтра, воздухоподводящего рукава и дроссельного узла;
– системы улавливания паров топлива, включающей в себя адсорбер, клапан продувки адсорбера и соединительные трубопроводы.
Функциональное назначение системы подачи топлива – обеспечение подачи необходимого количества топлива в двигатель на всех рабочих режимах. Двигатель оборудован электронной системой управления с распределенным впрыском топлива. В системе распределенного впрыска топлива функции смесеобразования и дозирования подачи топливовоздушной смеси в цилиндры двигателя разделены: форсунки осуществляют дозированный впрыск топлива во впускную трубу, а необходимое в каждый момент работы двигателя количество воздуха подается дроссельным узлом. Такой способ управления дает возможность обеспечивать оптимальный состав горючей смеси в каждый конкретный момент работы двигателя, что позволяет получить максимальную мощность при минимально возможном расходе топлива и низкой токсичности отработавших газов. Управляет системой впрыска топлива и системой зажигания электронный блок управления двигателем, непрерывно контролирующий с помощью соответствующих датчиков нагрузку двигателя, скорость движения автомобиля, тепловое состояние двигателя, оптимальность процесса сгорания в цилиндрах.
Особенностью системы впрыска автомобиля Toyota Corolla является синхронность срабатывания форсунок в соответствии с фазами газораспределения (блок управления двигателем получает информацию от датчиков фазы). Контроллер включает форсунки последовательно, а не попарно, как в системах асинхронного впрыска. Каждая форсунка включается через 720° поворота коленчатого вала. Однако на режимах пуска и динамических режимах работы двигателя используется асинхронный метод подачи топлива без синхронизации с вращением коленчатого вала.
Рис. 5.9. Схема контура управления составом топливовоздушной смеси: 1 – форсунка; 2 – выпускной коллектор; 3 – датчик концентрации кислорода в отработавших газах (лямбда-зонд); 4 – двигатель; 5 – электронный блок управления двигателем; 6 – каталитический нейтрализатор отработавших газов; 7 – диагностический датчик концентрации кислорода.
Основным датчиком для обеспечения оптимального процесса сгорания является датчик концентрации кислорода в отработавших газах (лямбда-зонд). Он установлен в выпускном коллекторе двигателя и совместно с электронным блоком и форсунками образует контур корректировки состава топливовоздушной смеси, подаваемой в двигатель (рис. 5.9). По сигналам датчика блок управления двигателем определяет количество несгоревшего кислорода в отработавших газах и соответственно оценивает оптимальность состава топливовоздушной смеси, поступающей в цилиндры двигателя в каждый момент времени. Зафиксировав отклонение состава от оптимального 1:14 (соответственно топливо и воздух), обеспечивающего наиболее эффективную работу каталитического нейтрализатора отработавших газов, блок управления с помощью форсунок изменяет состав смеси.
В результате контур управления составом топливовоздушной смеси является замкнутым.
На автомобиле установлены два датчика концентрации кислорода: первый – в выпускном коллекторе, второй – после каталитического нейтрализатора. Первый датчик управляющий (ориентируясь на его сигнал, ЭБУ корректирует подачу топлива), а второй – диагностический (по его сигналу ЭБУ оценивает эффективность работы каталитического нейтрализатора).
Топливный бак из полимерного материала, установлен под полом кузова в его задней части и прикреплен четырьмя болтами. Для того чтобы пары топлива не попадали в атмосферу, бак соединен трубопроводом с адсорбером системы улавливания паров топлива.
Во фланцевое отверстие в верхней части бака устанавливают топливный модуль, включающий в себя топливный фильтр, адсорбер, насос и регулятор давления. В левой части бака выполнены патрубки для присоединения наливной трубы и шланга вентиляции. Из топливного модуля топливо подается в топливную рампу, закрепленную на впускной трубе двигателя. Из рампы топливо впрыскивается форсунками во впускную трубу двигателя.
Топливопроводы системы питания представляют собой трубки, соединяющие между собой различные элементы системы.
Модуль топливного насоса включает в себя электрический насос
регулятор давления топлива
и датчик указателя уровня топлива.
Модуль топливного насоса обеспечивает подачу топлива и установлен в топливном баке, что снижает возможность образования паровых пробок, так как топливо подается под давлением, а не под действием разрежения.
Топливный насос погружной, с электроприводом, роторного типа, с сетчатым фильтром-топливоприемником входит в состав топливного модуля. Модуль установлен в топливном баке, что снижает возможность образования паровых пробок, поскольку топливо подается под давлением, а не под действием разрежения. Топливный насос обеспечивает подачу топлива из топливного бака через топливную магистраль в топливную рампу под давлением 304–343 кПа. Насос неразборной конструкции ремонту не подлежит, при выходе из строя его надо заменить.
Рис. 5.10. Топливная рампа: 1 – топливная рампа; 2 – форсунка; 3 – уплотнительное кольцо; 4 – проушина
Топливная рампа 1 (рис. 5.10) форсунок представляет собой литую пустотелую деталь с отверстиями для установки форсунок 2 и с подводящим штуцером для присоединения топливопровода высокого давления. Форсунки уплотнены в гнездах резиновыми кольцами 3.
Рампа с форсунками в сборе вставлена хвостовиками форсунок в отверстия впускной трубы и закреплена через проушины двумя болтами.
Форсунки прикреплены к рампе, из которой к ним подается топливо, а своими распылителями входят в отверстия впускной трубы.
В отверстиях рампы и впускной трубы форсунки уплотнены резиновыми уплотнительными кольцами А и Б. Форсунка предназначена для дозированного впрыска топлива в цилиндр двигателя и представляет собой высокоточный электромеханический клапан. Топливо под давлением поступает из рампы по каналам внутри корпуса форсунки к запорному клапану.
Пружина поджимает иглу запорного клапана к конусному отверстию пластины распылителя, удерживая клапан в закрытом положении. Напряжение, подаваемое от блока управления двигателем через электрический разъем В на обмотку электромагнита форсунки, создает в ней магнитное поле, втягивающее сердечник вместе с иглой запорного клапана внутрь электромагнита. Конусное кольцевое отверстие в пластине распылителя открывается, и топливо впрыскивается через диффузор корпуса распылителя во впускной канал головки блока цилиндров и далее в цилиндр двигателя. После прекращения поступления электрического импульса пружина возвращает сердечник и иглу запорного клапана в исходное состояние – клапан запирается. Количество топлива, впрыскиваемое форсункой, зависит от длительности электрического импульса.
Регулятор давления топлива поддерживает постоянное давление топлива в системе питания двигателя на всех режимах работы двигателя. Подача электрического топливного насоса больше, чем необходимо для обеспечения работоспособности системы. Поэтому при работе двигателя часть топлива благодаря регулятору давления постоянно сливается в топливный бак.
Воздушный фильтр установлен в левой части моторного отсека на специальном кронштейне. Фильтрующий элемент из нетканого материала, плоский, с большой площадью фильтрующей поверхности. Фильтр соединен резиновым гофрированным воздухоподводящим рукавом с дроссельным узлом.
Дроссельный узел, представляющий собой простейшее регулирующее устройство, служит для изменения количества основного воздуха, подаваемого во впускную систему двигателя, установлен на входном фланце впускной трубы и прикреплен винтами.
На входной патрубок дроссельного узла надет формованный резиновый рукав, закрепленный хомутом и соединяющий дроссельный узел с воздушным фильтром.
В состав дроссельного узла входит датчик положения дроссельной заслонки и шаговый электродвигатель управления дроссельной заслонкой. Механическая связь дроссельного узла с педалью управления дроссельной заслонкой отсутствует. Так называемая электронная педаль управления дроссельной заслонкой передает информацию о степени нажатия на педаль электронному блоку управления двигателем, который, в свою очередь, с учетом скорости автомобиля, включенной передачи, нагрузки двигателя и частоты вращения коленчатого вала открывает дроссельную заслонку на необходимый угол.
Читайте также: