Частотомер из автомагнитолы подробная схема
В радиолюбительской лаборатории обязательно должен присутствовать прибор для цифрового измерения и генерации сигналов высокой частоты. И если с НЧ проблем нет – до 20 кГц можно использовать вход – выход аудиокарты ноутбука, то на частоте свыше 20 кГц нужен отдельный прибор. Значит делаем всё в одном корпусе: генератор частотомер.
Предлагаю для этих целей собрать распространённые и проверенные схемы следующих девайсов, частотомер:
А для генератора ВЧ пойдёт такая схема:
Обозн. Число витков Провод Тип намотки
- L1 585 ПЭЛШО 0,1 Многослойная
- L2 255 ПЭЛШО 0,12 Многослойная
- L3 100 ПЭЛШО 0,12 Многослойная
- L4 56,5 ПЭЛШО 0,12 Двухрядная, виток к витку
- L5 22,5 ПЭВ 0,27 Однорядная с шагом 0,15
- L6 6,5 ПЭВ 0,55 Однорядная с шагом 0,5
Каркасы катушек пластмассовые диаметром 5 и высотой 12 мм с внутренней резьбой М4.
Диаметр каркасов для катушек L1-L3 увеличен до 5,6 мм за счет двух слоев трансформаторной бумаги, наклеенной на каркас для его удлинения (для L1 до 20 мм, для L2, L3 до 15 мм). В качестве подстроечных сердечников для катушек L1-L3 используются ферритовые сердечники 600НН, а для L4-L6 карбонильные.
Весь диапазон разбит на 6 поддиапазонов (140-330; 315-780; 715-1800 кГц; 1,6-4,6; 4,4-12,5; 11,3-30 МГц).
Реально, для практики достаточно последних трёх диапазонов.
Напряжение генератора ВЧ – 100 мВ. Частота генератора НЧ (модулятора) – 1000 Гц, выходное напряжение – 0,5-0,6 В. Максимальная глубина модуляции на частотах до 11 МГц – 60%, свыше 11 МГц – 80%. Изменение глубины модуляции плавное. Имеется отдельный выход низкочастотного генератора.
Фото готовой конструкции генератора частотомера:
Для питания генератора частотомера используем БП с трансформатором (только не импульсник!), с обмотками на ток 0.5 А.
Есть иной относительно по проще вариант
собрать на 155 сериях.
После купил конструктор на 8031 проце
Сразу хочу внести ясность,у меня есть частотомер(Ч3-34).Шкалу обещал переделать другу (делает металлоискатели) Очень давно собирал прибор Бирюкова (30шт.155серии),потом на176 сделал и они
работали пока не приобрел заводской.
INSAN опорник собрал по схеме на рис.2.На выходе присутствуют прямоугольные модулированные колебания,может нужно синус как в приемнике.(хотя в норм.частотомерах формируют для логики прям-к)
Заменил смеситель на один элемент ЛЕ5-те же яйца.Не ужели никто не пытался переделать,ведь
отрицательный результат - то же результат.
.
,
диапазоне как раз перекрывает(от1кгц до2мгц).если верить статьи.Не от жиру все это- у него пенсия 50дол.
хотелось помочь.
Если нет кварца на 455 кГц можно применить, на 465 кГц подав на выводы 14(AIF1) и 15(AIF2) высокие уровни (лог.1) +5в LC7265 и получим +469 кГц, там же таблица есть! Шкала в АМ режиме работает?
Мало,того что нужно стремиться к идеальной синусоиде ,нужно еще и амплитуду ее подбирать,от этого зависит чувствительность смесителя.Выделять этот сигнал нужно на чем-то.
Тебе Strike, предложил ссылки дать.Это для того ,что бы разобраться что ты вообще задумал.
частотомера.
Немцов полностью с вами согласен.Предложенная схема (см.выше)промодулирует входной измеряемый
сигнал частотой 455кгц и больше ничего (разве что добавит кучу гармошек как пишет pabel выше).
Выход может и есть, чтобы заставить ее измерять с 1кгц но надо знать хорошо потроха LC7265
(возможно прерывать через 14,15 ногу используя 20) но это уже другая тема.
Закройте пожалуйста тему ,чтобы не парить людям головы!
4 провода
1 питание
2 земля
3 типа ПЧ
Как-то, давно, мне срочно понадобился частотомер и я собрал некогда очень популярный частотомер Денисова на PIC16F84 и индикаторе АЛС318 , вернее, его клон на PIC16F628A авторства некоего Корабельникова. И вот, по прошествии многих лет, он попался мне на глаза. Лежит себе совершенно забытый, без дела. Признаться, с самого начала была мысль ввести в него более-менее приличный функционал и избавиться от этого раздражающего мерцания, но все руки не доходили. И вот, на досуге, было решено переделать этот частотомер (жалко было выбрасывать, хотя, к тому времени я уже разработал и собрал многофункциональный частотомер похожей конструкции, который имеет несколько больший функционал, чем переделанный).
Эта статья рассчитана для тех, у кого есть частотомер подобной конструкции, и есть желание его усовершенствовать. Остальным рекомендую ознакомиться с подобным, но более совершенным прибором, который описан в моей ранее опубликованной статье. Итак, описание переделки.
Чтобы ввести режимы измерений периода и длительности импульсов, необходимо задействовать систему захвата (CCP) микроконтроллера (разумеется, если в приборе стоял PIC16F84, его придется поменять на PIC16F628A). Собственно, в основной схеме изменение только одно – поменяны местами всего два вывода МК – это выводы 2 (RA3) и 9 (RB3/CCP). Таким образом, в переделанной схеме входной сигнал подается на объединенные входы T0CKI и CCP1. Запустить и проверить прибор (а для особо ленивых и остановиться на этом) можно уже после этого. Однако, для реального улучшения параметров, необходимо почти полностью заменить примитивный и схемотехнически, на мой взгляд, не совсем грамотный входной формирователь. Родной работает плохо как на очень низких, так и на высоких частотах. Для того, чтобы иметь возможность измерять длительности низкочастотных импульсов, необходим формирователь с высоким входным сопротивлением – применим достаточно хорошо себя зарекомендовавшую схему на двухзатворном транзисторе типа BF998. Большинство деталей этого формирователя спаяны на печатной плате размерами 15х15 мм.
Для максимальной наглядности переделки привожу изначальные схему и печатную плату с первоисточника уже с нанесением всех произведенных изменений (полностью, конечная схема приведена во вложении).
И то же на печатной плате
Несколько фото переделанного частотомера
Основные характеристики прибора:
Пояснения работы устройства после переделки
Прежде всего, разумеется, не могло быть и речи об использовании примененной изначально в приборе ущербной организации динамической индикации в основном цикле с одновременным отсчетом интервала измерения 1 с.
Динамическая индикация, как говорилось выше, происходит в прерываниях от TMR2 с интервалом 2 мс так, что обновление индикатора происходит с частотой примерно 63Гц. В данном случае обеспечивается ровное без мерцаний свечение индикатора во всех режимах прибора. Отсчет интервала 1 сек. так же происходит в этих прерываниях.
Настройка
При использовании указанных на схеме элементов и достаточно качественного кварцевого резонатора вышеуказанные характеристики прибора обеспечиваются без всякой регулировки. Если имеется высокоточный образцовый частотомер, имеет смысл, подав на вход прибора сигнал с частотой порядка 5-30 МГц и контролируя его значение по образцовому частотомеру, регулируя С2 добиться возможно близких показаний приборов. Так же желательно, при необходимости, подбором сопротивления R2 установить напряжение на коллекторе VT1 (нумерация элементов согласно исходной схеме) в пределах 2-3 Вольта.
Работа с устройством
Описание работы прибора в разных режимах
Обычный частотомер
Работа в этом режиме стандартная – подсчет импульсов таймером TMR0, следует только отметить, что отсчет времени счета (1 секунда) происходит в прерываниях от таймера TMR2 с интервалом в 2 мс, в которых так же происходит динамическая индикация.
Во время измерения признак режима – знак “F.” в старшем разряде (не индицируется при частоте более 9999999 Гц).
Частотомер специальный
В этом режиме при измерении частоты до 1000 Гц собственно измеряется период сигнала, а частота вычисляется по формуле F=1000000000/T, где T - в микросекундах, а F – в тысячных долях герца (светится запятая в 4-м разряде справа). Если частота окажется более 1000 Гц, измерение производится аналогично обычному частотомеру (обратное переключение происходит при частоте менее 900 Гц). Данный режим позволяет для низкочастотных сигналов уменьшить дискретность измерения с 1Гц до 0.001Гц, а значит и точность (на индикаторе не менее 3-х значащих разрядов).
Признак режима – вывод “F. - ” в старших 2-х разрядах (последовательно “затираются” индицируемым значением при измерении больших частот).
Измерение периода
Режим аналогичен специальному частотомеру. В данном режиме происходит непосредственное измерение периода (таймером TMR1, тактируемым частотой 1МГц от внутреннего генератора) для сигналов с периодом более 1000 мкс, а для меньшего периода – через измерение частоты по формуле T=1000000000/F, где F - в герцах, а T – в наносекундах. На индикаторе при этом светится запятая в 3-м разряде, что позволяет считывать показания в микросекундах в обоих случаях с тремя значащими разрядами минимум.
Признак режима – вывод “P.” в старшем разряде (при вычислении периода через частоту – добавляется верхняя черта в следующем разряде).
Измерение длительности импульсов (положительных и отрицательных)
Признак режима – вывод “t” в старшем разряде плюс верхний или нижний сегмент следующего разряда, в зависимости от режима регистрации положительных или отрицательных импульсов.
Следует отметить, что из-за несимметричности входной части прибора, а так же наличия на входе CCP микроконтроллера триггера Шмитта, при измерении длительности сигналов с пологими фронтами может появиться значительная погрешность. Этот эффект уменьшается при увеличении амплитуды входного сигнала. Попытка измерения сигналов с амплитудой значительно ниже 0.1 Вольт в любом режиме, может привести к индикации показаний, не соответствующих действительности (впрочем, это относится и к другим подобным приборам). При заведомо стабильном входном сигнале, косвенным признаком недостаточной амплитуды может быть большая нестабильность показаний прибора.
В случае, если временные параметры входного сигнала не позволяют данному прибору их измерить (при измерении периода и длительности), на индикаторе отображаются следующие показания: “F.too_hi” – слишком высокая частота, “P.too_big” – слишком большой период, “NO_SIG.” – нет сигнала.
Во вложенном файле, кроме вышеуказанной схемы, имеются: исходный код в Ассемблере, прошивка – HEX, Proteus – модель, плата формирователя в формате LAY.
Когда-то я собрал очень популярный на то время частотомер Денисова, вернее, его клон на PIC16F628A и индикаторе АЛС318. И вот по прошествии многих лет он попался мне на глаза. Измеряет он частоту вроде исправно, но уж больно примитивен, да к тому же показания постоянно мерцают. На досуге было решено на основе той схемы (изменено подключение двух выводов микроконтроллера, входные цепи и цепи питания) создать современный, качественный, но очень недорогой прибор, лишенный недостатков своего прототипа, а также дополненный множеством функций и режимов.
Основные характеристики прибора:
Рассмотрим работу с устройством более подробно (схему и конструкцию рассмотрим ниже).
При включении прибора, после вывода приветствия, на индикаторе высвечиваются показания согласно ранее выбранному пределу (далее исходное состояние). При нажатии кнопки S1, на индикаторе появляется название текущего режима (в большинстве случаев - сразу, но редко, при измерении низкочастотных сигналов, может потребоваться удерживать кнопку до 2 с). При последующих отпускании и нажатии кнопки, названия индицируемых режимов меняются по кругу в порядке: частотомер (на индикаторе Freq_St) – спец.частотомер (Freq_SP) – измерение периода ( Period ) – измерение длительности положительного импульса (t __| - |__) - измерение длительности отрицательного импульса (t -- |_| -- ) – частотомер … . Нажатие кнопки S2 во время индикации на дисплее какого-либо режима приводит к переходу прибора в исходное состояние с соответствующей сменой режима. В случае же отсутствия нажатия любой кнопки в течении времени ожидания (3-10 сек - оперативно регулируется), прибор переходит в исходное состояние с прежним (до нажатия S1) режимом.
Нажатие кнопки S2 в исходном состоянии (тоже, как отмечалось выше, длительностью до 2 секунд в некоторых режимах) приводит к появлению на дисплее надписи “ LOAD “. Отпускание кнопки сразу после появления надписи приводит к выводу на дисплей ранее сохраненного измеренного значения в течении 8 секунд (моргает для отличия от текущего измеряемого значения). Если же при появлении надписи “LOAD”, удерживая кнопку S2 нажатой, нажать кнопку S1, то происходит запись в энергонезависимую память текущего измеряемого значения, что подтверждается появлением на индикаторе моргающей надписи “ SAVE “.
Переход в спящий режим происходит также при отсутствии воздействия на кнопки в исходном состоянии в течении 8 – 64 минут (меняется оперативно).
Описание работы прибора в разных режимах
Обычный частотомер
Работа в этом режиме стандартная – подсчет импульсов таймером TMR0, следует только отметить, что отсчет времени счета (1 секунда) происходит в прерываниях от таймера TMR2 с интервалом в 2 мс, в которых так же происходит динамическая индикация.
Во время измерения признак режима – знак “F.” в старшем разряде (не индицируется при частоте более 9999999 Гц).
Частотомер специальный
В этом режиме при измерении частоты до 1000 Гц собственно измеряется период сигнала, а частота вычисляется по формуле F=1000000000/T, где T - в микросекундах, а F – в тысячных долях герца (светится запятая в 4-м разряде справа). Если частота окажется более 1000 Гц, измерение производится аналогично обычному частотомеру (обратное переключение происходит при частоте менее 900 Гц). Данный режим позволяет для низкочастотных сигналов уменьшить дискретность измерения с 1Гц до 0.001Гц, а значит и точность (на индикаторе не менее 3-х значащих разрядов).
Признак режима – вывод “F. - ” в старших 2-х разрядах (последовательно “затираются” индицируемым значением при измерении больших частот).
Измерение периода
Режим аналогичен специальному частотомеру. В данном режиме происходит непосредственное измерение периода (таймером TMR1, тактируемым частотой 1МГц от внутреннего генератора) для сигналов с периодом более 1000 мкс, а для меньшего периода – через измерение частоты по формуле T=1000000000/F, где F - в герцах, а T – в наносекундах. На индикаторе при этом светится запятая в 3-м разряде, что позволяет считывать показания в микросекундах в обоих случаях с тремя значащими разрядами минимум.
Признак режима – вывод “P.” в старшем разряде (при вычислении периода через частоту – добавляется верхняя черта в следующем разряде).
Измерение длительности импульсов (положительных и отрицательных)
Эти два режима аналогичны и отличаются только полярностью измеряемых импульсов. Измерение производится путем прямого подсчета длительности таймером TMR1, тактируемым от внутреннего генератора (период 0.25 мкс) в течении входного импульса. При этом, обеспечивается достоверность измерения длительностей от 3 мкс, для более коротких импульсов длительность измеряется косвенными методами и достоверность результата снижается. Данное обстоятельство (косвенное измерение длительности) индицируется путем моргания буквы “t” на индикаторе.
Для сигнала, длительностью менее 32768 мкс, результат отображается с точностью 0.25 мкс, в противном случае - точность (дискретность) равна 1 мкс.
Признак режима – вывод “t” в старшем разряде плюс верхний или нижний сегмент следующего разряда, в зависимости от режима регистрации положительных или отрицательных импульсов.
Следует отметить, что из-за несимметричности входной части прибора, а так же наличия на входе CCP микроконтроллера триггера Шмитта, при измерении длительности сигналов с пологими фронтами может появиться значительная погрешность. Этот эффект уменьшается при увеличении амплитуды входного сигнала. Попытка измерения сигналов с амплитудой значительно ниже 0.1 Вольт в любом режиме, может привести к индикации показаний, не соответствующих действительности (впрочем, это относится и к другим подобным приборам). При заведомо стабильном входном сигнале, косвенным признаком недостаточной амплитуды может быть большая нестабильность показаний прибора.
В случае, если временные параметры входного сигнала не позволяют данному прибору их измерить (при измерении периода и длительности), на индикаторе отображаются следующие показания: “F.too_hi” – слишком высокая частота, “P.too_big” – слишком большой период, “NO_SIG.” – нет сигнала.
Принципиальная схема и работа устройства
Микроконтроллер PIC16F628A (DD2) выводами порта В (кроме RB2) и выводом RA3 через ограничительные резисторы (R5-R12) управляет соответственно сегментами и запятой индикатора, в качестве которого используются два 4-х разрядных LED индикатора FYQ3641A с общим катодом (выводы сегментов и децимальной точки индикаторов соединены попарно). Управление разрядами происходит с выходов дешифратора DD1 (74HC138), на входы которого управляющий сигнал подается с выводов RA0-RA2 DD2. Выводами RA0 и RA1 так же производится контроль состояния кнопок управления S1 и S2 при помощи резисторов R1-R4. Тактирование микроконтроллера происходит от кварцевого генератора частотой 16 МГц, который включает внешние элементы Z1, C1-C3. Вывод MCLR включен в качестве вывода сброса и на него подан потенциал +5В. Динамическая индикация, как говорилось выше, происходит в прерываниях от TMR2 с интервалом 2 мс так, что обновление индикатора происходит с частотой примерно 63Гц. В данном случае обеспечивается ровное без мерцаний свечение индикатора во всех режимах прибора.
На включенных в этом режиме как входы выводах 17 и 18 (RA0,RA1) МК, а значит и входах 1, 2 DD1, благодаря резисторам R1, R2 тоже присутствует высокий потенциал. При этом, появляется уровень логического 0 на выходе 7 DD1 и через резистор R13 подается на включенный в данном случае в качестве входа вывод RB7 DD2. При нажатии любой кнопки, меняется код на входах дешифратора и на его выводе 7 появляется уровень логического 1, что так же передается через R13 на вывод МК RB7. Так как в этом режиме включено прерывание по изменению уровня на этом входе, микроконтроллер по нажатию любой кнопки выходит из спящего режима (SLEEP).
Схема питается от интегрального стабилизатора DA1 типа NCP551SN50 с выходным напряжением 5 Вольт. Данная микросхема характеризуется малым падением напряжения и экстремально малым собственным потребляемым током (типовое значение 4 мкА). Применение вместо использованного стабилизатора обычного 78L05 сведет смысл спящего режима на нет из-за высокого тока потребления последнего – около 3 мА.
Компоновка
Все детали прибора размещены на печатной плате из стеклотекстолита с односторонней металлизацией размерами 63х64 мм. На прилагаемых чертежах изображены соответственно конфигурация печатных дорожек, размещение деталей со стороны металлизации и размещение деталей со стороны без металлизации.
Детали
Для уменьшения габаритов конденсаторы и резисторы применены преимущественно SMD, типоразмера 0805 (C6 можно применить танталовый). На печатные проводники, в месте прохождения под SMD-элементами, для исключения замыканий предварительно приклеены полоски, вырезанные из бумажного скотча. Выводные резисторы применены в позициях, где это выгодно с точки зрения удобства разводки платы. На плату сначала необходимо впаять SMD компоненты, потом проволочные перемычки и, в последнюю очередь, выводные компоненты.
Стабилизатор DA1, в крайнем случае, можно заменить менее дефицитным LP2950CZ-5.0. Для него на плате предусмотрено место (на фотографиях изображен именно этот вариант), однако, в этом случае ток в спящем режиме увеличится до 70-100 мкА.
Внешний вид собранной платы с обеих сторон приведен на фотографиях.
Настройка
При использовании указанных на схеме элементов и достаточно качественного кварцевого резонатора вышеуказанные характеристики прибора обеспечиваются без всякой регулировки. Если имеется высокоточный образцовый частотомер, имеет смысл, подав на вход прибора сигнал с частотой порядка 5-30 МГц и контролируя его значение по образцовому частотомеру, регулируя С3 добиться возможно близких показаний приборов. Так же желательно, при необходимости, подбором сопротивления R21 установить напряжение на коллекторе VT3 в пределах 2-3 Вольта.
Программное обеспечение
Вложенные файлы
Во вложении, кроме вышеуказанных кода и прошивки, имеются Proteus-модель и плата в формате LAY.
Обратите внимание, что в модели резистор R2 исключен из моделирования, так как он вносит искажения в индикацию (особенность Proteus). Однако, он необходим для выхода из спящего режима и для наблюдения этого действия следует в свойствах R2 снять "птичку" с пункта "исключить из моделирования".
Читайте также:
- Р10а9 ошибка фольксваген тигуан
- Схема подшипников ваз 2110
- Ошибка airbag saab 9 3
- Sos call system failure bmw e60 как удалить ошибку
- Р0841 ошибка мазда 6