Где находится датчик кислородный датчик на субару
Современные автомобили для соответствия последним экологическим нормам используют несколько датчиков кислорода, а также все большее число датчики типа AFR (соотношение воздуха / топливо). На некоторые модели, также устанавливают датчик оксида азота (NOx). Автомобили, в зависимости от объема двигателя, могут иметь 8 или больше датчиков кислорода.
Датчики кислорода располагаются внутри выхлопной системы, причем по крайней мере один датчик кислорода (как правило AFR) расположен перед каталитическим преобразователем (катализатором) в выпускном коллекторе. В зависимости от конструкции выхлопной системы после катализатора устанавливаются один или два лямбда-зонда для контроля эффективности его работы.
Где находится датчик кислорода. Что такое B1 S1?
Идентификация типа и месторасположения неисправного датчика кислорода обеспечат его замену на правильный новый кислородный датчик. Различные типы датчика не взаимозаменяемы, а неправильный датчик способен даже повредить блок управления двигателем (ECU).
Например, в ходе диагностики была обнаружена неисправность датчика кислорода B1 S1. Так что такое B1 и S1? Эта аббревиатура говорит о том, что неисправен датчик 1 банка 1.
Пойдем дальше - что такое Банк 1?
Под обозначением bank 1 подразумевается блок цилиндров в котором находится первый цилиндр. Что такое датчик 1? Датчик 1 - обозначается датчик кислорода расположенный до или выше катализатора (pre-cat).
Итак, если неисправен датчик B1 S2, это значит, что необходимо заменить второй датчик кислорода, находящийся после катализатора (post-cat).
В зависимости от марки, модели и типа двигателя автомобиля датчики кислорода могут находится в различных местах. На иллюстрациях ниже показаны некоторые из наиболее распространенных мест их расположения.
Лямбда-зонд (он же Датчик кислорода, Кислородный датчик) — определяет содержание кислорода в выхлопных газах и передаёт эту информацию блоку управления двигателем (компьютеру), который, в свою очередь, регулирует состав топливо/воздушной смеси.
Содержание
Название датчика происходит от греческой буквы L (лямбда). Лямбдой называют отношение реального количества воздуха к необходимому количеству воздуха (См. AFR). При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится 1 часть топлива, L равна 1. Если лямбда больше единицы – смесь бедная (много кислорода, мало топлива), если меньше единицы – смесь богатая (мало кислорода, много топлива). Слишком большое количество кислорода в выхлопных газах говорит о бедности смеси (малом содержании топлива), что приводит к снижению мощности двигателя и пропускам в зажигании (двигатель “троит”). Слишком малое количество кислорода, свидетельствует о переобогащенной смеси (большом количестве топлива), что приводит к повышенному расходу топлива и повышению токсичности выхлопных газов.
Воздействие высокой температуры, давления, вибрации и различных химических соединений на кислородный датчик приводят к постепенному выходу его из строя. После его поломки наблюдается повышенный расход топлива, снижение мощности двигателя, повышение токсичности выхлопных газов. Именно поэтому проверка работоспособности и при необходимости замена кислородного датчика является важным элементом технического обслуживании автомобиля.
Кислородный датчик определяет количество кислорода в выхлопных газах и располагается в выхлопной трубе. Практически все автомобили с бензиновым двигателем, выпущенные после 1986 года имеют как минимум один кислородный датчик. Большинство современных автомобилей имеют как минимум два кислородных датчика, один из которых расположен, как правило, после катализатора. Сигнал с посткаталитического (нижнего) кислородного датчика позволяет оценивать качество работы катализатора. Точное расположение кислородного датчика на конкретном автомобиле указывается в техническом руководстве к данному автомобилю.
Избыток воздуха в смеси измеряется весьма оригинальным способом – путем определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда-зонд и стоит в выпускном коллекторе перед катализатором. Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива.
1 – впускной коллектор; 2 – двигатель; 3 – блок управления двигателем; 4 – топливная форсунка; 5 – основной лямбда-зонд; 6 – дополнительный лямбда-зонд; 7 – каталитический нейтрализатор.
Замена неисправного кислородного датчика на новый датчик позволяет экономить топливо, улучшить динамику автомобиля, уменьшить токсичность выхлопных газов, является профилактикой преждевременного выхода из строя дорогостоящего катализатора.
Существуют рекомендованные интервалы замены кислородных датчиков, однако межсменные интервалы являются не единственными критериями замены датчиков кислорода. Если имеются признаки повышенного расхода топлива, ухудшение динамики или экологических характеристик работы двигателя необходимо проверит работоспособность кислородного датчика. Следует учитывать, что кислородный датчик изнашивается постепенно, зачастую незаметно для хозяина автомобиля. Кислородные датчики с одним или двумя проводами при эксплуатации автомобиля в Европе или США требуют замены при пробеге в 50000-80000 км. 3- и 4-проводные датчики требуют замены после 100000 км пробега.
Существует несколько классификаций автомобильных кислородных датчиков:
- По количеству проводов: 1-,2-,3-,4-,5-,6-контактные датчики.
- По дизайну сенсорного элемента: “пальчиковые” и пластинчатые
- По способу крепления в выхлопную трубу: резьбовые и фланцевые.
- По ширине измерений лямбды: узкополосные (детектируют лямбду при величине >1) и широкополосные (детектируют лямбду от 0,7 до 1.6).
Принцип работы кислородного датчика – электрохимический. Большинство кислородных датчиков изготавливаются на основе оксида циркония ZnO2 (окислитель) и платины (катализатор химической реакции окислении/восстановления).
При работе двигателя выделяются раскалённые выхлопные газы, имеющие сложный химический состав. Основными составляющими их являются азот N2, углекислый газ CO2, кислород O2 и вода H2O. Однако в выхлопных газах содержаться и недоокисленные продукты горения топлива — CO и CH. Именно с недоокисленными продуктами вступает в реакцию окисления/восстановления оксид циркония кислородного датчика. Непременными условиями протекания этих химических реакций является высокая температура (360 градусов Цельсия) и присутствие катализатора (платина).
При восстановлении двуокиси циркония ZnO2 в окись циркония ZnO возникает электрический ток, который детектируется на контактах кислородного датчика. Так как окись циркония ZnO, является недоокисленным продуктом, она постоянно стремится окислится в двуокись циркония ZnO2, поэтому при работе двигателя на поверхности кислородного датчика происходит постоянное чередования процессов окисления и восстановления, что детектируется как волнообразное изменение напряжения на контактах кислородного датчика. Напряжение генерируемое кислородным датчиком колеблется на уровне от 100 mV (бедная смесь) до 900 mV (богатая смесь). При оптимальном соотношении топливо/воздушной смеси датчик генерирует напряжение порядка 465 mV.
Кроме циркониевых, существуют кислородные датчики на основе двуокиси титана (TiO2). При изменении содержания кислорода (О2) в отработавших газах они изменяют свое объемное сопротивление. Генерировать ЭДС титановые датчики не могут; они конструктивно сложны и дороже циркониевых, поэтому, несмотря на применение в некоторых автомобилях (Nissan, BMW, Jaguar), широкого распространения не получили.
Для повышения чувствительности лямбда-зондов при пониженных температурах и после запуска холодного двигателя используют принудительный подогрев. Нагревательный элемент (НЭ) расположен внутри керамического тела датчика и подключается к электросети автомобиля
Конструкция датчика кислорода с подогревателем. 1 – керамическое основание; 2, 8 – контакты НЭ; 3 – нагревательный элемент (НЭ); 4 – твердый электролит ZrO2 с напыленными платиновыми электродами; 5 – защитный кожух с прорезями; 6 – металлический корпус с резьбой крепления; 7 – уплотнительное кольцо; 9 – выводы датчика.
Количество проводов, которые имеет кислородный датчик, может колебаться от одного до пяти и даже шести. Этот внешний признак отражает особенности внутреннего устройства кислородного датчика.
- Одноконтактные датчики – имеют один сигнальный провод, по которому передаются генерируемые датчиком электрические импульсы.
- Двухконтактные датчики – имеют один сигнальный провод и один провод “на массу” (дублирует заземление через корпус датчика). Заземляющий провод позволяет более точно оценивать показания сигнального провода блоком управления двигателем.
- Трёхконтактные датчики – имеют один сигнальный провод, один провод “на массу” и один провод на нагревательный элемент. Эти датчики характеризуются следующими достоинствами:
1. Короткое время достижения датчиком рабочей температуры (более 350 градусов) вследствие чего снижается количество вредных выбросов при работе холодного двигателя;
2. увеличивается срок службы датчика, так как у нагреваемых датчиков изменение температуры происходит, более плавно, чем у датчиков без нагревательного элемента;
3. датчики, снабжённые нагревательным элементом, имеют менее строгие требования к месторасположению в выхлопной системе, что упрощает их техобслуживание.
Мощность нагревательного элемента в кислородном датчике составляет либо 12Вт, либо 18Вт. Следует учитывать, что установка датчика с неправильно подобранной мощностью нагревательного элемента может привести к перегреву датчика и быстрому выходу его из строя.
- Четырёхконтактные датчики – обязательно имеют один сигнальный провод, один питающий на нагревательный элемент и один заземляющий провод. Функция последнего провода может быть различной и зависит от особенностей устройства системы управления конкретным двигателем. Четвёртый провод может быть либо ещё одним заземляющим (в случаях, когда заземление через корпус датчика не предусмотрено), либо питающим проводом для второго нагревательного элемента. Следует учитывать, что при ошибочной установки датчика с заземлением на корпус вместо датчика без заземления на корпус или наоборот может привести к тому, что блок управления двигателем не распознает сигналы, поступающие с кислородного датчика.
Контактные выводы наиболее распространенных циркониевых лямбда-зондов. а – без подогревателя; б, с – с подогревателем. (цвет вывода может отличаться от указанного)
Как проверить работоспособность кислородного датчика на Subaru
Материал из SubaruWiki
Лямбда-зонд (он же Датчик кислорода, Кислородный датчик) — определяет содержание кислорода в выхлопных газах и передаёт эту информацию блоку управления двигателем (компьютеру), который, в свою очередь, регулирует состав топливо/воздушной смеси.
Содержание
Проблемы с лямбда-зондом могут проявлятся, как правило, в ухудшении динамики, повышенном расходе топлива, горящей лампочке CHECK-engine.
Первое в чем вы должны отдать себе отчет
Ни чистка разными средствами для кухни ни чем иным вероятнее всего не поможет. Смирились ? Поехали дальше.
Прежде всего нужно определиться в следующем:
1. Нужно ли вам действительно менять датчик (см. Проверка ниже)
2. Какой датчик вы собрались менять — до или после катализатора, до или после турбины он установлен (в случае Turbo двигателя) (Читай также Определение типа кислородного датчика)
4. Номер датчика, который у вас стоит в данный момент (случается, что при продаже авто, прежний хозяин поставил/ему поставили что под руку попалось)
Очень часто сам датчик исправен, а неполадки в проводке, в этом случае замена датчика ничего не даст, зря потратите деньги и угробите новый датчик.
Неисправности в проводке цепи обогрева датчика угробят рабочий датчик очень быстро. Как сам чувствительный элемент, так и обогрев может накрыться из-за периодического пропадания напряжения на обогреве.
Проблема в зарастании чувствительно элемента сажей выхлопа. При включенном подогревателе сажу выжигает. Рабочая температура датчика 700-800˚C. На ХХ не больше 300˚C.
Для выявления вины датчика в неадекватном поведении автомобиля, датчик отключите, ECU сбросьте (См. Обнуление ECU). Машина должна нормально ехать.
Если не едет, значит что-то помимо датчика неисправно. И посмотрите ошибки, которые вылезут при отключенном датчике (См. Самодиагностика Subaru). Должны быть P0032 (P0038) — обрыв цепи подогрева датчика. Если другие, то ищите замыкания в проводке.
Если собрались отложить на потом разборы с ошибками P0031, P0032, P0037, P0038, датчик следует выкрутить и вкрутить вместо него любой дохлый либо болт M18x1.5. А иначе, если датчик еще жив, то без подогрева он помрет.
Без фанатизма можно несколько километров до сервиса и с датчиком проехать, но датчик от проводки всетаки лучше отключить. Мотору ни чего не будет, если остальное все исправно.
Неисправностей у самого датчика может быть несколько:
- Обрыв подогрева датчика
- Медленная либо неправильная реакция чувствительного элемента
- Первым делом нужно узнать какие ошибки выдает блок управления двигателем (ECU)
- Едем на сервис или подключаем свой комп через адаптер и считываем ошибки
- Так же следует иметь ввиду что ошибки ECU выдает 2-х типов: текущие и из истории, софт как правило их выдает раздельно
Наиболее часто встречаемые:
Если датчиков больше чем 2 (катализаторов больше одного), рассматривайте по аналогии.
- Определяем тип датчика
- Проверяем цепь подогрева
- Проверяем чувствительный элемент датчика
Вы/мастер в сервисе грешите на датчик. Нужно прежде чем этот датчик менять, его проверить. Т.к. датчиков, применяемых на Subaru несколько, нужно определить какой должен стоять/стоит у вас (Читай также Определение типа кислородного датчика).
- Определяем тип датчика
- Проверяем цепь подогрева
- Проверяем чувствительный элемент датчика
- Проверка подогревателя датчика:
- Выключить зажигание
- Рассоединить разъем
- Сопротивление холодного подогревателя должно быть 3-10 Om
- Проверка цепи питания подогревателя:
- Соединить разъем
- Включить зажигание
- Проверить наличие напряжения между проводами подогрева, должно быть около 10 В
- После включения зажигания должно постепенно (10-20 секунд) уменьшаться
- Чем активнее езда, тем меньше напряжение на подогревателе должно оказаться
- Выключить зажигание
- Рассоединить разъем
- Лампочку 5 Вт/12 вольт, включаем взамен нагревателя лямбды
- При включенном зажигании и запущенном двигателе, сразу либо через 10-15 секунд лампа должна моргать с ослабеванием яркости либо зажечься и яркость должна начать ослабевать.
Сопротивления которые намеряли форумчане (информация может быть не точной) Rh:
Subaru 22641-AA140 — 1.5-2 Ом (?)
Subaru 22690-AA420 (22690-AA540, 22690-AA640) — 3 Ом
Bosch 0 258 005 133 — 2-4 Ом
Bosch 0 258 005 247 — 3 Ом (по другим данным 9 Ом)
Bosch 0 258 006 537 — 9-10 Ом
Bosch LSU4.2 — 3.2 Ом при 297 К
TOYOTA 89467-33020 (DENSO 234-9010 [B1]) — 1 Ом
TOYOTA 89467-33080 (DENSO 234-9044 [D1]) — 3 Ом
TOYOTA 89467-42020 (DENSO 234-9028 [B1]) — 1 Ом
- Узкополосный
- Вольтметр относительно корпуса на сигнальный провод (разъем НЕ расцеплен)
- После прогрева двигателя, напряжение должно лениво ползать на ХХ вокруг 0.5 В
- При езде, педаль нажимаем в пол — лезть выше 0.7-0.8 В
- При бросании педали с оборотов 3000-4000 — падать ниже 0.2-0.3 В и начинает елозить после сброса оборотов ниже 1500 вокруг 0.5 В
Если так, то датчик исправен
- Denso широкополосный
- Вольтметр относительно корпуса
- Белый 2.5-3.0 В
- Синий на 0.3 В больше, чем на белом
- Далее вставлять в разрыв синего провода лямбды миллиамперметр, предел 2 мА
- Запустить двигатель
- Через 15-20 секунд можно резко газовать/бросать, ток должен летать в пределах +-2 мА
- Главное — реакция на отпускание газа не позднее 0.3-0.5 сек. Быстрее — лучше.
- На новых плоскомордых лямбдах Denso — ток через чувствительный элемент раз в десять меньше.
- При полностью открытом дросселе до 2 ма, при отпускании дросселя кратковременно в ту же полярность, затем в обратную, пока обороты не свалятся до 1500-2000 об/мин
- Если упорно ток косит в полярность, обратную той, что при полностью открытом дросселе — однозначно разбираться с давлением топлива/засором форсунок
- NTK/Bosch широкополосный
NTK Bosch Сигнал белый красный Ip серый черный Vs черный желтый Common синий серый Heater+ желтый белый Heater- - Резать белый провод (NTK)
- В разрыв провода миллиамперметр на 20 ма.
- Если датчик исправен то, через 20-40 секунд (возможен вариант через 5 минут) после запуска ток должен дергаться вслед за педалью газа (отклонения до 0.5ма), с задержкой не более 0.3-0.5 сек.
- На ХХ и умеренной езде 0.1-0.2 ма в плюс-минус болтаться должно.
- При бросании педали газа резко более 2 ма с задержкой не более 0.5 секунды
- При топании ненадолго в ток ту же сторону, но может и в обратную перед этим ненадолго сыграть.
- При педали в пол должно держаться 0.5 — 2 ма в ту же сторону.
- Если залег или ленивый, надо бы разбираться. Но мог элементарно и MAP или MAF уплыть, свечи подпропускают.
Провод можно не резать, а просто вытащить из разъема датчика и ответной части нужные провода.
Лямбда зонд: что такое и где находится
Лямбда зонд (ƛ зонд) – датчик, который замеряет объём кислорода в выхлопных газах и сравнивает со стандартом. Иными словами, это кислородный датчик. Если показатели его не устраивают, он подаёт сигнал в блок управления.
Место нахождения зависит от числа датчиков в машине. Так, в ТС, выпущенных до 2000 года, чаще всего стоит один. В более поздних моделях — от 2 датчиков. Первый всегда находится под капотом, второй (если он есть) – под днищем машины.
Как работает датчик
Выхлопные газы проходят сквозь датчик, а внутрь него поступает чистый воздух из атмосферы. Из-за разной окислительной способности чистого воздуха и отработавших газов появляется разность потенциалов. Эти показания и отправляются в ЭБУ.
Внутри датчика спрятаны токопроводящий элемент, электроды, сигнальный контакт и заземление. Вся эта система начинает работать только после прогрева до 300–400 o C. Только при такой температуре твёрдый электролит способен проводить электричество.
Виды кислородных датчиков
Современные ТС оснащаются тремя видами датчиков.
Циркониевый. Одна из самых популярных моделей, основной элемент в составе — диоксид циркония. Наконечник керамический, начинает работать только при нагреве до 350 o C. Быстро разогревается за счёт вмонтированной нагревательной детали с керамическим изолятором.
Такие датчики делятся на 1, 2, 3 и 4 проводные.
Титановый. Наконечник устройства изготовлен из диоксида титана. Внешне датчик мало отличается от циркониевого, но работать начинает только при температуре от 700 o C. Из-за сложной конструкции, высокой стоимости и излишней чувствительности к температурным перепадам такие датчики редко используются.
Широкополосный. В отличие от предыдущих моделей, у этого датчика имеются две ячейки:
- Измерительная. Благодаря электронной схеме модуляции, в составе газов внутри ячейки сохраняется показатель ƛ =1.
- Насосная. Если смесь богатая, дополняет состав ионами кислорода из атмосферы, если обеднённая — выводит лишние молекулы кислорода из диффузионного отверстия во внешнюю среду.
Признаки и причины неисправности ƛ-зонда
Лямбда-зонд в процессе эксплуатации авто может выйти из строя. Чаще всего датчик ломается из-за некачественного топлива, попадания топлива или масла внутрь, или неполадок в системе подачи горючего.
О неисправности лямбда-зонда могут говорить следующие признаки:
- обороты растут до максимума, после чего резко выключается мотор;
- обороты на холостом ходу становятся нестабильными;
- мощность существенно падает при повышении оборотов;
- электронный блок выдаёт ошибку из-за поздней подачи сигнала с ƛ-датчика;
- машина едет рывками.
Чтобы вернуть датчику работоспособность, его необходимо вынуть и правильно очистить. Для этого снимают керамическую головку и убирают загрязнения тряпкой с химическим средством. Если и это не помогает, датчик придётся менять.
Как проверить лямбда-зонд на работоспособность
Существует несколько способов проверить лямбда-зонд на исправность. Самый простой и поверхностный — тщательный осмотр устройства, самый сложный — диагностика при помощи специального оборудования.
Внешний осмотр датчика
Итак, внешнее изучение кислородного датчика будет состоять из нескольких шагов:
- Проверить внешнюю часть, которая находится вне катализатора. Не должно быть оплавленных участков, обрывов или замкнутых контактов.
- Выкрутить датчик из катализатора и изучить нижнюю часть, обычно спрятанную в катализаторе. Пятна сажи на ней говорят о том, что топливо слишком концентрировано, двигатель и клапаны близки к износу или в выхлопной системе произошла утечка. Отложения серого цвета сигнализируют о высоком содержании свинца в топливе.
Проверка лямбда-зонда мультиметром (тестером)
Потребуется вольтметр, омметр или мультиметр, в котором объединяются оба эти устройства. Если используется последний, его нужно перевести в режим замера сопротивления. Чтобы испытать нагреватель датчика, необходимо:
- Вывести из колодки датчика контакты 3 и 4 разъёма (стандартно это белый и коричневый провода).
- Подсоединить контакты к выходам тестера и измерить сопротивление.
Показатели могут быть разными, обычно они варьируются в пределах 2–10 Ом. Цифра более 5 Ом говорит об отличной работоспособности датчика. Если сопротивление вообще не выводится на дисплей, это говорит о том, что в нагревателе лямбда-зонда порвался провод и требуется немедленная замена.
Прогрев зонда
Кроме того, мультиметром можно проверить восприимчивость наконечника кислородного датчика. Для этого нужно завести машину и прогреть мотор до 70–80 o C. Последующий алгоритм будет таким:
- Довести мотор до 3000 оборотов в минуту и зафиксировать этот показатель на 2–3 минуты, пока датчик не прогреется.
- Минусовой щуп мультиметра подсоединить к массе машины, другой состыковать с выходом датчика.
- Изучить данные на тестере: они должны варьироваться от 0,2 до 1 В и меняться 10 раз в секунду.
- Надавить педаль газа в пол и резко отпустить её. Исправный датчик выдаст значение в 1 В, после чего резко упадёт до ноля. Если цифры на дисплее не меняются при действиях с педалью и показывают 0,4–0,5 В, датчик требует замены.
Проверка осциллографом
Диагностика осциллографом будет более продуктивной, поскольку в этом случае можно зафиксировать промежуток времени, за которое меняется выходное напряжение. Нормальными считаются показатели ниже 120 мСек.
Итак, алгоритм проверки будет таким:
В процессе проверки важно засечь, через какое время датчик переходит в рабочий режим, то есть когда на диаграмме появляется динамика. Также анализируется реакция на работу двигателя на 2000–3000 оборотов в минуту. Если после прогрева сигнал стабильно находится только в нижнем или только в верхнем положении, датчик придётся менять. Если сигнал напоминает плавную извилистую линию, как на картинке ниже, датчик сгорел или вышел из строя.
Проверка бортовой системой
К кислородному датчику будут относиться ошибки:
- P0130: датчик отправляет неверные данные;
- P0131: сигнал слишком слабый;
- P0132: сигнал слишком сильный;
- P0133: КД медленно реагирует;
- P0134: датчик вообще не даёт сигнала;
- P0135: нагреватель первого датчика не функционирует;
- P0136: произошло замыкание второго датчика;
- P0137: КД2 медленно реагирует;
- P0138: КД2 слишком быстро реагирует;
- P0140: разрыв в цепи КД2;
- P0141: нагреватель второго датчика неисправен;
- P1102: слабое сопротивление нагревателя КД;
- P1115: цепь повреждена, считать данные невозможно.
Видео: как проверить работоспособность лямбда-зонда
Проверять исправность лямбда-зонда нужно регулярно, особенно если пробег машины перевалил за 50 000 км. Очень часто признаки выхода датчика из строя схожи с более серьёзными поломками. Вместо того, чтобы выискивать проблему в двигателе или электронике, порой достаточно поверхностно осмотреть лямбда-датчик.
Узнай первым о выходе нового полезного контента
© 2010 - 2021 Все права защищены. Любое копирование материала с нашего сайта строго запрещено без предварительного согласия со стороны администрации.
© 2010 - 2021 Все права защищены. Любое копирование материала с нашего сайта строго запрещено без предварительного согласия со стороны администрации.
Читайте также: