Зачем на высоковольтных проводах стеклянные диски
Обязательным условием для передачи электрической энергии является проводниковый материал, необходимый для протекания тока. Но для исключения возможности попадания потенциала на несущие конструкции и другие элементы устанавливаются электрические изоляторы. В современной электротехнике невозможно представить себе работу каких-либо силовых устройств без изоляторов.
Что из себя представляют электрические изоляторы?
Электрические изоляторы представляют собой диэлектрический элемент электроустановки, конструктивно выполняемый из изоляционного материала и армирующих деталей. Диэлектрик предназначен для электрического отделения, а металлические конструкции позволяют зафиксировать как сам изолятор, так и проводники на нем. В качестве диэлектрического материала используется стекло, полимер или керамика.
Назначение
Электрические изоляторы предназначены для крепления шин, проводов, тралеи и прочих токоведущих элементов к корпусу электроустановки, консолям опор и прочим конструкциям. Помимо этого они изолируют проводники при прохождении через стены, позволяют отделить электроустановки друг от друга и прочие несущие функции.
В зависимости от места установки их подразделяют на внутренней и наружной. Также немаловажное значение играет класс напряжения, на который рассчитан тот или иной изолятор. Из-за чего будет отличаться его конструктивное исполнение и определенные технические характеристики, определяющие возможность их применения в тех или иных электроустановках [ 1 ].
Основные технические характеристики
В соответствии с требованиями нормативных документов, для электрических изоляторов регламентируются такие характеристики:
При таком потоке струй под углом 45°, которые обозначены на рисунке 2 буквой А, обеспечивается максимальное обтекание поверхности Б, и, как следствие, обеспечивается минимальное сопротивление электрическому току – от 9,5 до 10,5 кОм*см. Этот параметр всегда ниже сухоразрядного.
- Напряжение пробоя – представляет собой такую величину, при которой произойдет пробой между двумя полюсами. В зависимости от конструкции, полюса могут быть представлены стержнем и шапкой либо шиной и фланцем.
- Механическая прочность – проверяется нагрузкой на изгиб, разрыв или срез головки. При этом конструкцию жестко закрепляют и прикладывают к ней усилие, плавно повышаемое до такого уровня высочайшего напряжения в материале, которое приводит к разрушению.
- Термическая устойчивость – испытывается посредством попеременного нагревания и резкого охлаждения. Состоит из двух-трех циклов, в зависимости от материала и конструкции. После чего прикладывается электрический потенциал, создающий множественные разряды.
Проверка технических характеристик.
Следует отметить, что испытательные процедуры не являются обязательными для всех изоляторов, выпускаемых на заводе. Электрическим, термическим и механическим воздействиям подвергаются только 0,5% от партии. Обязательной для всех изоляторов является проверка напряжением перекрытия в течении трех минут, при котором на изоляторе возникают искровые разряды.
У подвесных изоляторов обязательно проверяется механическая характеристика. Для этого в течении минуты к нему прикладывается механическая нагрузка, которую регламентируют заводские или государственные нормы.
Такие испытания обеспечивают нормальную работу электрических изоляторов при номинальных токах и номинальных напряжениях в сети. А также, достаточный уровень надежности. Кроме этого, некоторые модели подвергаются периодической проверке в ходе эксплуатации. По результатам периодических осмотров и испытаний они могут проходить очистку, выбраковку и замену.
Типовая конструкция
Для начала разберем пример типовой конструкции на эскизе штыревого изолятора.
Рис. 3. Изолятор в разрезе
Как видите на рисунке 3, в конструкции предусмотрены ребра А и Б. Которые позволяют увеличить электрическую прочность за счет удлинения пути для тока утечки по поверхности. В связи с различными углами уклона ребер обеспечивается возможность защиты от выпадающих осадков. Так ребра А имеют меньший уклон, поэтому они наиболее актуальны для твердых осадков – снега, грязи и т.д. Потому что влага может подлизываться под низ и значительно сокращать величину разрядного напряжения.
В отличии от них, юбки Б позволяют полностью исключить возможность попадания влаги при дождливой погоде. Это обеспечивает постоянный запас сопротивления, которое и гарантирует величину напряжения пробоя. Помимо этого, юбки Б не боятся намерзания гололеда и могут обеспечивать нормальную работу высоковольтных линий в случае сложной метеорологической ситуации.
Для крепления головки стержня предусмотрена резьба В, которая позволяет закрепить конструкцию на консоли или армирующих крюках. В верхней части находится желоб Г для фиксации провода. Дополнительно провод увязывается проволокой для более надежного крепления воздушных ЛЭП.
Рис. 4. Конструкция проходного изолятора
Проходной изолятор имеет немного иную конструкцию, так как его задача не только изолировать токоведущую шину от стены, но и обеспечить нормальное протекание тока внутри самого изолятора. Посмотрите, шина обжимается с обеих сторон алюминиевой крышкой для ее надежного закрепления снаружи. Внутри механическое крепление осуществляется за счет герметика, который помимо этого предотвращает попадание загрязнителей и агрессивных веществ. Также для удобства крепления проводов или шин может устанавливаться дополнительный лепесток на самой крышке, как показано на рисунке 4.
Защитная оболочка из кремнийорганической резины препятствует электрическому пробою по поверхности от шины до фланца. Изоляция от пробоя внутренних элементов выполняется посредством стеклопластиковой трубы, которая помещается внутрь ребристой рубашки. Более детальную информацию о параметрах можно почерпнуть из обозначения модели.
Обозначения изоляторов
В маркировке каждого изделия содержится информация о его типе, материале и прочих характеристиках. Посмотрите пример маркировки для изолятора НСПКр 120 – 3/0,6 – Б.
Классификация
Для обеспечения надежного электроснабжения и соблюдения максимального уровня безопасности в каждом конкретном случае в электроустановках должны применяться изоляторы соответствующего типа и конструкции. В зависимости от критерия выделяют несколько параметров их классификации.
По назначению
В зависимости от назначения выделяют такие виды изоляторов:
- Стационарные – применяют для механического крепления токоведущих стержней или ошиновки в распределительных устройствах. В зависимости от назначения стационарные изоляторы дополнительно подразделяются на опорные и проходные. Так опорные изоляторы выступают в роли основания, на которое крепятся шины в ячейках или несущих конструкциях. Проходные изоляторы позволяют провести токоведущий элемент сквозь стену или перекрытие помещения.
- Аппаратные – имеют схожее назначение со стационарными, но применительно к каким-либо аппаратам. К примеру, аппаратные изоляторы нашли широкое применение в выпрямительных установках, силовых приборах, комплектных подстанциях, установках аппаратов высокого напряжения и прочих агрегатах. Посмотрите на рисунок 5, здесь представлен пример его использования, где он имеет обозначение АИ. Рис. 5. Пример аппаратных изоляторов
- Линейные – используются для наружной установки под высоковольтные линии или ошиновку открытых распредустройств. Отличительной чертой линейных изоляторов является наличие широких ребер или юбок, предназначенных для увеличения пути поверхностного пробоя в случае выпадения осадков.
По материалу исполнения
В зависимости от применяемого диэлектрика выделяют такие виды изоляторов:
- С фарфоровым корпусом – отличаются высокой механической прочностью на сжатие, но боятся динамических воздействий. Для предотвращения появления проводящих каналов, из-за оседания пыли и грязи на поверхности, керамический материал покрывается глазурью.
- Полимерные изоляторы – подразделяются на модели, которые имеют упругую деформацию и монолитные. Отличаются куда большим удельным сопротивлением материала, чем фарфоровые. Но мягкая поверхность в большей мере подвержена загрязнению, чем покрытый глазурью фарфор. Помимо этого из-за воздействия ультрафиолета полимер разрушается и утрачивает свойства, поэтому их применяют для внутренней установки.
- Стеклянные электрические изоляторы – отличаются не такой высокой прочностью, подвержены сколам при динамических воздействиях. Но в отличии от других материалов не подвержены воздействию агрессивных реагентов. Обладают меньшим весом и более просты в обслуживании, чем фарфоровые.
По способу крепления на опоре
В зависимости от способа крепления бывают:
- Штыревого типа (а) – крепятся посредством металлической арматуры и выступают в роли опоры воздушных ЛЭП, откуда и возникло название опорно-штыревые изоляторы.
- Подвесные (б) – выполняются тарельчатыми изоляторами, которые собираются в гирлянды, в зависимости от класса напряжения присоединенных к ним электрических аппаратов.
- Стержневые (в) – имеют форму сплошного стержня, который устанавливается в качестве опорного или подвешивается за элементы арматуры в качестве натяжного. Опорно-стержневые изоляторы устанавливается в распредустройствах для изоляции шин. На их краях посредством чугунных крыльев крепятся токоведущие части.
Видео в дополнение темы
Провода воздушной линии электропередачи крепят к опорам с помощью изоляторов из фарфора или закаленного стекла . Стеклянные изоляторы легче фарфоровых и лучше их противостоят ударным нагрузкам.
К достоинствам стеклянных изоляторов относится и то, что в случае электрического пробоя или разрушающего механического или термического воздействия закаленное стекло изолятора не растрескивается, а рассыпается. Это облегчает нахождение не только места повреждения на линии, но и самого поврежденного изолятора в гирлянде и тем самым позволяет отказаться от трудоемких профилактических замеров на линиях.
Конструктивно изоляторы ВЛ подразделяются на штыревые и подвесные .
Штыревые изоляторы применяются как на линиях напряжением до 1 кВ, так и на линиях напряжением 6 - 35 кВ. Низковольтные штыревые изоляторы имеют форму (рис. 1 , а).
У высоковольтных штыревых изоляторов на 6 и 10 кВ (рис. 1 , б, в, г, д) развиты конструкции «юбок». Штыревые изоляторы на линиях напряжением 35 кВ применяются редко и только для проводов малых сечений. Обычно их изготовляют из нескольких склеенных элементов (рис. 1 , д).
На опорах штыревые изоляторы крепят при помощи крючков и штырей. В том и другом случаях на стрежни крючков или штырей, снабженных насечками, накручивают слой палки (пеньки), смоченной суриком, растертым в олифе, после чего на паклю по резьбе, имеющийся в фарфоре, навертывают изолятор.
Рис. 1 . Штыревые изоляторы ВЛ : а – ШФН и НС, б – ШФ-10В, в – ШФ10-Г и ШФ20-В, г – ШС10-А и ШС10-В, д – ШФ35-Б
В обозначениях типов изоляторов буквы и цифры означают: Ш – штыревой, Ф – фарфоровый, С – стеклянный, Н – низкого напряжения, цифра – номинальное напряжение, кВ, или минимальная электромеханическая нагрузка в кН, буквы А, Б, В, Г – вариант конструкции изолятора.
Для воздушных линий напряжением 35 кВ с проводами средних и больших сечений, а также для линий более высокого напряжения применяют только подвесные изоляторы (рис. 2 ).
Подвесные изоляторы состоят из фарфоровой или стеклянной изолирующей части и металлических деталей – шапок и стержней, соединяемых с изолирующей частью посредством цементной связки.
Рис. 2 . Подвесные изоляторы ВЛ : а – ПФ70–В, ПФ160-А, ПФ210-А, б – ПФГ70-Б, в – ПС70-Д, ПС120-А, ПС160-Б, ПС300-Б, г – ПСГ70-А и ПСГ120-А.
Для разных условий по загрязненности окружающей среды применяются тарельчатые изоляторы разных типов , отличающихся друг от друга основными характеристиками: длиной пути тока утечки и испытательным напряжением. Подвесные изоляторы собираются в гирлянды, которые бывают поддерживающими и натяжными. Поддерживающие гирлянды изоляторов монтируются на промежуточных опорах, подвесные – на анкерных (рис. 3).
Рис. 3. Гирлянда из подвесных изоляторов
Количество изоляторов в гирлянде зависит от рабочего напряжения линии, степени загрязненности атмосферы, материала опор и типа применяемых изоляторов. Так, для линии напряжением 35 кВ – 2-3, для 110 кВ – 6-7, для 220 кВ- 12-14 и т.д.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Устройство сети энергоснабжения является сложной и опасной технической задачей. Передача электроэнергии на большие расстояния требует больших финансовых затрат и соблюдения особых мер безопасности.
А Вы знаете, что для уменьшения потерь энергии ток передаётся под очень большим напряжением от 10 до 700 кВ. Такое напряжение требует надёжной изоляции от пробоя.
Для безопасной передачи электроэнергии по проводам применяют изоляторы. Безопасная работа ЛЭП и сохранение жизни и здоровья людей во многом зависит от качества материалов опор, проводов и особенно изоляционных материалов.
Классификация изоляторов
Изоляторы разделяются по нескольким техническим характеристикам:
- Из каких материалов они изготовлены.
- По конструкционным особенностям.
Промышленность выпускает изоляторы из стекла, фарфора и из полимерного материала. До недавнего времени изоляторы в большинстве случаев устанавливались из фарфора. Однако в последнее время их вытесняют изоляторы из закалённого стекла, которые имеют лучшие технические характеристики и дешевле в производстве.
Изоляторы из закалённого стекла
Важно то, что стеклянные изоляторы не нуждаются в плановых испытаниях под большим напряжением. Любое повреждение тела изолятора можно обнаружить визуально. При этом разрушение одного изолятора в гирлянде не приводит к пробою электроэнергии. Технология производства стеклянных изоляторов полностью автоматизирована.
Если дефект проявляется в механической части и гирлянда обрывается, то требуется немедленный ремонт подвески. Всё это относится и к изоляторам из фарфора, но гораздо трудней увидеть дефект и пробой. Как недостаток применения изоляторов из стекла, отмечается их большой вес и хрупкость.
К преимуществам относится:
- Не сложная визуальная дефектовка.
- Дешевизна автоматизированного производства изоляторов.
- Изоляторы elektropostavkaво время эксплуатации не меняют своих технических характеристик.
- Они не подвержены деформации.
- Стекло хорошо противостоит ультрафиолетовым лучам.
- Не воспламеняются и не гигроскопичны.
- Обладают высокими диэлектрическими характеристиками.
Фарфоровые изоляторы
Изоляторы из фарфора не меняют своих химических и физических свойств за весь период эксплуатации. Тук же, как и стеклянные они обладают отличными диэлектрическими свойствами. Они не хуже стеклянных, но дороги в производстве и обслуживании. Недостатками являются большой вес и хрупкость.
Изоляторы из полимерных материалов
Полимерные изоляторы обладают более низкими характеристиками и применяются только в электросетях с напряжением до 220 кВ. Даже при локальных повреждениях тел полимерных изоляторов значительно снижает их диэлектрические характеристики. Полимерные материалы имеют свойство старения, а при больших температурах снижается их механическая прочность.
У любых изоляторов, применяемых на ЛЭП, проявляются свои положительные и отрицательные свойства.
Замечали ли вы когда нибудь на линиях электропередач странные металлические конструкции непонятного назначения? Все эти причудливые изделия из разных материалов нужны для своих определенных задач. Их обобщенное название - кабельная арматура.
Только с ее помощью можно обеспечить безопасность эксплуатации электрической сети, а также реализовать основные функции воздушных линий электропередач.
Кабельная арматура для ВЛ
Под кабельной арматурой подразумеваются разнообразные электротехнические изделия, использующиеся для крепления кабеля и его механической защиты. Кабельная арматура для монтажа, исходя из назначения, делится на такие виды:
- контактная ;
- защитная ;
- соединительная ;
- натяжная ;
- сцепная ;
- поддерживающая .
Основные виды кабельной арматуры для монтажа кабеля
Самыми популярными видами кабельной арматуры считаются:
- электротехнические муфты, представленные на современном рынке в большом ассортименте;
- изоляционные гильзы, необходимые для защиты мест соединения кабеля;
- заглушки, использующиеся в проводниковых линиях;
- устройства, предназначенные для разделки кабеля;
- электротехнические изделия, необходимые для подсоединения проводов СИП;
- материалы, использующиеся для герметизации электротехнических муфт.
Классификация кабельной арматуры для монтажа
Кабельная арматура делится на 3 главные группы:
- Оптоволоконная.
- Стационарная.
- Интернет-система.
Оптоволоконная арматура используется при прокладке оптически-волоконных линий связи, соединения кабелей и их фиксации. Без стационарной арматуры невозможно обеспечить работоспособность энергетических систем. Кабельные интернет-системы применяются для соединения кабелей, обеспечивающие доступ к интернету, внутри зданий.
Электротехнические муфты как главный элемент кабельной арматуры
Они бывают соединительные , концевые , ответвительные , стопорные и переходные . Кроме соединения отрезков кабелей такие муфты также выполняют функцию изоляции и герметизации зон стыка. Комплектация электротехнической муфты зависит от характеристик подключаемой линии. По количеству фаз муфты делятся на одно- и трехфазные.
В качестве материала электротехнических муфт может выступать латунь, чугун, свинец или эпоксидный материал, но больше всего сейчас набирают популярности термоусадочные муфты. Они отличаются простотой монтажа и высокими эксплуатационными характеристиками.
Изоляция кабельной муфты может быть выполнена из резины, пропитанной бумаги или полимера.
Соединительные муфты используются для того, чтобы соединить между собой концы кабелей. Корпус таких муфт может быть разборным или неразборным. Если необходимо создать надежное соединение кабелей, отличающихся сечением, то используются переходные муфты.
В свою очередь для того чтобы прикрепить отвод от магистральной линии применяют ответвительный вид муфт. В высоковольтных линиях используются стопорные муфты. При разделке многожильных кабелей применяют концевые виды муфт. Также они используются для подсоединения кабеля к электроприбору.
Монтажные гильзы
Они применяются в процессе монтажа воздушных электролиний с использованием СИП. К примеру, если на опорах провод СИП закончился и возникает необходимость в удлинении разметки.
В случае использования многопроволочных алюминиевых проводов необходимо применять изолированные гильзы. Здесь изоляционным материалом является высокомолекулярный полимер, который не боится воздействия ультрафиолета и погодных условий.
Зажимы
Они бывают герметичные, изолированные и ответвительные. Используется такой вид электротехнической арматуры также для подсоединения СИП к магистральной линии, эксплуатируемой при напряжении не более 1 кВ и не имеющей изоляции. С помощью зажима осуществляется прочный зажим неизолированного магистрального провода.
Зажимы бывают натяжные анкерные, соединительные, ответвительные, промежуточные и поддерживающие.
Сцепная арматура
К ней относятся скобы, ушки, коромысла, серьги и другие изделия, с помощью которых обеспечивается крепление изолирующих подвесок. Такая арматура позволяет отрегулировать длину изолирующей подвески.
Защитная арматура
В эту категорию кабельной арматуры входят гасители вибрации и протекторы. Используются такие изделия для обеспечения защиты воздушных линий, а также оптических кабелей от механического воздействия из-за ветра. Протектор и гаситель вибрации устанавливаются вместе. Благодаря этому изгибная жесткость кабеля возрастает, и он становится менее подверженным деформации.
Устройства птицезащиты
Опоры линий электропередач оснащают специальными приборами, защищающими птиц от поражения током. Такие устройства представляют собой ограждающие конструкции, которые также используются для защиты изоляторов от попадания на них помета, создавая препятствие для гнездования птиц.
Авиационные шары-маркеры
Воздушные шары размещаются на проводах линии электропередач для обозначения коммуникаций летящим самолетам. Их размещают для предотвращения повреждений ЛЭП от летательных аппаратов и птиц. Эти меры позволят спасти пернатых от гибели, обезопасить их от столкновения с высоковольтными линиями во время миграции, избежать аварий в сетях и замыкания электролиний.
Стеклянные изоляторы
Стекло - отличный изоляционный материал. На линиях электропередач часто ставят изоляторы в виде "юбок", чтобы провода не касались друг друга. Такая форма позволяет защитить провода в сырую погоду, так как во время гроз и ливней возможен пробой кабеля на растяжку дугой. Дуга может легко перепрыгнуть обычный изолятор, то высота юбки мешает ей это сделать.
Стекло довольно хрупкое и при может треснуть при ударе одного провода о другой. Для защиты провода от нахлестов применяют изоляторы в форме палок, которые напрямую держатся на проводах и не дают одному проводу налететь на другой даже при сильном ветре.
Электрический изолятор – это изделие, предназначенное для крепления провода, кабеля или шины на несущей конструкции линии электропередач и предотвращения её пробоя на землю. Они бывают разных видов и изготавливаются из диэлектрических материалов – фарфора, стекла и полимеров.
Так как электрическое предназначение изоляторов – обеспечить изоляцию проводника от несущей конструкции, то основными характеристиками являются:
Конструкция
Конструктивно все электрические изоляторы различаются способами крепления к несущей конструкции и крепления кабеля. Главной задачей этого изделия является предотвращение электрических разрядов, для этого они выполняются в виде тарелок или стержней с ребрами. Эти ребра нужны для того, чтобы разряд развивался под углом к силовым линиям поля. На рисунке ниже вы видите примеры типовых изделий разных форм и конструкций:
Различие по материалу исполнения
Чтобы рассмотреть классификацию видов и типов изоляторов нужно сначала разобраться, как их различают. Итак, в первую очередь они классифицируются по материалу изготовления:
- Фарфоровые.
- Стеклянные.
- Полимерные.
Фарфоровые можно назвать классикой, такие применялись раньше даже при наружной проводке в домах. Обычно они белого цвета, но могут быть и других цветов. Такие можно увидеть на разных электроустановках. Достоинством является то, что они выдерживают большие нагрузки на сжатие, обладают хорошими диэлектрическими свойствами.
Однако они бьются и ломаются. Отсюда возникает необходимость регулярной проверки их целостности, а часто для этого приходится отключать электроустановку и вытирать с них масло, пыль и другие загрязнения. Также проблемой является их большой вес.
Стеклянные, хоть и боятся ударов, но для контроля их целостности достаточно визуального осмотра, что можно провести и без отключения напряжения. В настоящее время в воздушных линиях электропередач, в качестве подвесных изоляторах они вытесняют керамику, в том числе и потому что меньше весят, а также в производстве дешевле.
Полимерные используются в помещении, на улице редко, в качестве исключения. Можно иногда увидеть опорные изоляторы из полимеров на ВЛ 10 кВ или других напряжений средней величины, но редко, или на неответственных линиях. Это обусловлено тем, что с течением времени и под действием УФ-излучений они стареют, внутренняя структура распадается и ухудшаются их электрические и механические характеристики.
Однако для оборудования, которое доступно для регулярного обслуживания и ремонта они применяются часто. Например, это могут быть опорные изоляторы шин в трансформаторных подстанциях и распределителях.
Типы по конструкции и назначению
По конструкции выделяют три основных разновидности изоляторов ВЛ:
- штыревые;
- подвесные линейные;
- опорные и проходные.
Штыревые относятся к линейным изоляторам. Используются в ЛЭП до 35 кВ. В том числе на линиях 0,4 кВ. Этот тип исполнения цельный, на нем есть канавка для закрепления провода и отверстия для установки на траверсы, крюки, штыри.
Интересно: на ВЛ от 6 до 10 кВ используют одноэлементные изоляторы, а на 20-35 – из двух элементов.
Подвесные используются на высоковольтных воздушных линиях напряжением 35 кВ и больше. Они бывают двух типов поддерживающими (стержневыми) и натяжными.
Натяжные тарельчатые изоляторы работают на растяжение и удерживают линию на опоре, монтируются под углом. Конструктивно они выполнены в виде фарфоровой или стеклянной тарелки. В нижней части обычно выступает стержень с расширяющейся шляпкой. Сверху расположена металлическая крышка с отверстием специальной формы, такой чтобы в ней можно было закрепить нижний стержень. Таким образом происходит унификация и вы можете набрать в гирлянду столько изоляторов, сколько нужно для достижения нужных номинальных напряжений пробоя. Такая гирлянда получается гибкой, она удерживает линии электропередач на опоре.
На промежуточных опорах устанавливают подвесные стержневые изоляторы. Они выполнены в виде опорного стержня, на его концах металлические части для крепления к опоре и проводам. Они устанавливаются вертикально и провод ложится на них – это и есть основное отличие от предыдущих. Также они отличаются тем, что натяжные изоляторы выдерживают больший вес, поэтому могут использоваться на опорах, расположенных дальше друг от друга.
Интересно: на ответственных участках и для повышения надежности монтажа ЛЭП могут использоваться сдвоенные гирлянды натяжных изоляторов.
Опорные и проходные изоляторы уже являются станционными, а не линейными. Этот вид так называется потому что используется внутри электростанций и трансформаторных подстанций. Изготовляются из полимеров или фарфора. Опорные используют для крепления токопроводящих шин к заземленным конструкциям, например, корпусу трансформаторов или внутри вводных и распределительных электрощитов.
Маркировка изоляторов всех разновидностей подобная, обычно она содержит сведения о типе изделия и номинального напряжения линии, например:
Для того чтобы провести кабель или шину через стену используются проходные изоляторы. Эта разновидность изделий с полым телом, в котором расположена токоведущая часть. Для повышения изолирующих свойств может иметь дополнительно масляный барьер или маслобумажную прокладку. Такой тип изоляторов позволяет прокладывать линию до 110 кВ. Бывают и другого типа – без токопровода внутри, просто диэлектрический полый цилиндр с отверстием, который надевается на кабель.
На это мы и заканчиваем нашу статью. Теперь вы знаете, какие бывают изоляторы для воздушных линий электропередач и где применяется каждый вариант исполнения!
Читайте также: