Влияет ли лямбда зонд на акпп
И как на это реаДанный пост, в первую очередь будет полезен владельцам фокусов двигателями 1.6 и 2.0 с АКПП.
Ниже будет объяснение.
На приборной панели, в один момент, неожиданно загорелся check
При диагностике, сканер ELM327 выдал ошибку р0135— обрыв цепи подогрева датчика кислорода.
Итог: первый датчик (тот который перед катализатором) под замену.
Решение проблемы было быстро найдено, т.к. такой датчик был у меня в гараже. Б\у с пробегом 80тыс.км
НО по пути в гараж, автомат стал очень сильно пинаться, при переключении с 1 на 2. Не выбирая оптимальное число оборотов двигателя.
На приборной панели загорелся индикатор ESP, с соответствующей надписью о неисправности.
ПРИЕХАЛИ (невольно посетила мою голову мысль)
Проверка работоспособности АКПП, оставила еще больше вопросов, к основному вопросу-" в чем дело?"
Все передачи работают, селектор перемещается во всех положениях, ни каких уведомлений о неисправности АКПП ( коробка переведена в аварийный режим и тд </s>) на приборке нет.
Автомат работает в положениях "R" "N" "D", при перемещении селектора в положение "M" ни происходит ничего, дисплей показывает, что селектор по прежнему находится в положении "D".
Диагностика сканером не выдает ни каких ошибок, кроме ошибки по датчику (р0135)
Поиски подобных случаев ни привели ни к чему, т.к. их практически не нашел.
На ффклабе, нашел нечто похожее, но там проблема была с АБС, но автомат, по описанию вел себя также.
Отталкиваясь от этого, я решил попробовать скинуть ошибку сканером и вновь проверить работоспособность автомата.
После того, как сбросил ошибку-check погас, ESP продолжало гореть, однако при перемещении селектора в положение "М" режим начинает работать, т.е. на дисплее отображается цифра 1 (первая передача вкл.)Но тут же исчезает, и вновь отображает режим "D"
Причиной стал вновь загоревшийся check
В итоге я пришел к выводу, что во всем этом, виноват неисправный лямбда зонд.
Каким то образом, система ESP, из-за неисправного ДК, не дает работать АКПП в адаптивном режиме.
Т.е автомат перестает выбирать, или не правильно выбирает, подходящий момент переключения, относительно числа оборотов двигателя, в следствие чего, происходит сильный толчок при переключении.
Проще говоря, чтобы толчка с 1 на 2 не было, нужно двигаться накатом с горки, вообще не работая педалью газа. Иначе ощутите хороший толчок в спину.
Сомнительная заправка, плохой бензин, «чек» на панели — стандартный и быстрый путь к замене кислородного датчика. Про лямбда-зонд слышали многие автомобилисты, но мало кто разбирался, за что именно он отвечает и почему так легко выходит из строя. Рассказываем про датчик кислорода — «обоняние» двигателя.
Лямбда и стехиометрия двигателя
Название датчика происходит от греческой буквы λ (лямбда), которая обозначает коэффициент избытка воздуха в топливно-воздушной смеси. Для полного сгорания смеси соотношение воздуха с топливом должно быть 14,7:1 (λ=1). Такой состав топливно-воздушной смеси называют стехиометрическим — идеальным с точки зрения химической реакции: топливо и кислород в воздухе будут полностью израсходованы в процессе горения. При этом двигатель произведёт минимум токсичных выбросов, а соотношение мощности и расхода топлива будет оптимальным.
Если лямбда будет <1 (недостаток воздуха), смесь станет обогащённой; при лямбде >1 (избыток воздуха) смесь называют обеднённой. Чересчур богатая смесь — это повышенный расход топлива и более токсичный выхлоп, а слишком бедная смесь грозит потерей мощности и нестабильной работой двигателя.
Из графика видно, что при λ=1 мощность двигателя не пиковая, а расход топлива не минимален — это лишь оптимальный баланс между ними. Наибольшую мощность мотор развивает на слегка обогащённой смеси, но расход топлива при этом возрастает. А максимальная топливная эффективность достигается на слегка обеднённой смеси, но ценой падения мощности. Поэтому задача ЭБУ (электронного блока управления) двигателя — корректировать топливно-воздушную смесь исходя из ситуации: обогащать её при холодном пуске или резком ускорении, и обеднять при равномерном движении, добиваясь оптимальной работы мотора во всех режимах. Для этого блок управления ориентируется на показания датчика кислорода.
Зачем нужен кислородный датчик
Датчиков в современном двигателе великое множество . С помощью различных сенсоров ЭБУ замеряет температуру забортного воздуха и его поток, «видит» положение дроссельной заслонки, отслеживает детонацию и положение коленвала — словом, внимательно следит за воздухом «на входе» и показателями работы мотора, регулируя подачу топлива для создания оптимальной смеси в цилиндрах.
Лямбда-зонд показывает, что же получилось «на выходе», замеряя количество кислорода в выхлопных газах. Другими словами, кислородный датчик определяет, оптимально ли работает мотор, соответствуют ли расчёты ЭБУ реальной картине и нужно ли вносить в них поправки. Основываясь на данных с лямбда-зонда, ЭБУ вносит соответствующие коррекции в работу двигателя и подготовку топливно-воздушной смеси.
Где находится кислородный датчик
Датчик кислорода установлен в выпускном коллекторе или приёмной трубе глушителя двигателя, замеряя, сколько несгоревшего кислорода находится в выхлопных газах. На многих автомобилях есть ещё один лямбда-зонд, расположенный после каталитического нейтрализатора выхлопа — для контроля его работы.
Если у двигателя две головки блока (V-образники, «оппозитники»), то удваивается количество выпускных коллекторов и катализаторов, а значит и лямбда-зондов — у современной машины может быть и 4 кислородных датчика.
Устройство кислородного датчика
Классический лямбда-зонд порогового типа — узкополосный — работает по принципу гальванического элемента. Внутри него находится твёрдый электролит — керамика из диоксида циркония, поэтому такие датчики часто называют циркониевыми. Поверх керамики напылены токопроводящие пористые электроды из платины. Будучи погружённым в выхлопные газы, датчик реагирует на разницу между уровнем кислорода в них и в атмосферном воздухе, вырабатывая на выходе напряжение, которое считывает ЭБУ.
Циркониевый элемент лямбда-зонда приобретает проводимость и начинает работать только после прогрева до температуры 300 °C. До этого ЭБУ двигателя действует «вслепую» согласно топливной карте, без обратной связи от кислородного датчика, что повышает расход топлива при прогреве двигателя и количество вредных выбросов. Чтобы быстрее задействовать лямбда-зонд, ему добавляют принудительный электрический подогрев. Кислородные датчики с подогревом внешне отличаются увеличенным количеством проводов: у них 3–4 жилы против 1–2 у обычных датчиков.
В названии узкополосного датчика кроется его недостаток — он способен замерять количество кислорода в выхлопе в достаточно узком диапазоне. ЭБУ может корректировать смесь по его показаниям только в некоторых режимах работы мотора (холостой ход, движение с постоянной скоростью), что не отвечает современным требованиям по экономичности и экологичности двигателей. Для более точных замеров в широком диапазоне используют широкополосный лямбда-зонд (A/F-сенсор), который также называют датчиком соотношения «воздух-топливо» (Air/Fuel Sensor). Обычно к нему подходят 5–6 проводов, хотя бывают и исключения.
Внешне «широкополосник» похож на обычный датчик кислорода, но внутри есть отличия. Благодаря специальным накачивающим ячейкам эталонный лямбда-коэффициент газового содержимого датчика всегда равен 1, и генерируемое им напряжение постоянно. А вот ток меняется в зависимости от количества кислорода в выхлопных газах, и ЭБУ двигателя считывает его в реальном времени. Это позволяет электронике быстрее и точнее корректировать смесь, добиваясь её полного сгорания в цилиндрах.
Почему до сих пор производят узкополосные датчики? Во-первых, для старых автомобилей, где A/F-сенсоры не применялись. Во-вторых, из-за особенностей «широкополосника» его нельзя устанавливать после катализатора, где он быстро выходит из строя. А контролировать работу катализатора как-то надо. Поэтому в современных двигателях ставят два лямбда-зонда разного типа: широкополосный (управляющий) — в районе выпускного коллектора, а узкополосный (диагностический) — после катализатора.
Причины и признаки неисправности лямбда-зонда
Основная причина поломок кислородных датчиков — некачественный бензин: свинец и ферроценовые присадки оседают на чувствительном элементе датчика, выводя его из строя. На состояние лямбда-зонда влияет и нестабильная работа двигателя: при пропусках зажигания от старых свечей или пробитых катушек несгоревшая смесь попадает в выхлопную систему, где догорает, выжигая и катализатор, и датчики кислорода. Приговорить датчик также может попадание в цилиндры антифриза или масла.
Самый очевидный признак неисправности лямбда-зонда — индикатор Check Engine на приборной панели. Считав код ошибки с помощью сканера или самодиагностики, можно проверить, какой именно датчик вышел из строя, если их несколько. Иногда всё дело в повреждённой проводке датчика — с проверки цепи и стоит начать поиск поломки.
Но далеко не всегда проблемный лямбда-зонд зажигает «Чек»: иногда он не ломается полностью, а медленно умирает, давая при этом ложные показания, из-за чего ЭБУ двигателя неверно корректирует состав смеси. В этом случае нужно ориентироваться на косвенные признаки — ухудшение работы двигателя.
Проблемы с датчиком кислорода нарушают всю систему обратной связи и лямбда-коррекции, вызывая целый букет неисправностей. Прежде всего, это увеличение расхода топлива и токсичности выхлопа, снижение мощности и нестабильный холостой ход. Если вовремя не заменить лямбда-зонд, следом выйдет из строя каталитический нейтрализатор, осыпавшись из-за перегрева от обогащённой смеси.
Универсальные кислородные датчики
Цена на оригинальные датчики кислорода вряд ли обрадует автомобилистов, но все лямбда-зонды работают по единому принципу, что позволяет без труда подобрать замену. Главное, чтобы соответствовал типа датчика (широкополосный/узкополосный), количество проводов и резьбовая часть. В продаже есть универсальные кислородные датчики без разъёма, которые можно использовать на десятках моделей автомобилей — подобрать и купить лямбда-зонд не составляет проблемы.
Чтобы избежать проблем с кислородными датчиками, следите за состоянием двигателя, заправляйтесь качественным топливом и регулярно выполняйте компьютерную диагностику, которая позволит выявить неисправности на ранней стадии.
• Гарантированный выход из строя катализатора, 2-го лямбда зонда в случае продолжения езды с неисправным 1-м лямбда зондом.
• Ухудшение холодного пуска двигателя, некомфортная езда, сопровождаемая пониженной мощностью и плавающими оборотами холостого хода и иногда провалами на оборотах от 2000 до 3000.
• Повышенный расход топлива, в среднем на 5-20% от обычного и даже до 50% в тяжелых случаях, что в итоге выльется за год как раз в стоимость новенького лямбда зонда.
• Сигнализирующая о неисправности лампочка Check Engine, которая попросту добавляет беспокойства в вашу жизнь и за которой можно просмотреть другую неисправность.
При появлении любой неисправности современного автомобиля необходимо поспешить с её устранением, желательно отказавшись от дальнейшей интенсивной эксплуатации до её устранения. В большей степени, чем к каким бы то ни было деталям это относится к лямбда зонду. Как уже известно из статьи «Для чего нужен лямбда зонд?», этот датчик вместе с катализатором, отвечает за чистоту выхлопных газов от вредных примесей. Звучит довольно невинно, и многие автолюбители полагают, что после выхода из строя кислородного датчика, всё, что им грозит, это повышение вредных примесей в выхлопной системе. Однако это далеко не так.
Драйвовчане попробуем разобраться, что же происходит с двигателем и его системами при продолжении эксплуатации автомобиля с неисправным кислородным датчиком на примере двух главных угроз.
Сокращение ресурса двигателя.
Кратко о механизме этого процесса, который развивается в двух направлениях.
В результате неисправности датчика или его неправильной работы под воздействием внешних факторов, в цилиндры может подаваться переобогащённая топливная смесь. Эта смесь сгорает не полностью в результате чего, электроды и изоляторы свечей и камеры сгорания покрываются чёрным нагаром. Обильный нагар закоксовывает компрессионные кольца цилиндров. Возникает неполное прилегание и снижение компрессии, в результате чего часть газов поступает в картер и «отравляет» масло.
Но это ещё не так опасно как процесс, идущим параллельно с вышеописанным. Остатки несгоревшего топлива, проникшего за компрессионные кольца, смывают масляную плёнку с поверхности цилиндра, возникает сухое трение, приводящее к сокращению его ресурса, а в запущенных случаях и к перегреву двигателя.
Выход из строя катализатора и 2-го лямбда зонда.
Как мы уже выяснили, в выхлопную трубу попадают отработавшие газы с остатками топлива. В результате, катализатор начинает работать в аварийном режиме, дожигая остатки топлива. Постепенно катализатор разрушается, продукты его разрушения начинают забивать его соты. Катализатор начинает перегреваться и оплавляется, окончательно запечатывая всю свою сотовую структуру. В итоге мощность двигателя окончательно падает и автомобиль перестаёт ехать из-за того, что нет места для свободного отвода отработавших газов. В течение этого процесса отравляется и 2-й лямбда зонд.
Другой, важной причиной, по которой следует быстрее заменить датчик кислорода, это необходимость погасить горящую лампочку Check Engine, поскольку за ошибкой лямбда зонда, можно проглядеть появление другой ошибки.
Неисправность датчика кислорода приводит к повышенному расходу топлива, снижению динамических характеристик автомобиля, нестабильной работе мотора на холостых оборотах, увеличение токсичности выхлопных газов. Обычно причинами неисправности датчика концентрации кислорода является его механическое повреждение, разрыв электрической (сигнальной) цепи, загрязнение чувствительной части датчика продуктами сгорания топлива. В некоторых случаях, например, при возникновении ошибки p0130 или p0141 на приборной панели активируется сигнальная лампа Check Engine. Использовать автомобиль при неисправном датчике кислорода можно, однако это приведет к указанным выше проблемам.
Назначение датчика кислорода
Датчик кислорода устанавливается в выпускном коллекторе (у различных машин конкретное место и ко-во может отличаться), и выполняет мониторинг наличия кислорода в выхлопных газах. В автопромышленности греческая буква «лямбда» обозначает коэффициент избытка кислорода в топливовоздушной смеси. Именно по этой причине зачастую датчик кислорода называют «лямбда-зонд».
Предоставленная датчиком информация о количестве кислорода в составе выхлопных газов электронным блоком управления двигателем (ЭБУ) используется для корректировка впрыска топлива. Если кислорода в выхлопных газах много, значит, топливовоздушная смесь, подаваемая в цилиндры, бедная (напряжение на датчике 0,1…0,3 Вольта), а если кислорода много — значит, богатая (напряжение на датчике 0,6…0,9 Вольта). Соответственно, происходит коррекция количества подаваемого топлива при необходимости. Что сказывается не только на динамических характеристиках двигателя, но и работы каталитического нейтрализатора выхлопных газов.
В большинстве случаев диапазон эффективной работы катализатора составляет 14,6…14,8 долей воздуха на одну долю топлива. Это соответствует значению лямбда, равной единице. Таким образом, датчик кислорода является своеобразным контролером, расположенным в выпускном коллекторе.
На некоторых автомобилях конструктивно предусмотрено использование двух датчиков концентрации кислорода. Один расположен до катализатора, а второй — после. Задача первого состоит в коррекции состава топливовоздушной смеси, а второго — проверка эффективности работы катализатора. Сами же датчики по конструкции, как правило, идентичны.
Влияет ли лямбда зонд на запуск — что будет?
Если отключить лямбда зонд то будет возрастание расхода топлива, повышение токсичности газов, а иногда и нестабильная работа двигателя на холостых оборотах. Однако такой эффект происходит лишь после прогрева так как кислородный датчик начинает работать в условиях повышенной до +300°С температуры. Для этого его конструкция подразумевает использование специального подогрева, которая включается при запуске двигателя. Соответственно, непосредственно в момент запуска мотора лямбда зонд не работает, и никоим образом не влияет на сам запуск.
Лампочка “чек” при неисправности лямбда зонда горит когда в памяти ЭБУ сформированы конкретные ошибки связанные с повреждением проводки датчика либо самого датчика, однако код фиксируется лишь при определенных условиях работы двигателя.
Признаки неисправности датчика кислорода
Выход из строя лямбда зонда, как правило, сопровождается следующими внешними симптомами:
- Ухудшение тяги и снижение динамических характеристик автомобиля.
- Нестабильный холостой ход. Значение оборотов при этом могут скакать и понижаться ниже оптимальных. В самом критическом случае машина вообще не будет держать холостые обороты и без подгазовывания водителем она попросту заглохнет. . Обычно перерасход незначительный, однако можно определить при программном замере.
- Увеличение токсичности выхлопа. Выхлопные газы при этом становятся непрозрачными, а имеющими сероватый либо синеватый оттенок и более резкий, топливный, запах.
Стоит оговориться, что перечисленные выше признаки могут указывать и на другие поломки двигателя или прочих систем автомобиля. Поэтому, чтобы определить неисправности датчика кислорода, нужны несколько проверок используя в первую очередь диагностический сканер и мультиметр для проверки сигналов лямбды (управляющего и цепи подогрева).
Как правило, проблемы с проводкой датчика кислорода четко фиксируется электронным блоком управления. При этом в его памяти формируются ошибки, например, p0136, p0130, p0135, p0141 и прочие. В любом случае необходимо выполнить проверку цепи датчика (проверить наличие напряжения и целостность отдельных проводов), а также посмотреть на график работы (используя осциллограф либо программу диагностик).
Причины неисправности датчика кислорода
В большинстве случаев кислородная лямбда работает около 100 тыс. км без сбоев однако есть причины которые значительно сокращают его ресурс и приводят к неисправности.
- Неисправность цепи датчика кислорода. Выражаться по-разному. Это может быть полный обрыв питающих и/или сигнальных проводов. Возможно повреждение цепи подогрева. В этом случае лямбда зонд не будет работать до тех пор, пока выхлопные газы не разогревают его до рабочей температуры. Возможно повреждение изоляции на проводах. В этом случае имеет место короткое замыкание.
- Замыкание датчика. В этом случае он полностью выходит из строя и, соответственно, не подает никаких сигналов. Большинство лямбда зондов ремонту не подлежат и их надо менять на новые.
- Загрязнение датчика продуктами сгорания топлива. В процессе эксплуатации датчик кислорода по естественным причинам постепенно загрязняется и со временем может перестать передавать корректную информацию. По этой причине автопроизводители рекомендуют периодически менять датчик на новый, отдавая при этом предпочтение оригиналу так как универсальная лямбда не всегда корректно показывает информацию.
- Термические перегрузки. Обычно это происходит по причине проблем с зажиганием, в частности, перебоев с ним. В таких условиях датчик работает при критических для него температурах, что снижает его общий ресурс и постепенно выводит из строя.
- Механические повреждения датчика. Они могут возникнуть при неаккуратных ремонтных работах, при езде по бездорожью, ударах при ДТП.
- Использование при установке датчика герметиков, которые вулканизируются при высокой температуре.
- Многократные неудачные попытки запуска двигателя. При этом в двигателе, и в частности, в выпускном коллекторе накапливается несгоревшее топливо.
- Попадание на чувствительный (керамический) наконечник датчика различных технологических жидкостей или мелких посторонних предметов.
- Негерметичность в выпускной системе выхлопных газов. Например, может прогореть прокладка между коллектором и катализатором.
Обратите внимание, что состояние датчика кислорода во многом зависит от состояния других элементов двигателя. Так, значительно снижают ресурс лямбда зонда следующие факторы: неудовлетворительное состояние маслосъемных колец, попадание антифриза в масло (цилиндры), обогащенная топливовоздушная смесь. И если при исправном датчике кислорода количество углекислого газа составляет порядка 0,1…0,3%, то при выходе лямбда зонда из строя соответствующее значение увеличивается до 3…7%.
Как определить неисправность датчика кислорода
Существует ряд методов для проверки состояния лямбда датчика и его питающих/сигнальных цепей.
Что нужно сделать в первую очередь при диагностике?
- Необходимо оценить количество сажи на трубке зонда. Если ее слишком много — датчик будет работать некорректно.
- Определить цвет отложений. Если на чувствительном элементе датчика имеются белые или серые отложения — это означает, что используются присадки к топливу или к маслу. Они негативно сказываются на работе лямбда зонда. Если на трубке зонда имеются блестящие отложения — это говорит о том, что в используемом топливе очень много свинца, и от использования такого бензина лучше отказаться, соответственно, сменить марку бензозаправки.
- Можно попытаться очистить сажу, однако это не всегда возможно.
- Проверить мультиметром целостность проводки. В зависимости от модели конкретного датчика он может иметь от двух до пяти проводов. Один из них будет сигнальным, а остальные — питающими, в том числе, для питания элементов подогрева. Для выполнения процедуры проверки вам понадобится цифровой мультиметр, способный измерять постоянное электрическое напряжение и сопротивление.
- Имеет смысл проверить сопротивление нагревателя датчика. В разных моделях лямбда зонда оно будет находиться в пределах от 2 до 14 Ом. Значение питающего напряжения должно быть около 10,5…12 Вольт. В процессе проверки также нужно обязательно проверить целостность всех проводов, подходящих к датчику, а также значение сопротивления их изоляции (как попарно между собой, так и каждого на «массу»).
Как проверить лямбда-зонд видео
Обратите внимание, что нормальная работа датчика кислорода возможна лишь при его нормальной рабочей температуре, равной +300°С…+400°С. Это обусловлено тем, что лишь в таких условиях циркониевый электролит, нанесенный на чувствительный элемент датчика, становится проводником электрического тока. Также при такой температуре разница атмосферного кислорода и кислорода в выхлопной трубе приведет к тому, что на электродах датчика появится электрический ток, который и будет передаваться на электронный блок управления двигателем.
Так как проверка кислородного датчика во многих случаях подразумевает снятие/установку то стоит учесть такие нюансы:
- Лямбда — устройства очень хрупкие, поэтому при проверке нельзя подвергать их механическим нагрузкам и/или ударам.
- Резьбу датчика необходимо обработать специальной термопастой. При этом нужно следить, чтобы паста не попала на его чувствительный элемент, поскольку это приведет к его некорректной работе.
- При закручивании необходимо соблюдать значение крутящего момента, и пользоваться для этих целей динамометрическим ключом.
Точная проверка лямбда зонда
Точнее всего определить неисправность датчика концентрации кислорода позволит осциллограф. Причем использовать профессиональный аппарат необязательно можно снять осциллограмму используя программу-симулятор на ноутбуке либо другом гаджете.
График правильной работы датчика кислорода
На первом рисунке в данном разделе представлен график правильной работы датчика кислорода. В этом случае на сигнальный провод поступает сигнал, похожий на ровную синусоиду. Синусоида в данном случае означает, что контролируемый датчиком параметр (количество кислорода в выхлопных газах) находится в предельно допустимых границах, и просто происходит его постоянная и периодическая проверка.
График работы сильно загрязненного датчика кислорода
График работы датчика кислорода на обедненной топливной смеси
График работы датчика кислорода на обогащенной топливной смеси
График работы датчика кислорода на бедной топливной смеси
Далее представлены графики, соответствующие сильно загрязненному датчику, использованию двигателем автомобиля обедненной топливной смеси, богатой смеси, а также бедной смеси. Ровные линии на графиках означают, что контролируемый параметр вышел за допустимые пределы в ту или другую сторону.
Как устранить неисправность датчика кислорода
Если впоследствии проверки показало что причина в проводке, то проблема решится заменой жгута проводов либо фишки подключения, а вот при отсутствии сигнала от самого датчика зачастую говорит о необходимости замены датчика концентрации кислорода на новый, но прежде чем покупать новую лямбду можно воспользоваться одним из представленных ниже способов.
Метод первый
Предполагает очистку элемента подогре от нагара (применяется когда возникает неисправность нагревателя датчика кислорода). Для реализации этого метода необходимо обеспечить доступ к чувствительной керамической части устройства, которая скрыта за защитным колпачком. Снять указанный колпачок можно с помощью тонкого напильника, с помощью которого нужно сделать надрезы в области основания датчика. Если демонтировать колпачок полностью не получится, то допускается сделать маленькие окошки размером около 5 мм. Для дальнейшей работы необходимо около 100 мл ортофосфорной кислоты либо преобразователя ржавчины.
Процедура по восстановлению выполняется по следующему алгоритму:
- Налить 100 мл ортофосфорной кислоты в стеклянную емкость.
- Опустить керамический элемент датчика в кислоту. Полностью опускать датчик в кислоту нельзя! После этого подождать около 20 минут с тем, чтобы кислота растворила сажу.
- Извлечь датчик и промыть его проточной водой из крана, а затем дать ему высохнуть.
Порой на выполнение чистки датчика таким методом нужно потратить до восьми часов времени, ведь если с первого раза очистить сажу не получилось, то имеет смысл повторить процедуру два и более раза, причем можно воспользоваться кистью для выполнения механической обработки поверхности. Вместо кисти можно воспользоваться зубной щеткой.
Метод второй
Предполагает выпаливание нагара на датчике. Для выполнения чистки датчика кислорода вторым методом кроме той же ортофосфорной кислоты понадобится еще и газовая горелка (как вариант использовать домашнюю газовую плиту). Алгоритм чистки следующий:
- Окунуть чувствительный керамический элемент датчика кислорода в кислоту, обильно смочив его.
- Взять датчик пассатижами с противоположной от элемента стороны и поднести к горящей конфорке.
- Кислота на чувствительном элементе будет закипать, а на его поверхности образуется соль зеленоватого оттенка. Однако вместе с этим сажа с него будет удаляться.
Повторить описанную процедуру нужно несколько раз до тех пор, пока чувствительный элемент не станет чистым и блестящим.
Лет 15 назад лямбда-зонд был страшилкой почище «автомата» в первые годы нашего знакомства с иномарками. Увеличившийся вдруг расход топлива, не изучая причин, почти без вариантов вешали на него. Показывали владельцу какие-то «циферки» на экранчике, приговаривали «кислородник» и ставили перед фактом — надо менять. С другой стороны, присадки в бензин тогда на самом деле быстро выводили «лямбды» из строя. А как с этим дела обстоят сейчас? Что, кроме топлива, может приговорить датчик, как его проверить и на что менять?
С ним точнее, чем без него
Как мы недавно рассказывали, MAF и MAP — это первый и основной инструмент, от показаний которого отталкивается блок управления двигателем, приготавливая топливовоздушную смесь. Какое-то время обходились только ими. Но скоро стало понятно, что рассчитывать количество топлива, которое нужно подать, исходя лишь из поступающего в двигатель воздуха, получается не совсем точно. Якобы Bosch, купивший у американцев лицензию на систему впрыска Bendix Electrojector, уже в 60-х (в 1967-м появился немецкий D-Jetronic) работал над кислородным датчиком. Правда, таковой появился только в 1976 году — в рамках механического впрыска K-Jetronic. Считается, что первыми автомобилями, получившими «кислородник», стали Volvo 260-й серии и знаменитый DeLorean.
При этом Bosch продолжал выпускать механическую систему без «лямбды». В 80-х у фирмы был и электронный впрыск, лишенный кислородного датчика. Однако к тому моменту уже стало ясно — с обратной связью блок управления точнее оперирует подачей топлива. Просто не всегда это было необходимо по соображениям экономии и экологии. Тем не менее с начала того десятилетия Bosch запускает LU1- и LU2-Jetronic, которые имеют лямбда-регулирование. А к концу 80-х лямбда-зонд получает повсеместное распространение. Причем тогда же на отдельных моделях, предназначенных для рынков с самыми жесткими эконормами, в датчике появился нагревательный элемент, призванный максимально быстро выводить его на рабочий режим. Разберемся в конструкции «кислородника».
Точность — понятие относительное
Лямбда-зонд — это фактически два электрода, разделенные твердым электролитом в виде керамики из диоксида циркония. Редко — из диоксида титана.
Внешний электрод (скрыт под защитным колпачком с прорезями) находится в потоке выхлопных газов.
Внутренний электрод расположен в воздухе под атмосферным давлением. Воздух попадает внутрь либо через место, где в датчик входит проводка, .
. либо через специальные отверстия, прикрытые неким пористым материалом.
Два электрода с электролитом между ними образуют собой гальванический элемент. Но проводимым диоксид циркония становится только при разогреве до более чем 300 градусов. Иными словами, сразу после пуска лямбда-зонд не работает. Выхлоп «грязнее», чем при выходе «кислородника» на рабочий режим. Именно для этого в датчик стали добавлять нагревательный элемент, который гораздо быстрее, нежели выхлопные газы, доводит его до нужной температуры. Такие датчики отличаются тремя или четырьмя проводами вместо одного либо двух.
При работе зонда, если кислород есть лишь на внутреннем электроде, датчик генерирует соответствующее напряжение, которое видит блок управления. ЭБУ понимает это как «богатая смесь» и корректирует подачу топлива. Если кислород появляется в выхлопных газах, то напряжение, подаваемое с датчика, падает. Для ЭБУ это сигнал о том, что смесь бедная. Конечно, связь идет не по принципу «включено/выключено». Например, «кислородник» видит стехиометрическую (идеальную, с отношением 14,7:1) смесь. И все-таки лямбда-зонд оценивает наличие кислорода довольно грубо — есть он или нет. Коррекция идет в небольшом диапазоне, по напряжению — всего лишь в пределах от 0 до 1 вольта. А состав выхлопных газов, то есть то, насколько смесь отличается от стехиометрической, он определить не в состоянии.
Поэтому еще в начале 90-х NTK (суббренд NGK) предложила так называемый широкополосный лямбда-зонд, или датчик состава смеси. Снаружи он напоминает обычную «лямбду». Но имеет другую конструкцию.
Внутри у него две ячейки — измерительная и насосная. Еще с простых датчиков стехиометрической смеси соответствует напряжение в 0,45 В. Если оно изменяется, насосная ячейка подает в измерительную или откачивает оттуда некое количество воздуха. И по изменению тока, требуемого для этого, блок управления видит состав смеси и корректирует подачу топлива.
Диапазон измерений лежит в пределах до 5 В. Естественно, используется нагревательный элемент. А связь с ЭБУ состоит из пяти или шести проводов. С конца 90-х (эконормы Евро-3) широкополосный датчик стал неотъемлемым атрибутом автомобилей классом выше среднего. А с начала — середины 2000-х, ближе к появлению Евро-4 или уже с этими экотребованиями, датчики состава смеси вытеснили обычные лямбда-зонды. Тогда же или чуть раньше за катализатором, придвинутым вплотную к выпускному коллектору, появился второй датчик.
В первую очередь он оценивает состояние нейтрализатора — какова у того проходная способность, то есть оплавился он или нет. «Лямбда» за конвертером стоит простая. Однако считается, что, по крайней мере в ряде случаев, и она способна оказывать влияние на подготовку ЭБУ топливовоздушной смеси. Шансов того, что этот второй кислородный датчик как-то пострадает, меньше, чем у первого. Все-таки расположен за катализатором и принимает на себя уже очищенные выхлопные газы. Хотя и в отношении него есть определенные правила эксплуатации. Ну а первый «кислородник» тем более в зоне риска. Так от чего может страдать тот и другой?
Ресурс велик, но есть нюансы
Основным врагом кислородного датчика всегда являлись присадки в топливо — в первую очередь октаноповышающие и антидетонационные. И тетраэтилсвинец, который давно не используют. И тем более железосодержащие, покрывавшие его токопроводящим налетом, отчего «лямбда» «путалась в показаниях», если вовсе не выходила из строя.
Сейчас ферроценовыми присадками, если и пользуются, то ограниченно. Хотя нарваться на них где-нибудь в провинции наверняка можно. Впрочем, многие соединения, добавленные в топливо, способны загрязнять внешний электрод, выводя «кислородник» из строя. В состоянии это сделать и приличный (скажем, от нескольких сот граммов на 1000 км) расход масла на угар. Наконец, есть у датчиков определенный ресурс. Правда, по распространенной информации, лежащий в очень широких пределах — от 40 000 до более чем 100 000 км.
Симптомы потери работоспособности датчика могут быть разными. Объединяет едва ли не все системы то, что, скорее всего, загорится check engine. Но и это не обязательное условие. Растет расход топлива, однако не всегда настолько, что владелец это обязательно заметит. От переливов топлива из выхлопной трубы может попахивать бензином. Кроме того, двигатель способен перебоить на холостом ходу и иметь провалы тяги на разгоне. Да попросту глохнуть.
Но это что касается выхода из строя непосредственно основного рабочего органа — гальванического элемента. А ведь бывает так, что у датчика отказывает нагревательный модуль — по сути, пластинка или спиралька, как у чайника-кипятильника. Из-за чего? Бензин или масло здесь уже не упрекнешь. Остается естественное старение. Причем психологически напрячь владельца нагреватель способен — check при его отказе зажжется. А вот почувствовать какие-то изменения, во всяком случае не в пределах смены времени года или стиля езды, удастся вряд ли. Безусловно, будучи без прогрева, какое-то время после пуска «лямбда» не посылает сигнал блоку управления. И теоретически в этот момент двигатель должен потреблять больше топлива. В реальности же его перерасход может оказаться настолько мизерным, что владелец этого не заметит. Впрочем, выслушаем диагностов.
— Теоретически любые примеси в бензине могут вывести лямбда-зонд из строя. Тем более моторное масло, которое, если расход на угар велик, в сгоревшем виде попадает на его внешний электрод. Точных значений последнего не скажу. Отмечу лишь, что сейчас все-таки повальных отказов не наблюдаем.
Последствия выхода из строя могут быть крайне разнообразны. Кто-то даже не заметит изменений в расходе топлива, который сильно зависит от забортной температуры. Он, кстати, может даже несколько снизиться — такие случаи известны. На отдельных моделях — например, современных Mercedes-Benz — при любой ошибке активируется аварийный режим с ограничением тяги. И «кислородник» тут не исключение, пусть даже у него отказал лишь нагревательный элемент. Некоторые Honda 2000-х годов на удивление тоже инициируют «аварию» — всего лишь по причине неработоспособности второй «лямбды».
Без работоспособного датчика перед катализатором блок управления будет неправильно готовить топливовоздушную смесь, переливать или обеднять. В первом случае излишки топлива будут догорать в катализаторе. При бедной смеси в камерах сгорания не будет вспышки и несгоревший бензин опять же отправится в нейтрализатор. Излишне говорить, что с ним в итоге произойдет.
Раньше не все сканеры видели показания «лямбды». Проверяли в основном осциллографом, который до сих пор может дать более полную картину ее работоспособности. Но сейчас острой необходимости пользоваться этим прибором нет. По крайней мере, в ряде случаев увидеть работу датчика позволяет даже диагностическая колодка и соответствующая программа в телефоне.
Покупка универсального датчика — лотерея. Да, они дешевле оригинальных. А гарантии, что будут работать, нет. Во всяком случае, нам известны примеры, когда распиновка в разъемах не совпадала с той, что на автомобиле. Это решаемо. Хуже то, что система может просто не увидеть универсальную «лямбду». При этом продавцы обратно их, как правило, не принимают — видят, что их уже устанавливали, по сплющенной уплотнительной шайбе. Альтернатива оригинальным, хотя бы для автомобилей немолодых и недорогих, — покупка бэушных. Такие нередко еще могут поработать достаточно долго.
Еще одна точка зрения, в основном по «японцам» разных лет выпуска.
— Как обычные лямбда-зонды, так и датчики состава смеси, то есть широкополосные, проверяются элементарно. Осциллограф, конечно, точный и надежный инструмент диагноста. Но грамотный мастер увидит состояние датчика и по значениям на сканере. Тем более что непринципиально, не работает «лямбда» совсем или дает не вполне корректную информацию и неоперативно. Все равно смесеобразование идет неправильно.
Другой пример вероятной возможности приговорить датчик — ехать вброд. Погрузиться достаточно глубоко, чтобы залить первую «лямбду». На автомобилях немолодых катализатор может быть расположен довольно низко, а датчик — непосредственно перед ним.
Второй «кислородник», который контролирует катализатор и также всегда имеет нагрев, находится ниже, и «намочить» его можно даже в глубокой луже. Резкий перепад температуры выведет нагрев из строя.
При этом я бы не сказал, что на замену лямбда-зондов клиенты едут валом. Не попадались мне и датчики в «шубе» из сажи. Вообще ресурс их немал. Например, по мануалам Toyota их нужно проверять на 100 000 км и только при необходимости менять. На моем Harrier с 5S «лямбда» отходила 230 000 км.
Но игнорировать неисправность датчика не получится — она приводит к нарушениям в работе системы управления двигателем. На «японках» 90-х двигатель вполне мог глохнуть. Работал с перебоями, с провалами на разгонах. Правда, некоторые автомобили никак не реагируют на проблемную «лямбду».
На моделях посвежее и тем более современных система запросто может встать в «аварию». Иной раз не «увидев» показаний и со второго лямбда-зонда. В этой ситуации надо смотреть катализатор. Если из строя вышел первый датчик — обязательно менять! ЦПГ переливами топлива по этой причине не загубит. Но сам нейтрализатор, очень вероятно, оплавится.
Покупать «кислородники» малоизвестных брендов не стоит. Хотя и оригинальные, бывало, работали буквально неделю-две. В целом же советую Bosch, Denso, NGK. Универсальные обычно продаются без «фишки». У Bosch с разъемом, но тоже не всегда. Мы используем NGK/NTK — за все время с их отказами по причине низкого качества не сталкивались.
А вот мнение из «конкурирующего лагеря» — из структуры, занимающейся обслуживанием и ремонтом «немцев»:
— Лямбда-зонд — довольно выносливая штука. Конечно, ее может прикончить и паленый бензин, и «масложор». Другое дело, что первый в более-менее крупных городах уже редкость. А второй, если доходит до полулитра-литра на 1000 км, то автовладельца вряд ли будет беспокоить какой-то там датчик. Нередко «кислородники» (особенно вторая «лямбда») расположены достаточно низко и постоянно подвергаются обработке грязью, влагой. И все равно работают! Ресурс? К примеру, Bosch заявляет о работоспособности своих датчиков на протяжении как минимум 150 000 км. Мы это в общем подтверждаем, за исключением редких случаев.
Элемент нагрева лямбда-зондов столь же ресурсен и, как правило, отказывает лишь по причине естественного износа. Однако бывает, что он повреждается механически — например, дорожными камешками или от естественных колебаний при демонтаже-монтаже выхлопа. Ни к каким последствиям, по сути, это не ведет — загорится Check, и лямбда-регулирование состава топливовоздушной смеси или «лямбда-слежка» за чистотой выхлопа будут включаться позже, по мере прогрева зонда естественным путем от выхлопных газов. Выход из строя подогрева второго лямбда-зонда за катализатором не приведет ни к чему, кроме индикатора на панели приборов, но если речь о первой «лямбде», то выхлоп в первые минуты станет чуточку грязнее и на толику вырастет расход топлива. Для владельца первое будет не принципиально, а второе он, скорее всего, не заметит.
Но на неисправность самого лямбда-зонда не обратить внимание трудно. Автомобиль либо «зачекует», либо заработает неровно и из выхлопной трубы запахнет несгоревшим бензином. Также двигатель может глохнуть, троить, не развивать мощность. Для немецких машин с их прецизионными моторами даже загоревшийся безо всяких дополнительных симптомов Check Engine — уже повод ехать на диагностику. А тут такое! Впрочем, переживать за ЦПГ не стоит. Однако если на это плюнуть (вполне возможно, что автомобиль будет как-то передвигаться), рано или поздно произойдет разрушение катализатора — он оплавится.
Мы на автомобили клиентов устанавливаем ремонтные датчики Bosch. Все «немцы» комплектуются лямбда-зондами этого производителя на конвейере, а ремкомплект отличается от оригинала лишь чуть большей универсальностью — длиной проводов и совместимостью разъемов. При этом периодически наблюдаем, как в других сервисах, меняя датчики на V6, V8, V10 и V12, путают правую и левую стороны — нестабильная работа двигателя на холостых и потеря мощности в движении в этом случае гарантированы.
Добавим, что на V-«образниках» или «оппозитниках» при неисправности датчика с одной стороны блока (неважно, от заправки некачественным топливом или подошел к концу ресурс) в скором времени стоит ожидать «окончания» и второго. А менять их надо парами — чтобы исключить вероятность несинхронной работы.
Скажем еще, что далеко не всегда для первой и второй «лямбды» есть аналоги от Bosch, Denso, Delphi, NGK. И даже от производителей из Китая. Последнее, пожалуй, к лучшему. Но отсутствие альтернативы от фактических конвейерных поставщиков заставляет покупать детали под брендами автопроизводителей. А это значительно дороже.
Читайте также: