Устройство трамблера бесконтактной системы зажигания
Бесконтактная система зажигания является конструктивным продолжением контактно-транзисторной системы зажигания. В данной системе зажигания контактный прерыватель заменен бесконтактным датчиком. Бесконтактная система зажигания стандартно устанавливается на ряде моделей отечественных автомобилей, а также может устанавливаться самостоятельно вместо контактной системы зажигания.
Применение бесконтактной системы зажигания позволяет повысить мощность двигателя, снизить расход топлива и выбросы вредных веществ за счет более высокого напряжения разряда (30000В) и соответственно более качественного сгорания топливно-воздушной смеси.
Бесконтактная система зажигания имеет следующее устройство:
— источник питания;
— выключатель зажигания;
— датчик импульсов;
— транзисторный коммутатор;
— катушка зажигания;
— распределитель;
— центробежный регулятор опережения зажигания;
— вакуумный регулятор опережения зажигания;
— провода высокого напряжения;
— свечи зажигания.
Схема бесконтактной системы зажигания
В целом устройство бесконтактной системы зажигания аналогично контактной системе зажигания, за исключением следующих устройств: датчика импульсов и транзисторного коммутатора.
Датчик импульсов предназначен для создания электрических импульсов низкого напряжения. Различают датчики импульсов следующих типов:
— датчик Холла;
— индуктивный датчик;
— оптический датчик.
Наибольшее применение в бесконтактной системе зажигания нашел датчик импульсов использующий эффект Холла (возникновение поперечного напряжения в пластине проводника с током под действием магнитного поля). Датчик Холла состоит из постоянного магнита, полупроводниковой пластины с микросхемой и стального экрана с прорезями (обтюратора).
Прорезь в стальном экране пропускает магнитное поле и в полупроводниковой пластине возникает напряжение. Стальной экран не пропускает магнитное поле, и напряжение на полупроводниковой пластине не возникает. Чередование прорезей в стальном экране создает импульсы низкого напряжения.
Датчик импульсов конструктивно объединен с распределителем и образуют одно устройство – датчик-распределитель. Датчик-распределитель внешне подобен прерывателю-распределителю и имеет аналогичный привод от коленчатого вала двигателя.
Транзисторный коммутатор служит для прерывания тока в цепи первичной обмотки катушки зажигания в соответствии с сигналами датчика импульсов. Прерывание тока осуществляется за счет отпирания и запирания выходного транзистора.
Принцип работы бесконтактной системы зажигания
При вращении коленчатого вала двигателя датчик-распределитель формирует импульсы напряжения и передает их на транзисторный коммутатор. Коммутатор создает импульсы тока в цепи первичной обмотки катушки зажигания. В момент прерывания тока индуцируется ток высокого напряжения во вторичной обмотке катушки зажигания. Ток высокого напряжения подается на центральный контакт распределителя. В соответствии с порядком работы цилиндров двигателя ток высокого напряжения подается по проводам высокого напряжения на свечи зажигания. Свечи зажигания осуществляют воспламенение топливно-воздушной смеси.
При увеличении оборотов коленчатого вала регулирование угла опережения зажигания осуществляется центробежным регулятором опережения зажигания.
При изменении нагрузки на двигатель регулирование угла опережения зажигания производит вакуумный регулятор опережения зажигания.
Подготовка и установка:
Готовимся к установке – дрель, сверло и пара саморезов ( для катушки в моторном отсеке предусмотрены стандартное место крепежа, а вот коммутатор придется крепить самостоятельно), рожковый ключ на 13, накиданные или торцовые ключи на 8 и 10. Для того, чтобы поставить двигатель на метку «ВМТ» понадобиться ключ на 38.
Можем приступать к замене:
1. Берем ключ на 38 и крутим гайку храповика до совпадения меток на шкиве коленвала и передней крышки двигателя, то есть устанавливаем двигатель на метку «ВМТ»
2. Запоминаем расположение распределителя и бегунка, в такое положение будет ставиться новый распределитель. В моем случае, бегунок повернут к клапанной крышке и «стоит на четвертый цилиндр» по крышке распределителя. Это его правильное положение.
3. Так же, находим на катушке, метку Б+ и запоминаем какие провода к ней прикручиваются. После чего откручиваем и снимаем катушку.
4. Ключом на 13 откручиваем гайку замка распределителя и снимаем его. Стараемся не потерять прокладку.
5. Закрепляем коммутатор, прикручиваем черный провод «на массу». Устанавливаем и закрепляем к кузову катушку. Стандартные провода подключаем на соответственные клеммы ( обращаем внимание на расположение клемм Б и К на новой катушке). Провода с коммутатора – с меткой + на клемму Б, второй провод на клемму К.
6. Устанавливаем распределитель, гайку замка полностью не затягиваем. Подключаем провода от коммутатора к распределителю. Проверяем положение распределителя и бегунка, надеваем крышку и подключаем провода в порядке 1-3-4-2.
7. После, того как все закрепили, можем запускать двигатель и приступать к регулировке зажигания «на слух». Но если у Вас есть стробоскоп, можете им воспользоваться . Для этого, на работающем двигателе, медленно крутим распределитель (гайку замка, мы для этого и не затягивали) «вперед-назад» и ищем среднее положение, в котором обороты двигателя будут самыми высокими и ровными.
На примере системы зажигания карбюраторного двигателя 21083 автомобиля ВАЗ 21083 (21093, 21099) попробуем разобраться как она устроена и как работает.
Схема бесконтактной системы зажигания карбюраторного двигателя 21083
Устройство бесконтактной системы зажигания
1. Генератор.
Обеспечивает подачу электрического тока при работе двигателя автомобиля. В частности, подает напряжение в систему зажигания.
2. Аккумуляторная батарея.
Обеспечивает подачу электрического тока при запуске двигателя.
3. Монтажный блок предохранителей и реле.
Служит для коммутации проводов электрических цепей низкого напряжения, в частности системы зажигания.
4. Катушка зажигания.
Выдает ток высокого напряжения на распределитель зажигания.
5. Коммутатор.
Выдает импульс для искрообразования (размыкая цепь питания первичной обмотки катушки зажигания) в том или ином цилиндре по сигналу с датчика Холла.
6. Датчик Холла.
Формирует управляющий импульс (снижая напряжение) для коммутатора, сигнализирующий о необходимости искрообразования в том или ином цилиндре двигателя.
7. Распределитель зажигания (трамблер) с вакуумным и центробежным регуляторами опережения зажигания.
Служит для формирования управляющего импульса на коммутатор (датчик Холла), распределения импульсов высокого напряжения по свечам зажигания ("бегунок"), коррекции угла опережения зажигания в соответствии с режимом работы двигателя (центробежный и вакуумный регуляторы).
8. Высоковольтные провода (бронепровода).
Служат для передачи тока высокого напряжения от катушки зажигания на крышку трамблера и далее к свечам зажигания.
9. Замок зажигания.
Служит для замыкания цепи системы зажигания. Через него поступает электрический ток в систему зажигания.
10. Реле зажигания.
Служит для разгрузки контактов выключателя зажигания (замка) и подачи напряжения на катушку и коммутатор.
11. Свечи зажигания.
Служат для образования искры в камерах сгорания двигателя и поджига топливной смеси.
Как работает бесконтактная система зажигания?
Электрический ток в систему зажигания поступает с вывода «30» генератора, через монтажный блок предохранителей, замок зажигания, реле зажигания и далее на вывод «Б» катушки зажигания. Система запитывается после поворота ключа в замке зажигания.
- При работе двигателя вращается вал распределителя зажигания (трамблера). В работу вступает датчик Холла. Стальной круглый экран с четырьмя прорезями на валу трамблера, вращаясь, проходит через зазор этого датчика. Когда проходит прорезь экрана, напряжение отдаваемое датчиком ниже бортового на 3 В или равно ему, когда зубец экрана, напряжение падает практически до нуля. Прохождение каждого из четырех зубцов соответствует такту сжатия и моменту зажигания в одном из цилиндров двигателя.
- Далее в работу вступает коммутатор. Свои прерывистые импульсы датчик Холла подает на вывод «6» коммутатора, а тот в свою очередь подает импульс на первичную обмотку катушки зажигания (вывод «К»).
- Теперь срабатывает катушка зажигания. В момент прерывания электрического тока (зубец экрана проходит через зазор датчика Холла) магнитное поле в катушке зажигания резко сжимается и, пересекая витки обмотки, производит ЭДС порядка 22-25 кВ (ток высокого напряжения).
- Работа распределителя зажигания. Ток высокого напряжения по центральному бронепроводу поступает на центральный вывод крышки трамблера и далее на «бегунок»-распределитель зажигания, который вращаясь, раздает ток высокого напряжения по четырем клеммам крышки.
- Работа свечей зажигания. По высоковольтным проводам ток высокого напряжения поступает к свечам зажигания. Между их электродами проскакивает искра, воспламеняющая топливную смесь в цилиндрах двигателя.
Чтобы добиться от двигателя максимальной мощности необходимо воспламенять смесь искрой несколько раньше прихода поршня в верхнюю мертвую точку (ВМТ). Для этого регулируют угол опережения зажигания вращением трамблера в ту или иную сторону. При холостых оборотах двигателя 750-800 об/мин угол опережения зажигания, например для двигателя 21083 работающего на 92-м бензине должен составлять 4±1º.
Бесконтактная система зажигания появилась благодаря развитию контактно-транзисторной системы. Отличие бесконтактной системы зажигания состоит замене контактного прерывателя на бесконтактный датчик.
Преимущества бесконтактной системы зажигания
Использование бесконтактной системы зажигания на автомобиле позволило повысить мощность, добиться более качественного сгорания горючей смеси, что не только позволило снизить расход, но и уменьшить выброс вредных веществ в атмосферу.
Устройство бесконтактной системы зажигания
1 - Свечи зажигания; 2 - датчик-распределитель; 3 – распределитель; 4 - датчик импульсов; 5 – коммутатор; 6 – катушка зажигания; 7 - монтажный блок; 8 - реле зажигания; 9 - выключатель зажигания; А - к клемме генератора.
Бесконтактная система состоит из следующих элементов:
- источник питания;
- выключатель зажигания ;
- датчик импульсов;
- транзисторный коммутатор;
- катушка зажигания;
- распределитель ;
- свечи зажигания.
Общее устройство бесконтактной системы зажигания напоминает строение контактной системы зажигания. Распределитель соединяется со свечами и катушкой зажигания при помощи высоковольтных проводов. Также в бесконтактной системе имеется датчик импульсов и транзисторный коммутатор.
Датчик импульсов служит для создания электро- импульсов низкого напряжения. Различают несколько датчиков импульсов: датчик Холла, индуктивный датчик и оптический.
В бесконтактной системе зажигания свое применение нашел датчик Холла (где под воздействием магнитного поля возникает поперечное напряжение в пластине проводника). Датчик Холла имеет не сложную конструкцию и состоит из постоянного магнита, полупроводниковой пластины, микросхемы и обтюратора (стального экрана).
В стальном экране имеется отверстие, через которое датчик пропускает магнитное поле, вследствие чего в полупроводниковой пластине возникает напряжение. Стальной экран, в свою очередь, не пропускает магнитное поле, и напряжение на полупроводниковой пластине не возникает. Такое своеобразное чередование прорезей в стальном экране содействует созданию импульсов низкого напряжения.
Датчик распределитель - это устройство, в котором объединены датчик импульсов с распределителем. Датчик-распределитель напоминает прерыватель-распределитель, и также как он приводится в действие от коленчатого вала.
Транзисторный коммутатор предназначен для прерывания тока в первичной обмотке катушки зажигания в моменты сигналов датчика импульсов. Прерывание тока происходит за счет срабатывания выходного транзистора.
Как работает бесконтактная система зажигания
Датчик-распределитель приводится в действие от вращения коленчатого вала, формируя импульсы низкого напряжения, которые передает на транзисторный коммутатор. Коммутатор, в свою очередь создает импульсы тока в первичной обмотке катушки зажигания. Когда ток прерывается, индуцируется ток высокого напряжения во вторичной обмотке катушки зажигания, после чего ток высокого напряжения подается на центральный контакт распределителя. В зависимости от порядка работы цилиндров двигателя ток высокого напряжения распределяется по проводам высокого напряжения на свечи зажигания. Свечи зажигания осуществляют воспламенение горючей смеси.
Когда число оборотов коленчатого вала растет, за регулировку угла опережения зажигания отвечает центробежный регулятор опережения зажигания. При изменении режимов работы двигателя регулирование угла опережения зажигания производится вакуумным регулятором опережения зажигания.
Задача системы зажигания — обеспечение в нужный момент искры зажигания достаточной энергии для воспламенения топливной смеси. Чем точнее выполняется этот процесс, тем выше мощность и эффективность двигателя. Правильно выставленное зажигание позволяет повысить мощность двигателя, снизить расход топлива и выбросы вредных веществ.
Кроме того, из-за постоянного износа контактов не возможно обеспечить точное соблюдение заданного момента воспламенения. Это вызывало перебои в работе двигателя, повышение расхода топлива и выбросам вредных веществ атмосферу.
Благодаря развитию электроники удалось инициировать процесс воспламенение бесконтактно, в результате чего решились проблемы износа и технического обслуживания. При этом заданный момент зажигания точно соблюдается практически в течение всего срока службы.
В первую очередь, это достигается благодаря индуктивному формированию сигнала (бесконтактная транзисторная система зажигания с накоплением энергии в индуктивности) и формированию сигнала датчиком Холла (TSZ-h).
Поскольку обе эти системы экономичны и относительно недорогие, они используются и сегодня на некоторых двигатетелях малого объема.
Основные преимущества бесконтактной системы зажигания:
- отсутствие износа и технического обслуживания,
- постоянный момент воспламенения,
- отсутствие дребезга контактов и, как следствие, возможность увеличения частоты вращения,
- регулирование накопления энергии и ограничение первичного тока,
- более высокое вторичное напряжение системы зажигания
- отключение постоянного тока.
Структура и функции БСЗ
На основании рисунка кратко поясняется принцип работы системы:
- Аккумуляторная батарея
- Выключатель зажигания и стартера
- Катушка зажигания
- Коммутатор
- Датчик зажигания
- Датчик-распределитель
- Свеча зажигания
При включении зажигания (2) подается напряжение питания на первичную обмотку катушки зажигания (3). Через первичную обмотку проходит ток, как только коммутатор (4) получит сигнал с датчика зажигания (5), ток первичной обмотки прерывается. Клемма 1 катушки зажигания по средством коммутатора соединяется с массой. Во вторичной обмотке индуцируется высокое напряжение более 20 кВ.
Вторичное напряжение системы зажигания через клемму 4 катушки зажигания передается на датчик-распределитель на соответствующий цилиндр и свечу зажигания.
Блок управления определяет частоту вращения коленчатого вала (сигналы датчика) и на ее основании управляет временем накопления тока первичной обмотки катушки зажигания (длительностью открытого состояния выходного транзистора или тиристора системы зажигания) и его величиной. В соответствии с частотой вращения и напряжением аккумуляторной батареи, незадолго до появления искры зажигания устанавливается заданное значение первичного тока, то есть при увеличении частоты вращения длительность протекания тока увеличивается так же, как при уменьшении напряжения аккумуляторной батареи.
При включенном зажигании и неработающем двигателе (отсутствие сигнала датчика) через некоторое время (как правило, через одну секунду) отключается ток первичной обмотки катушки зажигания. Как только блок управления получит сигнал датчика (например, при запуске), он снова переходит в рабочее состояние.
Для адаптации момента зажигания к разным состояниям нагрузки регулировка осуществляется так же, как и в контактных системах зажигания, механическим способом посредством мембранного механизма вакуумного регулятора, а также центробежного регулятора. В результате сигнал датчика (и вместе с ним момент зажигания) изменяется в зависимости от оборотов и нагрузке двигателя.
- Центробежный регулятор
- Вакуумный регулятор опережения зажигания с мембранным механизмом
- Вал распределителя зажигания 4 — Полый вал
- Статор индуктивного датчика распределителя зажигания
- Ротор датчика управляющих импульсов
- Ротор распределителя зажигания
Индуктивное формирование сигнала в бесконтактной транзисторной системе зажигания накоплением энергии в индуктивности
В результате вращения ротора датчика управляющих импульсов изменяется магнитное поле и в индукционной обмотке (статоре) создается представленное на рисунке а, б переменное напряжение. При этом напряжение увеличивается по мере приближения зубцов ротора к зубцам статора. Положительный полупериод напряжения достигает своего максимального значения, когда расстояние между зубцами статора и ротора минимальное. При увеличении расстояния магнитный поток резко меняет свое направление и напряжение становится отрицательным.
- Постоянный магнит
- Индукционная обмотка с сердечником
- Изменяющийся воздушный зазор
- Ротор датчика управляющих импульсов
В этот момент времени (tz) в результате прерывания первинного тока коммутатором инициируется процесс зажигания.
Количество зубцов ротора и статора в большинстве случаев соответствует количеству цилиндров. В этом случае ротор вращается с уменьшенной вдове частотой вращения коленчатого вала. Пиковое напряжение (± U) при низкой частоте вращения составляет прибл. 0,5 В, при высокой — прибл. до 100 В.
Момент зажигания можно проконтролировать только при работающем двигателе, поскольку без вращения ротора изменение магнитного поля не происходит и в результате не создается сигнал.
Формирование сигнала датчиком Холла
Вторую возможность бесконтактного управления искрообразованием, возможно осуществить с помощью датчик Холла.
Датчик Холла часто используется при переоборудование системы зажигания с контактной на бесконтактную, поскольку его удается установить вместо прерывателя на подвижную пластину.
В бесконтактном датчике используется эффект Холла (названный в честь его открывателя), заключающийся в возникновение поперечной разности потенциалов в проводнике с постоянным током под действием магнитного поля. Эффект Холла особенно эффективен в специальных полупроводника. Микросхема, интегрированная в датчик Холла еще больше усиливает сигнал.
- Av А2 — соединения, полупроводниковый слой
- UH — напряжение Холла
- В — магнитное поле (плотное)
- Iv — постоянный ток питания
При вращении экрана с прорезями (обтюратора) магнитное поле периодически воздействуют на датчик Холла. Если между магнитными направляющими обтюратор открыт (так называемые прорези), индуктируется напряжение Холла. Если в воздушном зазоре между магнитными направляющими обтюратор закрыт, то линии магнитного поля не могут воздействовать на датчик Холла и напряжение близко к нулю (Небольшие поля рассеяния полностью подавить нельзя). Благодаря характеристике напряжения Холла снова присутствует сигнал для искрообразования.
- Обтюратор с шириной b
- Постоянный магнит
- Микросхема Холла
- Воздушный зазор
Количество прорезей соответствует в большинстве случаев количеству цилиндров, а обтюратор вращается вместе с ротором распределителя зажигания с уменьшенной вдвое частотой вращения коленчатого вала. Для регулирования опережения зажигания пластина, на которой закреплен датчик Холла, механически передвигается по уже знакомому принципу. Искрообразование происходит при включении датчика Холла (t2), то есть как только прорезь позволит линиям магнитного поля воздействовать на датчик Холла. В данном случае настройку зажигания можно выполнять при неработающем двигателе (соблюдайте информацию производителя!).
Рисунок. Характеристика напряжения Холла
Поиск неисправностей в бесконтактной системе зажигания
При выполнении поиска неисправностей в бесконтактной системе зажигания помните:
Современные системы зажигания работают с очень высокими напряжениями, вследствие чего при соприкосновении стоковедущими частями системы может возникнуть опасность для жизни как на стороне первичного, так и вторичного тока. Поэтому при проведении работ с системой зажигания отключите зажигание и питающее напряжение!
Прежде чем начать поиск неисправностей, еще раз следует вспомнить функции зажигания (искра зажигания — достаточная мощность — правильный момент зажигания).
Во-первых, следует убедиться, что искра зажигания присутствует. Самый простой способ проверки: подключить новую свечу зажигания к проводу высокого напряжения (свеча зажигания должна быть соединена с массой двигателя) и кратковременно произвести запуск. Визуально проверить наличие искры. При отсутствии искры зажигания необходимо провести визуальный контроль всей системы, а также контроль разъемных соединений на предмет коррозии или наличия влаги и на точность посадки проводов.
Если явных повреждений не обнаружено, следует проследить процесс искрообразования в обратном порядке, от свечи зажигания через свечной наконечник и провод высокого напряжения к контакту на распределителе, от распределителя провод высокого напряжения к катушке зажигания и от катушки зажигания к блоку управления. Точно так же проверяются и входы блока управления.
Важно знать, отсутствует ли искра на одной свече зажигания или на всех. Если только на одной, неисправность может возникнуть на участке между свечой зажигания соответствующего цилиндра и распределителем. Если искра отсутствует на всех свечах, вероятнее всего искрообразования вообще не происходит, а неисправность находится на участке между распределителем и блоком управления или на входах блока управления.
В первом случае проверяют провод высокого напряжения от распределителя до свечи зажигания. Простая проверка сопротивления показывает исправность провода. Сопротивления свечного наконечника и провода распределителя суммируются. Для провода высокого напряжения с предварительным искровым промежутком такой способ проверки не подходит. В этом случае только при помощи индуктивных клещей, зажимаемых через провод высокого напряжения, можно проверить, передается ли вторичное напряжение системы зажигания по проводу. В противном случае функция проверяется опытным путем, заменой соответствующего провода высокого напряжения.
Если провод в порядке, тогда проверяют распределитель и крышку распределителя. При этом путем визуального контроля убедитесь, что контакты не сожжены, а на крышке распределителя отсутствуют трещины или другие повреждения.
Если искрообразования вообще не происходит, проверяют ротор распределителя зажигания (визуальный контроль, измерение сопротивления); точно так же поступают с кабелем высокого напряжения, ведущего от распределителя к катушке зажигания.
Следующее измерение сопротивления касается катушки зажигания. При этом сопротивление измеряют между клеммой 1 и клеммой 15 для первичного контура. Вторичный контур катушки зажигания измеряется между клеммами 4 и 1. При проведедении измерений учитывайте заданные значения производителей. Может быть, что перебои в первичной и вторичной обмотках катушки зажигания появляются только при повышенных температурах.
Для измерения сопротивления на катушке зажигания необходимо отсоединить все контакты.
Кроме того, на катушке зажигания проверяют напряжение питания на клемме 15. Оно должно составлять значение напряжения аккумуляторной батареи (минус падение напряжения на дополнительном резисторе). Далее на клемме 1 можно проверить угол поворота ротора датчика и скважность импульсов.
При частоте вращения холостого хода величина угла поворота ротора датчика составляет от 5 до 15, при повышении числа оборота увеличивается. В более старых моделях автомобилей без регулирования угла поворота ротора, но с безконтактной тиристорной системой зажигания параметр имеет постоянное значение.
Если катушка зажигания в порядке, но на клемме 15 отсутствует напряжение, необходимо проверить провод до замка зажиния в обратном порядке и устранить причину неисправности.
Если при пусковой частоте вращения регулирования угла поворота ротора датчика не происходит и скважность импульсов не измеряется, хотя питание через клемму 15 подается, следует проверить соответствующий выходной сигнал на блоке управления.
Если причина не в нем, необходимо проверить все входы на блоке управления. При этом в первую очередь следует убедиться, что на блок управления поступает напряжение питания, то есть опять входной сигнал клеммы 15. На клемме 3 должно присутствовать хорошее соединение с массой. Если в обоих случаях все в порядке, проверяют вход искрообразования. При этом, как уже упоминалось выше, различают индуктивное образование и образование датчиком Холла.
При индуктивном искрообразовании на клемме 7 при помощи осциллоскопа можно проверить выходное переменное напряжение. Если осциллоскопа под рукой не окажется, можно измерить также переменное напряжение. При этом помните, что измеряемое переменное напряжение может оставлять от 0,5 В до 100 В — в зависимости от частоты вращения двигателя.
При искрообразовании посредством датчика Холла на соответствующей клемме проверяют сигнал датчика Холла путем измерения скважности импульсов. В зависимости от производителя значение скважности импульса при пусковой частоте вращения может составлять от 10% до 30%. Если сигнал датчика Холла отсутствует, проверяется питание датчика. Кроме того, проверьте сопротивление провода в отсоединенном состоянии.
Существует опасность повреждения датчика Холла при измерении сопротивления!
После проверки электрических цепей следующим этапом является проверка момента зажигания.
Проверка момента зажигания может быть как статичная, то есть в неработающем состоянии, так и динамичная при работающем двигателе. До этого необходимо проверить механические устройства регулирования, поскольку их износ может нарушить правильную работу. Центробежное регулирование, зависящее от частоты вращения двигателя, проверяется лампой-стробоскопом, а также тестером, при медленном повышении частоты вращения двигателя. Перед этим отсоедините вакуумную трубку. В установленном производителем диапазоне частоты вращения момент зажигания должен плавно переместиться в сторону опережения,
Регулирование момента зажигания, зависящее от разряжения в сторону раннего или позднего, можно проверить просто, путем съема и установки вакуумной трубки привода вакуумного регулятора и одновременного наблюдения за смещением момента зажигания при помощи лампы-стробоскопа или тестера для двигателя. Регулирование в сторону позднего момента зажигания эффективно при холостом ходе, в сторону раннего момента при 2000-3000 мин^-1. Но и в данном случае точные значения зависят от инструкций производителя.
Причинами неудовлетворительной работы регулирующих устройств, зависящих от частоты вращения, могут быть коррозия датчиков или ослабление пружин. Функция механическо-пневматически регулирующих устройств, зависящих от нагрузки, может быть нарушена в результате повреждения мембранного механизма вакуумного регулятора (тугой ход, разгерметизация), механических повреждений, не герметичности вакуум-шлангов, а также неправильной настройки дроссельной заслонки.
Бесконтактная система зажигания представляет собой более совершенную систему по сравнению с контактно-транзисторным зажиганием. Основная особенность – вместо контактного прерывателя использован бесконтактный датчик. Другими словами, конструкция прерывателя распределителя исключает наличие контактов. В результате такие системы получили название бесконтактные.
При этом установка бесконтактного зажигания возможна даже на тех автомобилях, где изначально стоит контактная система. По этой причине данное решение пользуется большим спросом среди владельцев отечественных авто (например, бесконтактное зажигание ВАЗ). Далее мы рассмотрим, как устроено и работает зажигание электронное, а также какие преимущества системы зажигания данного типа можно выделить.
Система зажигания: бесконтактное зажигание
Итак, бесконтактная система повышает мощность двигателя, уменьшает расход горючего, снижает токсичность выхлопа и т.д. Это становится возможным благодаря тому, что разряд отличается более высоким напряжением (30 тысяч вольт.). В свою очередь, мощная искра позволяет смеси сгорать более эффективно и полноценно.
Если иначе, отсутствие контактов позволяет подать ток на первичную обмотку катушки зажигания через полупроводниковый коммутатор, в результате чего энергия искры больше и удается получить большее напряжение на вторичной обмотке катушки. В среднем, показатель составляет до 10 кВ;
Еще следует добавить, что обслуживать бесконтактное зажигание проще, так как сбои возникают не часто, а сама система нуждается в обслуживании намного реже. Бесконтактное зажигание не нуждается в чистке и регулировке.
Также для нормальной работы электронного зажигания требуется меньше энергии АКБ. Это значит, что «с толкача» двигатель удается завести даже тогда, когда аккумулятор сильно разряжен. Дело в том, что после включения зажигания компоненты практически не потребляют энергию аккумулятора.
Если сравнивать с контактным зажиганием, энергия в этом случае потребляется тогда, когда контакты прерывателя замкнуты, катушка зажигания греется даже при заглушенном моторе. По конструкции бесконтактная система зажигания включает в себя несколько элементов. Если рассматривается схема зажигания данного типа, она включает в себя:
- питание;
- выключатель зажигания,
- датчик импульсов;
- транзисторный коммутатор;
- катушка зажигания;
- распределитель; ;
Распределитель зажигания соединяется со свечами посредством ВВ – проводов (высоковольтные свечные провода зажигания). На деле, устройство бесконтактной системы зажигания напоминает схему контактного зажигания, однако есть и отдельные элементы (датчик импульсов, транзисторный коммутатор).
- Начнем с того, что датчик импульсов (импульсный датчик)создает электрические импульсы. Такие импульсы имеют низкое напряжение. Датчик может быть датчиком Холла, а также индуктивным или оптическим.
При этом самым распространенным в бесконтактной системе зажигания является датчик импульсов на эффекте Холла. В двух словах, датчик работает за счет появления поперечного напряжения в пластине проводника с электрическим током под действием магнитного поля.
- Сам датчик Холла включает в себя постоянный магнит, полупроводниковую пластину с микросхемой, а также металлический экран с особыми прорезями. Через прорези в экране проходит магнитное поле, в полупроводниковой пластине возникает напряжение.
Также экран не позволяет магнитному полю проникать постоянно, в результате чего нет напряжения на полупроводниковой пластине. Получается, благодаря чередованию прорезей в экране создаются импульсы низкого напряжения.
Импульсный датчик соединен с распределителем, образуя единый датчик-распределитель. Датчик напоминает прерыватель-распределитель, приводится в действие от коленвала ДВС.
- Еще одним элементом является транзисторный коммутатор. Данный элемент необходим для того, чтобы прерывать ток в цепи первичной обмотки катушки зажигания.
Прерывание осуществляется благодаря сигналам импульсного датчика (за счет чередующегося отпирания, а также запирания выходного транзистора).
Бесконтактная система зажигания: принцип работы
Рассмотрев устройство и составные элементы, можно перейти к тому, как работает бесконтактное зажигание. Прежде всего, когда вращается коленвал двигателя, происходит формирование импульсов напряжения от датчика-распределителя. Импульсы передаются на транзисторный коммутатор.
В свою очередь, коммутатор формирует импульсы тока в цепи первичной обмотки катушки зажигания. В тот момент, когда происходит прерывание тока, осуществляется индуцирование тока высокого напряжения на вторичной обмотке катушки.
Когда обороты коленвала увеличиваются, происходит регулировка УОЗ (угол опережения зажигания) за счет центробежного регулятора опережения зажигания. Если меняется нагрузка на мотор, угол опережения зажигания меняется за счет вакуумного регулятора опережения зажигания.
Неисправности бесконтактной системы зажигания: признаки и причины
Как и любое другое решение, бесконтактная система зажигания имеет как плюсы, так и минусы. Среди основных недостатков можно выделить то, что надежность некоторых составных элементов (особенно при условии использования дешевых аналогов) может быть низкой.
Само собой, неисправности системы зажигания сразу сказываются на работе двигателя. При этом важно обращать внимание на такие признаки:
- Запуск двигателя затруднен или невозможен (вероятны проблемы со свечами, ВВ-проводами, катушкой зажигания и т.д.);
- Также на сбои в системе зажигания указывает то, что на холостом ходу мотор работает нестабильно. Это может быть вызвано пробоями в крышке датчика-распределителя, неисправностями транзисторного коммутатора или самого датчика-распределителя;
- Отмечен большой расход бензина, падение мощности двигателя, пропуски зажигания и т.д. В этом случае может быть поломка центробежного регулятора опережения зажигания, сбои в работе вакуумного регулятора опережения зажигания и т.д.
Также добавим, что бесконтактная система традиционно имеет слабые места. Это в полной мере касается коммутаторов, особенно старого образца. Еще может подводить катушка.
Рекомендуем также прочитать статью о том, как определить, ранее или позднее зажигание. Из этой статьи вы узнаете, по каким признакам можно понять, что зажигании ранее или позднее, какие симптомы указывают на сбои в работе системы зажигания и т.д.
На практике, нужно приобретать модифицированный коммутатор, а также лучше изделие иностранного производства. Такое решение «ходит» дольше, но и его срок службы, к сожалению, в отдельных случаях может оказаться не большим.
Так или иначе, важно понимать, что использование элементов системы зажигания низкого качества вполне может привести к проблемам. Например, установка неподходящих или проблемных свечей зажигания, несвоевременная их замена, использование дешевых катушек зажигания или неисправных высоковольтных проводов может влиять на исправность и состояние других элементов системы и на работу ДВС в целом.
Также нельзя исключать и воздействие других факторов (повреждения, попадание жидкостей, окисление и т.п.). Например, при мойке двигателя элементы системы зажигания нужно отдельно изолировать, в процессе эксплуатации автомобиля не допускается активное скопление влаги и т.п.
Что в итоге
Рекомендуем также прочитать статью о том, как регулируется зажигание дизельного двигателя. Из этой статьи вы узнаете, как отрегулировать и выставить зажигание на дизеле, а также что нужно знать о зажигании дизельного двигателя.
Если же приобретается электронное зажигание на ВАЗ, желательно подбирать все составные элементы хорошего качества, то есть не следует спешить купить бесконтактное зажигание комплектом по самой низкой цене. Как правило, нужно отдельно остановиться на качестве и надежности компонентов в таких комплектах.
Регулировка зажигания на популярных "классических" моделях ВАЗ (2106, 2107 и т.д.). Как настроить зажигание своими руками и проверить качество настройки.
Признаки для определения правильности выставленного угла опережения зажигания. Последствия некорректно настроенного УОЗ, способы выставления зажигания.
Почему важен корректный угол опережения зажигания. Настройка УОЗ на авто с карбюратором. Зажигание на моторах с электронным впрыском и двигателях с ГБО.
Выставление зажигания ВАЗ 2106 своими руками: признаки необходимости регулировки, как отрегулировать зажигание правильно. Порядок выполнения работ.
Что такое моноинжектор: главные отличия и особенности одноточечной системы впрыска топлива. Как проверить и самостоятельно настроить моновпрыск .
Как выставить начало момента впрыска топлива на дизельном двигателе. Различные способы настройки УОВ. Советы и рекомендации при самостоятельной настройке.
Читайте также: