Сколько атмосфер в колесе самолета
Размещу-ка я свой постег про конструкцию основных колёс Airbus-320.
Сначала - об окружении.
Красные штуки по бокам колеса на первом фото - это упорные колодки, устанавливаемые под колёса на стоянке.
Патамушта самолёт не всегда стоит на стояночном тормозе (например, с тормоза можно снять для более быстрого охлаждения тормозов после посадки), и чтобы он не поехал куда ему надо, а не лёдчеку.
Колёса до установки на самолёт хранятся в ангаре закрытыми от (солнечного?) света.
Тут можно уже рассмотреть некоторые подробности их жизни:
Такое колесо весит примерно 130 кг.
Собственно колесо состоит из диска и шины.
Диски состоят из двух половин, разнимающихся в осевом направлении, и скреплённых по окружности колеса болтами. Гайки тех болтов видны на предыдущем фото по периметру диска ближе к его наружному краю.
Вот эти гайки крупнее:
Между ними - заглушка, на место которой (как мне кажется) может быть установлен датчик давления азота - для вывода этой информации на дисплей в кабине пилотов.
На наших самолётах такая модификация не сделана, и датчиков в колёсах нет.
Для замены резины болты откручиваются от их гаек и половины диска разнимаются.
После этого проводится неразрушающий контроль половинок (методы не знаю - или ультразвуковой, или магнитный, или вихревыми токами). Если всё в поряде, то устанавливается новая шина, половинки снова встречаются, стягиваются болтами, а колесо накачивается до некоего давления, обычно ниже рабочего.
Авиационные колёса накачивают азотом. Дело в том, что резина может выделять различные углеводороды внутрь шины. Особенно, если она нагревается очень горячими тормозами.
Чтобы эта смесь не самовоспламенилась (а 14 атмосфер горючей смеси внутри ниши шасси самолёта - это очень нехило), и нужен инертный газ, заполняющий объём шины. Азот же - самый доступный из них: его в воздухе аж 78%.
Для закачки используется зарядный штуцер, ввёрнутый в наружную половинку диска:
Золотник этого штуцера по конструкции совершенно аналогичен автомобильному, разве только на некоторых типах колёс он больше по размеру.
Нормальное давление азота в шинах Boeing-737 и Airbus-320 - около 14 атмосфер (в автомобильных - порядка 2 атм). Давление проверяется приблизительно раз в сутки по форме линейного обслуживания Daily-check.
Для защиты от перенаддува на некоторых дисках бывают установлены предохранительные мембраны, разрушающиеся при превышении давления внутри колеса. Штука полезная, так как в мире бывали случаи сильного перенаддува колёс при зарядке перед установкой. Обычно в таких случаях разрывается диск колеса (внутри которого азот поступает внутрь шины), и близстоящие работники получают различные увечья. Boeing выпускал иллюстрированное предостережение насчёт.
Окончательную накачку до рабочего давления производители техники рекомендуют производить после установки колеса, уже на самолёте.
Далее, от периферии диска к центру, на первых фото видны круглые отверстия в диске.
На мой взгляд, функции у них две: облегчение диска и обеспечение естественной вентиляции тормозов.
При торможении самолёта от посадочной скорости более 200 км/ч до около нуля за короткое время пробега тормозА, естественно, очень сильно нагреваются. Нормальный нагрев на A320 - это примерно до 100 градусов Цельсия над температурой окружающей среды.
При нагреве более 300 градусов появляется предупреждающее сообщение на дисплее в кабине пилотов.
Тормоза можно охлаждать только воздухом (наверное, или азотом).
Так как Эйрбасы моделей 320 и 321 имеют бОльшую массу, чем 319-е, то на них могут устанавливаться дополнительные вентиляторы для обдува тормозов. Вентиляторы крепятся в кожухе с наружной стороны колёсного диска, а привод (электродвигатель) находится внутри колёсной оси (которая является частью амортизационной стойки шасси).
Внутри диска колеса находится (как мне кажется) теплозащитный экран, отделяющий тормозные диски от диска колеса и уменьшающий нагрев последнего:
Вот он в верхней части, весь такой зеркальный.
Стального цвета направляющие входят в пазы тормозных дисков при установке колеса.
Кстати, по сравнению с Ту-154 эта конструкция гораздо более удобна - там устроено наоборот (выступы на тормозных дисках, а вырезы - в колёсных), что довольно-таки затрудняло установку колёс (зато они там были меньше и легче).
Колесо опирается на ось через два роликовых конических подшипника - внешний и внутренний.
(См. самое первое фото)
Далее, в самом центре колёсного диска, находится крышка.
Под ней тоже есть интересного.
Крышка крепится просто - всего одним хомутом:
Если его снять, мы видим завораживающее:
(Я аж балдею от этого вида )
Если опять же рассматривать снаружи внутрь (в данном случае - сверху вниз), то мы видим:
Белое - кольцевой выступ диска колеса, за каковой выступ крепится крышка,
Чёрное - уплотнение наружного подшипника. Думаю, для предотвращения выбивания смазки из него и, может, заодно для защиты его от грязи.
Далее - корончатая гайка, которой и крепится колесо к оси.
Да, кстати - колесо крепится всего одной гайкой
Эта гайка законтрена двумя диаметрально расположенными небольшими болтами, проходящими через прорези гайки в отверстия в оси колеса (ось - это невращающаяся часть, растёт из амортстойки).
Гайки болтов контрятся шплинтами.
(А вот на 737 это сделано ещё лучше - там для контровки такой гайки используется всего одно пружинное кольцо, вставляемое сквозь отверстие в гайке в отверстие шайбы. Правда, тут зато шайбы той нет)
И, наконец, в самой серёдке - наконечник датчика скорости вращения колеса.
В амортстойке, в оси каждого из основных колёс, есть свой электрический датчик частоты вращения.
Сам датчик находится внутри оси, а его валик торчит наружу наконечником со внутренними шлицами:
Крышка находится на колесе и, разумеется, вращается вместе с ним. Вращая ротор датчика.
Сигналы ото всех датчиков поступают в систему антиюзовой автоматики, которая регулирует давление подводимой в тормоз каждого колеса гидрожидкости и подтормаживает колёса таким образом, чтобы они не проскальзывали. То есть пилот может нажимать тапку со всей дури, но работающая антиюзовая система не даст ему снести колёса, а будет обеспечивать максимально эффективное торможение.
В заключение - о покрышках/шинах.
Шины на современных колёсах бескамерные, армированные стальным кордом. Не знаю, как на 320, а на 737 шина переднего колеса содержит 7 или 9 слоёв металлического корда, а основного колеса - 14. Кроме них, ближе к поверхности резины присутствуют ещё два тонких нитяных корда. В общем случае, по этим нитяным кордам определяется допустимость износа протектора.
Новая покрышка выглядит так:
Тут глубина канавок - порядка сантиметра, а ширина канавок - сантиметра полтора-два (примерно).
Для разных типов самолётов устанавливаются различные предельные значения износа поверхности шин, но в целом они очень похожи и различаются лишь незначительными деталями. Наверное, потому, что производители шин одни и те же - Michelin, GoodYear, Yokohama.
Для примера несколько видов износа.
Если накачанное колесо изнашивается до дна канавок, его обычно пора менять.
Вообще, по моим подсчётам, колёса меняются довольно редко. В среднем по нескольким самолётам, на каждом из них менялось примерно по три колеса в месяц. Учитывая, что на 320-м колёс всего шесть, получается, что каждое колесо меняется в среднем раз в два месяца (если предположить, что у нас хромает отчётность, то можно увеличить ориентировочную интенсивность до одного раза в месяц на каждое колесо).
Разумеется, бывают и более частые замены по порезам.
После сдутия колесо выглядит так:
Что интересно, в документах такой вид износа определяется как "перенаддув", хотя нашей компании так и не удалось добиться равномерно прямолинейного профиля износа ни при каком давлении
(наверное, из-за тех техников, кто проявляет бдительность и докачивает "спущенные", по их мнению, колёса)
Так называемые "Chevron cutting" ("Шевронообразные начёсы"):
Это - допустимый износ.
Износ до первого нитяного корда:
Обычно это уже не допускается. Разве что до базы.
На Airbus. Хотя про Боинги пишут, что такового износа следует избегать по экономическим соображениям - чтобы обеспечить наварку резины на уже изношенную покрышку.
Прокол/порез в канавке:
Что интересно, нигде в документах не указывают допустимую глубину пореза
Везде ориентируются на повреждённость нитяного и основного кордов.
Есть также допуски на ширину и длину порезов.
Два нитяных корда на колесе от Boeing-767:
Ну что же.
Пожалуй, это всё, что вспомнилось на данный момент про колёса.
Рассказ представил член клуба "Наука и технология" Lx
Современная авиационная шина – сложная высокотехнологическая структура, разработанная для работы с огромными скоростями и нагрузками при максимально возможном весе и размерах. Несмотря на это, шина – один из наименее понимаемых и наиболее недооцененных элементов самолета. Каждый согласится с тем, что они «грязные, черные и круглые». Но в реальности авиашина – многоэлементный компонент, сконструированный из трех материалов: корд, резина, металл. В весовом соотношении шина самолета состоит на 50% из резины, на 45 % из корда и на 5% из металла. Углубившись в материалы компонента детальнее, можно увидеть различные типы резиновых смесей и нейлоновых кордов. Они имеют свои особые свойства для успешного выполнения поставленных задач.
Все авиационные шины можно разделить на 2 категории:
низкоскоростные (рассчитаны на наземную скорость самолета до 192 км/час);
высокоскоростные (наземная скорость – более 192 км/час).
Перед установкой шины на колесо самолета над ней проводится целый ряд испытаний.
Эти тестовые проверки разделяют на статические и динамические.
Статические
1.Проверка на прочность под воздействием внутреннего гидравлического давления. Способ: на испытательное колесо монтируют шину и до грани разрыва накачивают его водой. Определенное время шина должна без разрушения выдерживать нагрузку.
2.Определение давления посадки шины на обод колеса. Один из методов – копировальный. Между двух листов обычной бумаги кладут один копировальный лист. Затем эту бумажную «конструкцию» устанавливают между ребордой колеса и бортом шины. Далее шину накачивают. Когда пятка борта колеса коснется вертикальной поверхности реборды, фиксируется показатель давления посадки на обод. Это отразится в виде следа на обычной бумаге от копировального листа.
3.Выявление герметичности бескамерных авиашин. Шину накачивают до предельного давления и удерживают при одинаковой температуре на протяжении определенного времени. За это время давление внутри шины уменьшается за счет увеличения ее габаритов. Далее измеряют разницу давления, насколько оно упало за отведенный срок.
4.Определение габаритов шин. Авиационную шину устанавливают на колесо, накачивают до предельного номинального давления. Определенное время выдерживают при комнатной температуре. После окончания этого времени докачивают шину до изначального значения. Затем измеряют следующие величины: внешнюю ширину, наружный диаметр, ширину и диаметр по плечевой зоне.
Динамические
1.Поправка давления. Выполняется учет влияния кривизны барабана.
2.Проведение динамических испытаний шин в максимально приближенных к эксплуатации условиях: на скорость, нагрузку и т.д.
Как проводится замена шин у реактивного самолета
Авиационные шины вызывают восхищение в воздухе и гарантируют безопасность на земле. Но посадки и взлеты негативно отражаются на их состоянии.
За год самолет проезжает по земле расстояние, равное 8 тыс. километров, выполняя рулежки, маневрируя, влетая и приземляясь. Контакты элементов шасси самолета с взлетной полосой сильно сказываются на износе шин. Замена шин – настоящая проблема для авиакомпаний, поскольку стоит немалых денег, но для авиаперевозчиков безопасность всегда на первом месте. Квалифицированная команда шиномонтажников обязана проводить замену за 30 минут.
Во Франкфурте расположен один из самых больших по загруженности международный аэропорт и базируется одна из крупнейших авиакомпаний – Lufthansa.
Воздушное судно подруливает на стоянку, бригада специалистов начинает работу. Начало процесса очень похоже на замену автомобильных шин, разница заключается только в том, что если в машине 4 колеса, то у самолета их целых 30. Блоки по 8 штук находятся под носовой частью и крыльями и прикреплены на т.н. тележках. Поднятие тележки проводится при помощи домкрата. Гидронасос домкрата использует давление, находящееся внутри шины.
после аварийной посадки
Подняв конструкцию, бригада снимает колесо. Сначала специалист откручивает фиксирующую гайку. По умело отточенным движениям механиков видно, что работа обыденная. Цена ошибки велика и измеряется жизнями людей, которые полетят этим самолетом. Механики должны знать, когда актуально проводить замену шины. Диагностические маркеры для этого находятся в канавках протектора. Если этих индикаторов не видно – значит, шину нужно менять.
Сняв шину, можно увидеть ее огромные размеры: ширина – 0,5 м, диаметр – 1,5 м.
Самолетные шины испытывают огромные нагрузки. Несколько часов они находятся в условиях очень низких температур, а во время посадки самолета набирают скорость до 280 км/ч. При приземлении температура шины составляет 260°С. Почему же тогда эти компоненты не взрываются в воздухе и не лопаются при контакте с покрытием ВПП?
Секрет находится внутри шины: она заполнена не сжатым воздухом, как автошина, а газом – азотом. Поэтому авиационные шины всегда сухие, без воды внутри и не могут замерзнуть. Также они не горючие.
На одно колесо у немецких механиков ушло 15 минут, и они приступают к съему следующего колеса, а «переобутое» ставят на место. Специалист внимательно проверяет затяжку болтов, ведь их ослабление грозит катастрофой.
Далее шины накачивают, опускают домкрат, проверяют, все ли болты находятся на своих местах, укрепляют их контровочной проволокой. На этом процесс замены шин заканчивается.
Современная авиационная шина – сложная высокотехнологическая структура и один из наименее понимаемых и наиболее недооцененных элементов самолета. Авиашина – многоэлементный компонент, сконструированный из трех материалов: корд, резина, металл. В весовом соотношении шина самолета состоит на 50% из резины, на 45 % из корда и на 5% из металла.
При посадке самолета шасси испытывает колоссальные не только статические, но и и динамические нагрузки, воспринимаемые стойками и колесами. Прибавьте к этому, что при полете колеса были неподвижны, а при касании к ВПП должны быстро набрать обороты, соответствующие посадочной скорости. Таким образом, к шасси современных самолетов, предъявляются достаточно высокие и жесткие требования.
Авиационные шины и колеса в сборе могут работать под высоким давлением, чтобы нести налагаемую на них нагрузку, к ним следует относиться с той же осторожностью, что и к любому другому сосуду высокого давления. Множественные слои каркаса соединены вместе, образуя общий каркас, делая шину способной удерживать внутреннее давление.
За счет существенного уменьшения массы шин и одновременного увеличения количества выдерживаемых ими приземлений, снижаются эксплуатационные и топливные расходы. Как результат - уменьшение негативного влияния на окружающую среду за счет уменьшения выбросов CO2 в атмосферу и меньшего количества используемого сырья.
Амортизационные стойки
Основными наиболее нагруженными элементами шасси летательного аппарата являются амортизационные стойки и колёса (пневматики).
Амортизационные стойки служат для обеспечения максимальной плавности хода при движении по аэродрому, на разбеге и пробеге, а также гашения ударов, возникающих в момент приземления (часто используются многокамерные азото-масляные длинноходные амортизаторы, в которых функцию пружинного элемента выполняет закачанный под строго определённым давлением технический азот). На многоколёсных тележках шасси тяжелых самолетов могут быть установлены также дополнительные амортизаторы — стабилизирующие демпферы. Усиленные стойки шасси способны выдержать удар о выступающие рёбра бетонных плит высотой до 10 см при движении самолета с посадочной скоростью или грубую посадку.
Имеется также система раскосов, тяг и шарниров, воспринимающих реакции опорной поверхности и крепящих амортизационные стойки и колёса к крылу и фюзеляжу, которые служат одновременно механизмом уборки-выпуска.
Колеса шасси самолета поддерживают его на земле и обеспечивают средства мобильности для взлета, посадки и руления. А пневматические шины амортизируя, предохраняют самолет от ударных импульсов из-за неровностей поверхности и недостатков техники пилотирования при посадке.
Диски (барабаны) колёс часто изготавливаются из сплавов на основе магния. Обычно это магниево-цинковые сплавы, которые очень трудно обрабатывать либо титановые. В настоящее время только несколько промышленных держав в мире могут производить шины для истребителей с высокими эксплуатационными характеристиками.
Сложная высокотехнологическая структура
Колеса самолета разработаны таким образом, чтобы облегчить замену шин (пневматиков). Сами диски колес обычно изготавливаются разборными, из двух половинок, которые соединяются между собой болтами. Для увеличения герметичности колес перед сборкой обе половины диска и внешние стороны покрышки обрабатываются специальным клеевым составом, и только после этого производят сборку.
На современных скоростных самолётах пневматики бескамерные и накачиваются техническим азотом (использование последнего обусловлено предотвращением конденсации газа, и последующего его замёрзания на высоте, с образованием опасного льда и кроме того азот дешёв и не горит). Протекторы шин шасси самолётов не имеют никакого рисунка, кроме нескольких продольных кольцевых водоотводящих канавок для уменьшения эффекта аквапланирования, а также контрольных углублений для простоты определения степени износа. Форма шины в поперечном сечении близка до круглой, для обеспечения максимального контактного пятна колеса при посадке с креном. Пневматики снабжены дисковыми или колодочными тормозами с гидравлическим, пневматическим или электрическим приводом, для маневрирования при движении по аэродрому и уменьшения длины пробега после посадки.
В целом современная авиационная шина – сложная высокотехнологическая структура, которая работает с огромными скоростями, и нагрузками при минимально возможном весе и размерах.
Авиационная шина способна выдерживать широкий диапазон условий эксплуатации. Находясь на земле, она должна поддерживать массу самолёта. Во время выруливания - обеспечивать стабильный плавный ход, сопротивляясь в то же время теплообразованию, истиранию и износу. Во время взлёта конструкция шины должна быть способна выдерживать не только нагрузку самолета, но и силы, создаваемые при высоких скоростях качения при разбеге. Посадка требует от шины поглощения колоссальных динамических ударных нагрузок. Все эти процессы должны выполняться стабильно, обеспечивая длительный и надёжный срок службы шин.
Для этих экстремальных требований нужна достаточно сложная шина. Шина современного самолета - это композит из нескольких различных резиновых смесей (смеси натурального и синтетического каучука), текстильного материала и стали. Каждый компонент шины служит конкретной цели в реализации ее эксплуатационных характеристик. Шины самолетов очень прочные, поскольку армируются железными кордами, нейлоном, а также полимером арамид.
Требования к шинам и колесам шасси самолетов в целом достаточно жесткие и порой противоречивые
- поглощение кинетической энергии ударов при посадке и движении по неровной поверхности аэродрома с целью уменьшения перегрузок и рассеивание возможно большей части этой энергии для быстрого гашения колебаний;
- минимум массы конструкции при заданной прочности, жесткости и долговечности;
- минимум аэродинамического сопротивления в выпущенном положении;
- высокая технологичность конструкции.
Высокое давление
Именно авиационные колеса во многом и содержат сегодня большинство новейших изобретений, воплощенных на практике. По авиационным стандартам шина должна выдерживать давление в 4 раза выше, чем то, на которое она рассчитана, так что теоретически шины могут выдержать жесткое приземление на скорости свыше 450 км/ч.
Кроме того, что самолетные шины испытывают колоссальные статические и динамические нагрузки, они подвергаются и тепловым, когда длительное время находятся в условиях низких температур, а во время посадки быстро набирают скорость около 300 км/ч (некоторые до 460 км/ч). При соприкосновении с землей, температура шины поднимается до 260°С.
Шины стабильно выдерживают разность температур и нагрузку. Они сконструированы таким образом, чтобы максимально противостоять износу и разрыву. Они выполняются многослойными с прочным нейлоновым и арамидным шнуром, расположенным под каждым слоем. Каждый слой имеет свойство выдерживать колоссальную нагрузку и давление воздуха. Корд не переплетается, а располагается одинарными слоями параллельно и удерживается вместе тонкими пленками резины, которая защищает корд из смежных слоев от перетирания друг о друга при изгибании пневматика в процессе эксплуатации.
Во время изготовления шины, слои накладываются парами таким образом, что корды смежных слоев располагаются под углом 90° друг к другу в случае перекрещивающегося (диагонального) пневматика и от борта к борту с примерным углом 90° к центральной линии шины в радиальном пневматике.
Для поглощения и распределения динамических нагрузок и защиты корпуса от ударного повреждения между корпусом и протектором располагаются два узких слоя, запрессованных в толстые резиновые прослойки. Эти специальные слои называются брекерными поясами.
Индекс прочности шины
Изготовители шин присваивают каждому пневматику норму слойности. Эта норма напрямую не относится к количеству слоев в шине, а является индексом прочности шины.
Проволочная намотка делается жесткой с помощью скрепления резиной всей проволоки вместе, создавая крепкое соединение. Бортовая проволока (сердечник борта) также укреплен с помощью обмотки тканевыми полосками до применения основных и наполнительных лент. Основные ленты, изготовленные из резины и располагающиеся под прорезиненными тканевыми наполнительными лентами, обеспечивают большую жесткость и меньшую резкость изменений секции борта. Они также увеличивают зону контакта.
В условиях грубого торможения, нагрев колеса, шины и тормоза может быть достаточным, чтобы вызвать разрыв шины с возможными катастрофическими последствиями для самолета. Для предотвращения внезапного разрыва на некоторых бескамерных колесах устанавливаются термосвидетели. Эти заглушки устанавливаются в барабан колеса с помощью легкоплавкого сплава, который плавится в условиях перегрева и выталкивается повышенным давлением воздуха в пневматике. Это предотвращает чрезмерное повышение давления в пневматике путем контролируемого снижения давления в нем.
Особенностью колес самолета, как и всего, что связано с авиацией, является постоянный контроль технического состояния, поэтому проверка давления в шинах производится каждый раз после приземления и перед вылетом.
Но посадки и взлеты негативно отражаются на состоянии шин, поэтому авиационные колеса в отличие от автомобильных имеют относительно небольшой срок годности, и при малейших подозрениях механиков на наличие дефектов подлежат замене.
Авиационные шины в настоящее время исполняются, главным образом, в бескамерном варианте. Они относительно узкие, что конструктивно облегчает уборку шасси. Шасси самолета обычно состоит из главных стоек, воспринимающих 80 процентов всей нагрузки, и вспомогательной, которая поддерживает остальную часть фюзеляжа. Стойки шасси небольших самолетов оснащаются одним колесом, а больших – двумя и более. Такое решение уменьшает нагрузку на одно колесо, а следовательно и увеличивает безопасность – в случае разрушения одного колеса, остальные удерживают вес самолета.
Наибольшим нагрузкам и износу шины подвергаются во врем посадки. Их работу в это время можно разделить на несколько этапов. Первый: когда колесо остается неподвижным, а шина соприкоснулась с поверхностью. Из-за инерции колесо раскручивается не сразу и шина интенсивно стирается. Затем происходит выравнивание скоростей, но наступает этап торможения. На третьем этапе весь вес самолета ложится на шины, но они катятся свободно по поверхности с минимальным износом.
Здесь возникает вопрос о замене шин. Нет особых правил, касающихся сроков использования. В авиации шины изнашиваются крайне нерегулярно нельзя предвидеть, когда они придут в негодность. По этой причине обязательными являются осмотры их состояние после и/или до каждого полета. Стоит сказать, что резина неиспользуемой шины стоящего в ангаре самолета также постепенно приходит в негодность: она стареет, теряет эластичность и способность держать нагрузку. Для сравнения: шины B767 меняются в среднем каждые шесть месяцев. Процедура замены занимает около 20 минут и требует использования домкратов и подъемников.
Бескамерные шины редко накачиваются воздухом, чаще всего для этого используется выделенный из него азот. Это увеличивает стоимость, но, с другой стороны, более продолжительное время удерживается необходимое давление, а также не вызывает окисления резины кислородом изнутри.
Давление в шинах самолетов делится на четыре категории:
• давление очень низкое – до 0,5 MPa,
• давление низкое – до 1 MPa,
• давление среднее – do 1,5 MPa,
• давление высокое – без ограничений.
При строительстве взлетно-посадочных полос для каждой этой категории используются соответствующие обозначения W, X, Y, Z.
Кроме давления на поверхность полосы, она испытывает также истирание и загрязнение. Стертая с шины резина оставляет на поверхности черные следы. Они снижают шероховатость поверхности, а следовательно и сцепление. Информация на эту тему размещается в NOTAM. Сильно загрязненную поверхность моет специальная машина водой под давлением около 310 MPa. Этот метод оставляет чистую и шероховатую поверхность.
Насколько важным элементом воздушного судна с фиксированным крылом является шина можно было убедиться на примере катастрофы самолета Douglas DC-8 11 июля 1991 года в Саудовской Аравии. Причиной пожара на борту стало возгорание шасси, которое произошло именно из-за шин. Они подлежали замене перед вылетом, но работники наземного технического обслуживания проигнорировали распоряжение, чтобы быстрее подготовить самолет к вылету, а документы подделали.
Во время взлета самолета в аэропорту была высокая температура, что вызвало рост давления в изношенных шинах и их разрушение. Колеса, оставшиеся без резины, и шасси от трения о поверхность плит ВПП нагрелись до такой степени, что загорелись и в таком положении были убраны внутрь фюзеляжа. Экипаж попытался совершить аварийную посадку, но корпус судна сгорел в воздухе до того, как самолет смог завершить маневр. В катастрофе никто не выжил.
Жизнь всех 261 человек, находившихся на борту, зависела в тот момент только от состояния шин. Игнорирование их состояния и давления в них воздуха может привести к трагическим последствиям. В то время как уход и правильное обслуживание обеспечивают безопасность и буквально мягкую посадку.
Наш интерес к давлению в шинах отнюдь не праздный. Его прикладная составляющая — связь с расходом топлива. Теряем ли мы рубли и сколько, отклонившись «вниз» на 0,5 атм от рекомендованного давления, и выигрываем ли, перекачав шину? Каковы последствия контроля давления на глазок? Ведь отклонение в ту или иную сторону на пол-атмосферы визуально обнаружить почти невозможно. И правы ли те, кто намеренно сбрасывает давление в шинах для улучшения плавности хода или перекачивает их ради экономии бензина?
И еще: если влияние давления на сопротивление качению существенно, нельзя ли использовать эту зависимость во благо? А заодно выясним, как отражается изменение давления в шинах на других качествах автомобиля.
Вот, собственно, те задачи, ради которых мы в очередной раз взялись за автомобиль, шины и измерительную аппаратуру. Машина — «Лада-112» на шинах Kleber Viaxer размерностью 175/70R13. Нагрузка — водитель и оператор измерительного комплекса Vbox.
Начинаем с базового давления — 2,0 атм, взяв его за точку отсчета. Прогреваем шины десятикилометровой пробежкой, разгоняемся и измеряем выбег со скорости 80 км/ч. Получается 1175 метров — отнюдь не выдающийся результат для «Лады-112», но нас интересует не столько сама величина, сколько ее отклонения при изменении давления. То же относится и к предельной скорости на «переставке» — у нас получилось 65,9 км/ч. Следующий объективный тест: длина тормозного пути на грани блокировки колес. На сухом асфальте машина замирает ровно через 46 метров.
Переходим к оценкам: управляемость, курсовая устойчивость, плавность хода — все параметры не вызвали ни нареканий, ни особых восторгов. Потому и оценки в каждом упражнении «норма», то есть 8 баллов.
Даем автомобилю отстояться, чтобы температура в шинах упала до исходной, и стравливаем давление до 1,5 атм. Первые отличия в поведении машины заметны уже во время прогрева покрышек — дорога будто стала ровнее, да и трещинок на ней поубавилось. Нет, конечно, просто шины стали мягче, что положительно сказалось на плавности хода. Зато курсовая устойчивость на прямой ухудшилась: машина стала гулять по полосе, реагируя на малейшее боковое возмущение — будь то дорожная неровность, небольшой боковой уклон или легкий порыв ветра. Оценки 9 и 7 баллов соответственно.
Выбег сократился до 1108 метров — мы «потеряли» почти 70 метров (5,7 процента). Расход при этом увеличился незначительно, всего-то около 2 процентов.
На «переставке» скорость чуть снизилась. Причина, думаю, понятна — ухудшилась управляемость. Во второй коридор «переставки» попадать стало гораздо сложнее — машина норовит прыгнуть вправо или влево. Оценка не более 6 баллов.
Зато тормозной путь уменьшился — отыграли у «нормального давления» больше метра. Снижение давления вызвало увеличение пятна контакта, и в работу по торможению вступила большая часть микронеровностей дорожного рельефа. Приятнее стало и управление торможением: дозировать усилие на педали (контролировать начальную фазу блокировки колес) в этом случае проще. Да и результаты замеров торможений «легли кучнее».
Перед завершающим этапом — небольшой перерыв. Пока остывают шины, поднимаем давление до 2,5 атм.
Дорога хорошо знакома, курсовая устойчивость очень близка к первоначальному состоянию (8 баллов), а вот плавность хода стала хуже — кажется, будто все дорожные заплатки и мелкие швы вспучились, а перекачанные шины, хлопая по ним, энергично потряхивают машину. Записываем 6 баллов.
Выбег 1232 м — разница с предыдущим состоянием более 200 метров, а с исходным — 52 м или 4,9 процента. Эффект чуть меньше, чем при снижении давления на те же 0,5 атм. И сэкономить удается всего 1,6 процента бензина.
Зато на «переставке» скорость рекордная — почти 67 км/ч. Но к управляемости есть замечания — по сравнению с нормой заметно ухудшилось чувство руля. Перекачанные шины практически лишились уводов, а это, как ни странно, вредит «пониманию» машины, особенно в критических режимах. Никак не более 7 баллов.
Тормозной путь почти не изменился — только разброс результатов слегка увеличился, да удержаться на грани юза стало сложнее. За удобство управления торможением ставим семерку.
КАЛЬКУЛЯТОР
А теперь подсчитаем, что нам дают игры с давлением. Ориентируемся на средний расход топлива 8 л/100 км и цену бензина 18,5 руб./л АИ-95. При пониженном давлении расход топлива увеличивается на 2 процента, то есть возрастет до 8,16 л/100 км. В денежном выражении получается 29,6 рубля на 1000 км. Отпускная поездка протяженностью 4000 км получит довесок в 118,4 руб. — цифра совсем не впечатляющая.
А теперь взвесим экономию от шинной «гипертонии» — 8 литров минус 1,6 процента дают 2,4 рубля на 100 км — за тот же отпуск удастся «разбогатеть» на 94 рубля. Даже если сложить «выигранные» деньги с возможными потерями, то получим очень скромный экономический эффект — 214 рублей.
Но снижение давления на пол-атмосферы ниже рекомендованного, помимо увеличения расхода топлива, ухудшает управляемость и курсовую устойчивость. Хотя есть и некоторая выгода — «тормоза» становятся чуть лучше, повышается плавность хода.
Перекачанные на те же «пол-очка» шины позволяют отыграть почти полтора процента топлива и увеличивают скорость выполнения экстремальных маневров на 1 км/ч. Правда, ценой снижения плавности хода и некоторого ухудшения управляемости.
БОЛЬШЕ? МЕНЬШЕ? НОРМА!
Выводы, прямо скажем, неожиданные — отклонение давления в шинах в ту или иную сторону не столько влияет на сопротивление качению (читай, расход топлива), сколько разрушает баланс потребительских качеств автомобиля! К тому же при любом аномальном давлении протектор изнашивается неравномерно. У приспущенных шин более интенсивно стесываются края — плечевая зона, а у перекачанных — средняя часть протектора. Получается, что в шинах следует поддерживать то давление, что рекомендует изготовитель автомобиля. И все-таки отклонение «вниз» чревато более неприятными последствиями, чем «вверх».
Читайте также: