Распределение пуассона с параметром лямбда
Распределение Пуассона: формула вероятности редких событий
Распределение Пуассона - случай биномиального распределения, когда число испытаний n достаточно большое, а вероятность p события A мала ().
Распределение Пуассона называют также распределением редких событий. Например, рождение за год трёх или четырёх близнецов, тот же закон распределения имеет число распавшихся в единицу времени атомов радиоактивного вещества и др.
Вероятность наступления редких событий вычисляется по формуле Пуассона:
где m число наступления события A;
- среднее значение распределения Пуассона;
e=2,7183 - основание натурального логарифма.
Закон Пуассона зависит от одного параметра - λ (лямбда), смысл которого в следующем: он является одновременно математическим ожиданием и дисперсией случаной величины, распределённой по закону Пуассона.
Условия возникновения распределения Пуассона
Рассмотрим условия, при которых возникает распределение Пуассона.
Во-первых, распределение Пуассона является предельным для биномиального распределения, когда число опытов n неограниченно увеличивается (стремится к бесконечности) и одновременно вероятность p успеха в одном опыте неограниченно уменьшается (стремится к нулю), но так, что их произведение np сохраняется в пределе постоянным и равным λ (лямбде):
В математическом анализе доказано, что распределение Пуассона с параметром λ = np можно приближенно применять вместо биномиального, когда число опытов n очень велико, а вероятность p очень мала, то есть в каждом отдельном опыте событие A появляется крайне редко.
Во-вторых, распределение Пуассона имеет место, когда есть поток событий, называемым простейшим (или стационарным пуассоновским потоком). Потоком событий называют последовательность таких моментов, как поступление вызовов на коммуникационный узел, приходы посетителей в магазин, прибытие составов на сортировочную горку и тому подобных. Пуассоновский поток обладает следующими свойствами:
- стационарность: вероятность наступления m событий в определённый период времени постоянна и не зависит от начала отсчёта времени, а зависит только от длины участка времени;
- ординарность: вероятность попадания на малый участок времени двух или более событий пренебрежимо мала по сравнению с вероятностью попадания на него одного события;
- отсутствие последствия: вероятность наступления m событий в определённый период времени не зависит от того, сколько событий наступило в предыдущий период.
Характеристики случайной величины, распределённой по закону Пуассона
Характеристики случайной величины, распределённой по закону Пуассона:
Распределение Пуассона и расчёты в MS Excel
Вероятность распределения Пуассона P(m) и значения интегральной функции F(m) можно вычислить при помощи функции MS Excel ПУАССОН.РАСП. Окно для соответствующего расчёта показано ниже (для увеличения нажать левой кнопкой мыши).
MS Excel требует ввести следующие данные:
- x - число событий m;
- среднее;
- интегральная - логическое значение: 0 - если нужно вычислить вероятность P(m) и 1 - если вероятность F(m).
Решение примеров с распределением Пуассона
Пример 1. Менеджер телекоммуникационной компании решил рассчитать вероятность того, что в некотором небольшом городе в течении пяти минут поступят 0, 1, 2, . вызовов. Выбраны случайные интервалы в пять минут, подсчитано число вызовов в каждый их интервалов и рассчитано среднее число вызовов: .
Вычислить вероятность того, что в течении пяти минут поступят 6 вызовов.
Решение. По формуле Пуассона получаем:
Тот же результат получим, используя функцию MS Excel ПУАССОН.РАСП (значение интегральной величины - 0):
Вычислим вероятность того, что в течение пяти минут поступят не более 6 вызовов (значение интегральной величины - 1):
Решить пример самостоятельно, а затем посмотреть решение
Пример 2. Производитель отправил в некоторый город 1000 проверенных, то есть исправных телевизоров. Вероятность того, что при транспортировке телевизор выйдет из строя, равна 0,003. То есть в этом случае действует закон распределения Пуассона. Найти вероятность того, что из всех доставленных телевизоров неисправными будут: 1) два телевизора; 2) менее двух телевизоров.
Продолжаем решать примеры вместе
Пример 3. В центр звонков клиентов поступает поток звонков с интенсивностью 0,8 звонков в минуту. Найти вероятность того, что за 2 минуты: а) не придёт ни одного звонка; б) придёт ровно один звонок; в) придёт хотя бы один звонок.
Решение. Случайная величина X - число звонков за 2 минуты с параметром - распределена по закону Пуассона. У нас есть всё, чтобы вычислить требуемые в условии задачи вероятности:
Пример 4. Поток грузовых железнодорожных составов, прибывающих на сортировочную горку, имеет интенсивность 4 состава в час. Найти вероятности того, что за полчаса на горку прибудет: а) ровно один состав; б) хотя бы один состав; в) не менее трёх составов.
Решение. Случайная величина X - число составов за 0,5 часа с параметром - распределена по закону Пуассона. Вычисляем требуемые в условии задачи вероятности:
На этой странице мы собрали примеры решения учебных задач, где используется распределение Пуассона.
Краткая теория
Рассмотрим некоторый поток событий, в котором события наступают независимо друг от друга и с некоторой фиксированной средней интенсивностью $\lambda$ (событий в единицу времени). Тогда случайная величина $X$, равная числу событий $k$, произошедших за фиксированное время, имеет распределение Пуассона. Вероятности вычисляются по следующей формуле:
Для пуассоновской случайной величины математическое ожидание и дисперсия совпадают с интенсивностью потока событий:
$$M(X)=\lambda, \quad D(X)=\lambda.$$
Распределение Пуассона играет важную роль в теории массового обслуживания. При увеличении $\lambda$ данное распределение стремится к нормальному распределению $N(\lambda, \sqrt<\lambda>)$. В свою очередь, оно само является "приближенной" моделью биномиального распределения при больших $n$ и крайне малых $p$ (см. теорию про формулу Пуассона).
Примеры решенных задач
Задача 1. Среднее число самолетов, взлетающих с полевого аэродрома за одни сутки, равно 10. Найти вероятность того, что за 6 часов взлетят:
А) три самолета,
Б) не менее двух самолетов.
Задача 2. На автовокзале время прибытия автобусов различных рейсов объявляет дежурный. Появление информации о различных рейсах происходит случайной и независимо друг от друга. В среднем на автовокзал прибывает 5 рейсов каждые полчаса.
А) Составьте ряд распределения числа сообщений о прибытии автобусов в течение получаса.
Б) Найдите числовые характеристики этого распределения.
В) Запишите функцию распределения вероятностей и постройте ее график.
Г) Чему равна вероятность того, что в течение получаса прибудут не менее трех автобусов?
Д) Чему равна вероятность того, что в течение четверти часа не прибудет ни один автобус?
Задача 3. АТС получает в среднем за час 480 вызовов. Определить вероятность того, что за данную минуту она получит: ровно 3 вызова; от 2 до 5 вызовов.
Задача 4. Случайная величина $X$ распределена по закону Пуассона с параметром $\lambda=0,8$. Необходимо:
А) выписать формулу для вычисления вероятности $P(X=m)$;
Б) найти вероятность $P(1 \le X \lt 3)$;
В) найти математическое ожидание $M(2X+5)$ и дисперсию $D(5-2X)$.
Задача 5. Среднее число ошибочных соединений, приходящееся на одного телефонного абонента в единицу времени, равно 8. Какова вероятность того, что для данного абонента число ошибочных соединений будет больше 4?
Задача 6. В среднем в магазин заходят 3 человека в минуту. Найти вероятность того, что за 2 минуты в магазин зайдет не более 1 человека.
Задача 7. Автомобиль проходит технический осмотр и обслуживание. Число неисправностей, обнаруженных во время техосмотра, распределяется по закону Пуассона с параметром 0,63. Если неисправностей не обнаружено, техническое обслуживание автомобиля продолжается в среднем 2 ч. Если обнаружены одна или две неисправности, то на устранение каждой из них тратится в среднем еще полчаса. Если обнаружено больше двух неисправностей, то автомобиль становится на профилактический ремонт, где он находится в среднем 4 ч.
Определите закон распределения среднего времени $T$ обслуживания и ремонта автомобиля и его математическое ожидание $M(T)$.
Задача 8. В тексте учебника по психологии содержатся опечатки: в среднем, одна на десять страниц. Пусть Х – число опечаток на одной странице. Определить закон распределения для Х. Найти вероятность, что на странице есть хотя бы одна опечатка.
Решебник по терверу
Если решения нужны срочно и почти даром? Ищите в решебнике по теории вероятностей:
В данной статье мы рассмотрим ещё одно дискретное распределение, которое получило широкое распространение на практике. Не успел я открыть курс по теории вероятностей, как сразу стали поступать запросы: «Где Пуассон? Где задачи на формулу Пуассона?» и т.п. И поэтому я начну с частного применения распределения Пуассона – ввиду большой востребованности материала.
Задача до боли эйфории знакома:
– проводится независимых испытаний, в каждом из которых случайное событие может появиться с вероятностью. Требуется найти вероятность того, что в данной серии испытаний событие появится ровно раз.
Наверное, вам уже снится формула Бернулли:)
тем более, на уроке о биномиальном распределении вероятностей мы разобрали ситуацию по косточкам.
В том случае, если количество испытаний велико (сотни и тысячи), эту вероятность обычно рассчитывают приближённо – с помощью локальной теоремы Лапласа: , где .
Однако и тут есть «слабое звено» – теорема Лапласа начинает серьёзно барахлить (давать большую погрешность), если вероятность меньше, чем 0,1 (и чем меньше, тем всё хуже). Поэтому здесь используют другой метод, и именно распределение Пуассона.
Итак, если количество испытаний достаточно велико, а вероятность появления события в отдельно взятом испытании весьма мала (0,05-0,1 и меньше), то вероятность того, что в данной серии испытаний событие появится ровно раз, можно приближенно вычислить по формуле Пуассона:
, где
Напоминаю, что ноль факториал , а значит, формула имеет смысл и для .
Вместо «лямбды» также используют букву «а».
В новом микрорайоне поставлено 10000 кодовых замков на входных дверях домов. Вероятность выхода из строя одного замка в течение месяца равна 0,0002. Найти вероятность того, что за месяц откажет ровно 1 замок.
Утопичная, конечно, задача, но что делать – решаем:)
В данном случае количество «испытаний» велико, а вероятность «успеха» в каждом из них – мала: , поэтому используем формулу Пуассона:
Вычислим:
– по существу, это среднеожидаемое количество вышедших из строя замков.
Таким образом:
– вероятность того, что за месяц из строя выйдет ровно один замок (из 10 тысяч).
Ответ:
С технической точки зрения этот результат можно получить несколькими способами, расскажу о них в историческом ракурсе:
1) С помощью специальной таблицы, которая до сих пор встречается во многих книгах по терверу. В данную таблицу сведены различные значения и соответствующие им вероятности. Табулирование обусловлено тем, что в своё время не существовало бытовых калькуляторов, на которых можно было бы подсчитать значения экспоненциальной функции. Отсюда, кстати, идёт традиция округлять вычисления до 4 знаков после запятой – как в стандартной таблице.
2) С помощью прямого вычисления на микрокалькуляторе (прогресс!).
3) С помощью стандартной экселевской функции:
=ПУАССОН(m; лямбда; 0)
в данной задаче вбиваем в любую ячейку Экселя =ПУАССОН(1; 2; 0) и жмём Enter.
Следует отметить, что развитие вычислительной техники фактически отправило в историю методы Лапласа, да и рассматриваемый метод тоже – по той причине, что ответ легко вычислить более точно по формуле Бернулли:
Здесь я использовал функцию БИНОМРАСП, о которой неоднократно упоминал ранее.
Но формула Пуассона, тем не менее, даёт очень крутое приближение:
– с погрешностью только на 9 знаке после запятой!
Впрочем, это всё лирика, решать-то всё равно нужно по формуле Пуассона:
Завод отправил в торговую сеть 500 изделий. Вероятность повреждения изделия в пути равна 0,003. Найти вероятность того, что при транспортировке будет повреждено: а) ни одного изделия, б) ровно три изделия, в) более трех изделий.
Решение: используем формулу Пуассона:
В данном случае:
– среднеожидаемое количество повреждённых изделий
а)
– вероятность того, что все изделия дойдут в целости и сохранности. Ничего не украдут, одним словом :)
б)
– вероятность того, что в пути будут повреждены ровно 3 изделия из 500.
в)
А тут всё немножко хитрее. Сначала найдём – вероятность того, что в пути повредятся не более трёх изделий. По теореме сложения вероятностей несовместных событий:
Само собой, ручками это считать надоест, и поэтому я добавил в свой расчётный макет автоматическое построение распределения Пуассона (см. Пункт 7) – пользуйтесь на здоровье.
По теореме сложения вероятностей противоположных событий:
– вероятность того, что при доставке будет повреждено более 3 изделий.
Ответ: а) , б) , в)
Вероятность изготовления бракованных деталей при их массовом производстве равна . Определить вероятность того, что в партии из 800 деталей будет: а) ровно 2 бракованные, б) не более двух.
Решение и ответ в конце урока.
Встречаются и другие формулировки условия. Так, в предложенной задаче может идти речь о том, что производственный брак составляет 0,1% или «в среднем 1 деталь на каждую тысячу». Бывает и дано готовое значение «лямбда», например: «В стандартной партии из 800 деталей брак в среднем составляет 0,8 деталей. Найти вероятность того, что в очередной партии…».
В этой связи ни в коем случае не отключаем голову – даже в таких простых примерах!
А теперь о самом распределении Пуассона. Случайная величина , распределённая по этому закону, принимает бесконечное и счётное количество значений , вероятности появления которых определяются формулой:
Или, если расписать подробно:
Вспоминая разложение экспоненты в ряд, легко убедиться, что:
В теории установлено, что математическое ожидание пуассоновской случайной величины равно и дисперсия – тому же самому значению: .
Обратите внимание, что во всех вышеприведённых заданиях мы лишь ПОЛЬЗОВАЛИСЬ распределением Пуассона для приближенного расчёта вероятностей, в то время как ТОЧНЫЕ значения следовало находить по формуле Бернулли, т.е., там имело место биномиальное распределение.
И следующие две задачи принципиально отличаются от предыдущих:
Случайная величина подчинена закону Пуассона с математическим ожиданием . Найти вероятность того, что данная случайная величина примет значение, меньшее, чем ее математическое ожидание.
Отличие состоит в том, что здесь речь идёт ИМЕННО о распределении Пуассона.
Решение: случайная величина принимает значения с вероятностями:
По условию, , и тут всё просто: событие состоит в трёх несовместных исходах:
вероятность того, что случайная величина примет значение, меньшее, чем ее математическое ожидание.
Ответ:
Аналогичная задача на понимание:
Случайная величина подчинена закону Пуассона с математическим ожиданием . Найти вероятность того, что данная случайная величина примет положительное значение.
Решение и ответ в конце урока.
Помимо приближения биномиального распределения (Примеры 1-3), распределение Пуассона нашло широкое применение в теории массового обслуживания для вероятностной характеристики простейшего потока событий. Постараюсь быть лаконичным:
Пусть в некоторую систему поступают заявки (телефонные звонки, приходящие клиенты и т.д.). Поток заявок называют простейшим, если он удовлетворяет условиям стационарности, отсутствия последствий и ординарности. Стационарность подразумевает то, что интенсивность заявок постоянна и не зависит от времени суток, дня недели или других временнЫх рамок. Иными словами, не бывает «часа пик» и не бывает «мёртвых часов». Отсутствие последствий означает, что вероятность появления новых заявок не зависит от «предыстории», т.е. нет такого, что «одна бабка рассказала» и другие «набежали» (или наоборот, разбежались). И, наконец, свойство ординарности характеризуется тем, что за достаточно малый промежуток времени практически невозможно появление двух или бОльшего количества заявок. «Две старушки в дверь?» – нет уж, увольте, рубить удобнее по порядку.
Итак, пусть в некоторую систему поступает простейший поток заявок со средней интенсивностью заявок в некоторую единицу времени (минуту, час, день или в любую другую). Тогда вероятность того, что за данный промежуток времени, в систему поступит ровно заявок, равна:
Звонки в диспетчерскую такси представляет собой простейший пуассоновский поток со средней интенсивностью 30 вызовов в час. Найти вероятность того, что: а) за 1 мин. поступит 2-3 вызова, б) в течение пяти минут будет хотя бы один звонок.
Решение: используем формулу Пуассона:
а) Учитывая стационарность потока, вычислим среднее количество вызовов за 1 минуту:
вызова – в среднем за одну минуту.
По теореме сложения вероятностей несовместных событий:
– вероятность того, что за 1 минуту в диспетчерскую поступит 2-3 вызова.
б) Вычислим среднее количество вызов за пять минут:
По формуле Пуассона:
– вероятность того, что в течение 5 минут не будет ни одного звонка.
По теореме сложения вероятностей противоположных событий:
– вероятность того, что в течение 5 минут будет хотя бы один вызов.
Ответ: а) , б)
Заметьте, что, несмотря на конечное количество возможных звонков (а оно в принципе конечно), здесь имеет место именно распределение Пуассона, а не какое-то другое.
Для самостоятельного решения:
Среднее число автомобилей, проходящих таможенный досмотр в течение часа, равно 3. Найти вероятность того, что: а) за 2 часа пройдут досмотр от 7 до 10 автомобилей; б) за полчаса успеет пройти досмотр только 1 автомобиль.
Решение и ответ в конце урока.
Наверное, многие знают, что теория массового обслуживания – это обширный и очень интересный раздел прикладной математики, и сейчас мы познакомились с простейшей его задачей.
Дополнительные примеры на распределение и формулу Пуассона можно найти в тематической pdf-книге, и я предлагаю вам ознакомиться с ещё одной популярной вещью – Гипергеометрическим распределением вероятностей.
Приятного и полезного чтения!
Решения и ответы:
Пример 3. Решение: используем формулу Пуассона:
, в данном случае:
а) – вероятность того, что в данной партии окажется ровно 2 бракованные детали.
б) По теореме сложения вероятностей несовместных событий:
– вероятность того, что в данной партии окажется не более 2 бракованных изделий.
Пример 5. Решение: случайная величина принимает значения с вероятностями . По условию, .
Найдём вероятность того, что случайная величина примет нулевое значение:
По теореме сложения вероятностей противоположных событий:
– вероятность того, что случайная величина примет положительное значение
Пример 7. Решение: предполагая поток простым, используем формулу Пуассона:
а) Вычислим – среднее количество автомобилей, проходящих таможенный досмотр, в течение 2 часов.
По теореме сложения вероятностей несовместных событий:
– вероятность того, что за 2 часа досмотр пройдут от 7 до 10 автомобилей
б) Вычислим – среднее количество автомобилей, проходящих досмотр, за 1/2 часа.
По формуле Пуассона:
– вероятность того, что за полчаса таможенный досмотр пройдёт только один автомобиль.
Прежде чем вводить параметр λ и подставлять его в формулу, давайте задумаемся: почему Пуассону вообще пришлось изобретать такое распределение?
1. Почему Пуассон изобрел свое распределение?
Чтобы предсказывать количествобудущихсобытий!
Или более формально: чтобы предсказывать вероятность данного числа событий, происходящих в определенный интервал времени.
В продажах, например, “ событие ” это покупка (сам момент покупки, не просто выбор). Событием может быть количество посетителей в день на веб-сайте, кликов на рекламном объявлении в следующем месяце, число звонков в рабочее время или число людей, которые умрут от смертельных заболеваний в следующем году, и так далее.
Вот пример, как я использую распределение Пуассона в реальной жизни.
Каждую неделю в среднем 17 человек оставляют лайк под моим постом в блоге.
Я хочу предсказать количество лайков на следующей неделе, потому что мои еженедельные выплаты зависят от этого количества.
Какова вероятность того, что точно 20 человек (или 10, 30, 50 и так далее) поставят лайк под моим постом на следующей неделе?
2. Как решить эту задачу?
Давайте на время сделаем вид, что мы ничего не знаем о распределении Пуассона. Как тогда решить задачу?
Первый путь: начать с количества прочтений. Для каждого читателя блога есть вероятность, что статья ему действительно понравится и он поставит лайк.
Это классическая работа для биномиального распределения , так как мы рассчитываем количество успешных событий (лайков).
Биномиальная случайная величина — это количество успешных x в n повторяющихся попыток. Предполагается, что вероятность успеха p является постоянной в каждой попытке.
Итак, у нас есть только один параметр — 17 человек в неделю, что является “ средним значением ” (средним значением успешных событий в неделею, или математическим ожиданием x ). Нам ничего не известно ни о вероятности получения лайков p, ни о количестве посетителей блога n .
Значит, нам нужно больше информации для решения задачи. Что конкретно нужно, чтобы оформить эту вероятность как биномиальную проблему? Две вещи: вероятность успеха (лайков) p и количество попыток (посетителей) n .
Получим их из прошлых данных.
Это статистика за 1 год. Общее количество читателей блога — 59 тысяч, 888 из них поставили лайк.
Следовательно, количество читателей в неделю ( n ): 59 000/52 = 1134. Количество поставивших лайк в неделю ( x ): 888/52 =17.
количество читателей в неделю (n) = 59000/52 = 1134
количество оставивших лайк в неделю (x) = 888/52 = 17
вероятность успеха (p) : 888/59000 = 0.015 = 1.5%
Используя биномиальную функцию вероятности , посчитаем вероятность того, что я получу точно 20 успешных событий (20 лайков) на следующей неделе.
<Биномиальная вероятность для различных x>
╔══════╦═══════════════════╗
║ x ║ Binomial P(X=x) ║
╠══════╬═══════════════════╣
║ 10 ║ 0.02250 ║
║ 17 ║ 0.09701 ║ 🡒 P выше у среднего показателя!
║ 20 ║ 0.06962 ║ 🡒 Неплохо. 20 тоже вполне вероятно!
║ 30 ║ 0.00121 ║
║ 40 ║ < 0.000001 ║ 🡒 Не думаю, что получу 40 лайков.
╚══════╩═══════════════════╝
Только что мы решили задачу с помощью биномиального распределения.
Тогда зачем нам распределение Пуассона? Что оно может делать такого, что не может биномиальное распределение?
3. Недостатки биномиального распределения
a) Биномиальная случайная величина бинарна — 0 или 1.
В примере выше у нас было 17 лайков в неделю. Это 17/7 = 2.4 человека в день и 17/(7*24) = 0.1 в час.
Если моделировать вероятность успеха в часах (0.1 человек в час) , используя биномиальную случайную величину, получим, что в большем количестве часов лайков будет 0 , а в некоторые часы ровно 1 лайк . Также возможно, что в час будет больше 1 лайка (2, 3, 5 и т.д.).
Проблема с биномиальным распределением в том, что оно не может содержать более одного события в единицу времени (1 час в примере).
Так может разделить 1 час на 60 минут и принять за единицу времени минуту? Тогда в 1 час поместится несколько событий. (Помним, что 1 минута содержит только ноль или одно событие).
Теперь проблема решена?
Вроде бы. Но что если в течение одной минуты мы получим несколько лайков? (например, кто-то поделился постом в Твиттере, и трафик вырос в эту минуту). Что тогда? Можно разделить минуту на секунды. Тогда единицей времени становится секунда, и в минуту помещается несколько событий. Но проблема бинарного контейнера будет существовать для все меньших единиц времени.
Дело в том, что биномиальная случайная величина может содержать несколько событий, если делить единицу времени на все меньшие единицы. В результате изначальная единица времени будет содержать более одного события.
Математически это означает n → ∞ . Если предположим, что среднее значение фиксировано, тогда p → 0. В противном случае n*p — количество событий — чрезмерно возрастет.
Единица времени с использованием этого лимита может быть бесконечно мала. Больше не нужно беспокоиться о более чем одном событии в единицу времени. Так получается распределение Пуассона.
b) В биномиальном распределении количество попыток (n) должно быть известно заранее.
Нельзя посчитать вероятность успеха при помощи биномиального распределения, зная только среднее значение (17 человек в неделю). Нужно больше информации ( n и p ), чтобы использовать формулу.
Распределение Пуассона же не обязывает вас знать ни n ни p. Предположим, что n бесконечно велико, а p бесконечно мала. Единственный параметр распределения — значение λ (ожидаемое значение x ). В реальной жизни чаще известно только значение (например, с 2 до 4 часов дня я принял 3 телефонных звонка), а не значения n и p .
4. Формула Пуассона
Давайте получим формулу Пуассона математически из формулы функции биномиального распределения.
Случайная величина $Х$ имеет распределение Пуассона с параметром $\lambda$ ($\lambda$$>$0), если эта величина принимает целые неотрицательные значения $к=0, 1, 2,\dots$ с вероятностями $рк$=$\frac <\lambda ^<:>> <:!>\cdot 5^ <-\lambda >.$ (Это распределение впервые было рассмотрено французским математиком и физиком Симеоном Дени Пуассоном в 1837 г.)
Распределение Пуассона также называют законом редких событий, потому, что вероятности рк дают приближенное распределение числа наступлений некоторого редкого события при большом количестве независимых испытаний. В этом случае полагают $\lambda =n \cdot р$ , где $n$- число испытаний Бернулли, $р$- вероятность осуществления события в одном испытании.
Готовые работы на аналогичную тему
- Курсовая работа Распределение Пуассона 400 руб.
- Реферат Распределение Пуассона 250 руб.
- Контрольная работа Распределение Пуассона 230 руб.
Правомерность использования закона Пуассона вместо биномиального распределения при большом числе испытаний дает следующая теорема.
Если в схеме Бернулли n$\rightarrow$$\infty$, p$\rightarrow$0, так что $n \cdot p$$\rightarrow$$\lambda$ (конечному числу), то
Формула Пуассона становится точнее, при малениких $p$ и больших чисел $n$, причём $n \cdot p $
Математическое ожидание случайной величины, имеющей распределение Пуассона с параметром $\lambda$:
Дисперсия случайной величины, имеющей распределение Пуассона параметром $\lambda$:
Применение формулы Пуассона при решении задач
Вероятность появления бракованного изделия при массовом производстве равна $0,002$. Найти вероятность того, что в партии из $1500$ изделий будет не более 3-х бракованных. Найти среднее число бракованных изделий.
- Пусть $А$-число бракованных изделий в партии из $1500$ изделий. Тогда искомая вероятность, это вероятность того, что $А$ $\leq$ $3$. В данной задаче мы имеем схему Бернулли с $n=1500$ и $р=0,002$. Для применения теоремы Пуассона положим $\lambda=1500 \cdot 0,002=3$. Тогда искомая вероятность
- Среднее число бракованных изделий $М(А)$=$\lambda$=3.
Коммутатор учреждения обслуживает $100$ абонентов. Вероятность того, что в течение $1$ минуты абонент позвонит, равна $0,01$. Найти вероятность того, что в течение $1$ минуты никто не позвонит.
Пусть $А$- число позвонивших на коммутатор в течение $1$ минуты. Тогда искомая вероятность -- это вероятность того, что $А=0$. В данной задаче применима схема Бернулли с $n=100$, $p=0,01$. Для использования теоремы Пуассона положим
$\lambda=100 \cdot 0,01=1$.
Тогда искомая вероятность
$Р = е^-1$ $\approx0,37$.
Завод отправил на базу $500$ изделий. Вероятность повреждения изделия в пути равна $0,002$. Найти вероятности того, что в пути будет повреждено
- ровно три изделия;
- менее трех изделий.
Рассмотрев замечание к формуле Пуассона, поскольку вероятность $р=0,002$ повреждения изделия мала, а число изделий $n=500$ велико, и $a=n\cdot p=1
Для решения второй задачи применима формула, где $k1=0$ и $k2=2$. Имеем:
Учебник издан тиражом $100000$ экземпляров. Вероятность того, что один учебник сброшюрован неправильно, равна $0,0001$. Какова вероятность того, что тираж содержит $5$ бракованных книг?
По условию задачи $n = 100000$, $p = 0,0001$.
События "из $n$ книг ровно $m$ книг сброшюрованы неправильно", где $m = 0,1,2, \dots ,100000$, являются независимыми. Так как число $n$ велико, а вероятность $p$ мала, вероятность $P_n (m)$ можно вычислить по формуле Пуассона: $P_n$(m)$\approx \frac<<\lambda >^m\cdot e^<-\lambda >>
В рассматриваемой задаче
$\lambda = 100000 \cdot 0,0001 = 10$.
Поэтому искомая вероятность $P_<100000>$(5) определяется равенством:
Завод отправил на базу $5000$ доброкачественных изделий. Вероятность того, что в пути изделие повредиться равно $0,0002$. Найти вероятность того, что на базу прибудут три негодных изделия.
По условию $n=5000$; $р = 0,0002$; $k = 3$. Найдем $\lambda $:
$\lambda = n \cdot p = 5000 \cdot 0,0002 = 1$.
Искомая вероятность по формуле Пуассона равна:
Вероятность того, что на телефонную станцию в течение одного часа позвонит один абонент, равна 0,01. В течение часа позвонили 200 абонентов. Найти вероятность того, что в течение часа позвонят 3 абонента.
Рассматрев условие задачи видим, что:
Найдем $\lambda $ для формуллы Пуассона:
\[\lambda =np=200\cdot 0,01=2.\]
Подставим значения в формулу Пуассона и получим значение:
На факультете насчитывается 500 студентов. Какова вероятность того, что 1 сентября является днем рождения одновременно для 2-х студентов?
Имеем $n=500$; $p=1/365 \approx 0,0027$, $q=0,9973$. Поскольку количество испытаний велико, а вероятность выполнения очень мала и $npq=1,35 \[P_ <500>\left(2\right)=\frac <\left(500\cdot 0,0027\right)^<2>> <2!>e^ <-500\cdot 0,0027>\approx 0,2362.\]
Читайте также: