Распиновка вакуум сенсора тойота
При подозрении в неисправности датчика абсолютного давления воздуха в коллекторе автолюбителей интересует вопрос о том, как проверить ДАД своими руками. Сделать это можно двумя способами — с помощью мультиметра, а также используя программные средства.
Однако для выполнения проверки ДАД с помощью мультиметра необходимо иметь под рукой электрическую схему автомобиля с тем, чтобы знать, к каким контактам подсоединять щупы мультиметра.
Симптомы неисправности ДАД
При полном или частичном выходе датчика абсолютного давления (его еще называют MAP сенсор, Manifold Absolute Pressure) из строя внешне поломка проявляется в следующих ситуациях:
- Высокий расход топлива. Это связано с тем, что датчик передает некорректные данные о давлении воздуха во впускном коллекторе на ЭБУ, и соответственно, блок управления подает команду на подачу топлива в большем, чем надо количестве.
- Снижение мощности двигателя. Это проявляется в слабом разгоне и недостаточной тяге при езде машины в гору и/или в загруженном состоянии.
- В районе дроссельной заслонки постоянно ощущается стойкий запах бензина. Это вызвано тем, что происходит постоянный его перелив.
- Нестабильные обороты холостого хода. Их значение то падает то повышается без нажатия на педаль акселератора, а во время движения чуствуются пинки и автомобиль дергается.
- «Провалы» двигателя на переходных режимах, в частности, при переключении передач, трогании машины с места, перегазовках.
- Проблемы с запуском двигателя. Причем, как «на горячую», так и «на холодную».
- Формирование в памяти электронного блока управления ошибок с кодами p0105, p0106, p0107, p0108 и p0109.
Большинство из описанных признаков неисправности являются общими, и могут быть вызваны другими причинами. Поэтому необходимо всегда выполнять комплексную диагностику, и начинать нужно в первую очередь со сканирования ошибок в ЭБУ.
Как работает датчик абсолютного давления
Перед тем как проверить датчик абсолютного давления воздуха необходимо в общих чертах понимать его устройство и принцип работы. Это облегчит сам процесс проверки и точность результата.
Так, в корпусе датчика расположена вакуумная камера с тензорезистором (резистор, изменяющий свое электрическое сопротивление в зависимости от деформации) и мембраной, который подключены с помощью мостового соединения к электрической схеме автомобиля (грубо говоря, к электронному блоку управления, ЭБУ). В результате работы двигателя давление воздуха меняется, что фиксируется мембраной и сравнивается с вакуумом (отсюда и название — датчик «абсолютного» давления). Информация об изменении давления передается на ЭБУ, на основании чего блок управления принимает решение о количестве подаваемого топлива для образования оптимальной топливовоздушной смеси. Полный цикл работы датчика выглядит следующим образом:
- Под воздействием разницы давлений мембрана деформируется.
- Указанная деформация мембраны фиксируется тензорезистором.
- С помощью мостового соединения изменяемое сопротивление преобразуется в изменяемое напряжение, которое и передается на электронный блок управления.
- На основе полученной информации ЭБУ корректирует количество топлива, подаваемое на форсунки.
Современные датчики абсолютного давления подсоединяются к ЭБУ при помощи трех проводов — питания, «массы» и сигнального провода. Соответственно, суть проверки зачастую сводится к тому, чтобы при помощи мультиметра проверить значение сопротивления и напряжения на указанных проводах при различных условиях работы двигателя в целом и датчика в частности. Некоторые датчики MAP имеют четыре провода. Кроме указанных трех проводов у них добавляется четвертый, по которому передается информация о температуре воздуха во впускном коллекторе.
В большинстве автомобилей датчик абсолютного давления расположен непосредственно на штуцере впускного коллектора. На более старых машинах он может располагаться на гибких воздушных магистралях и закреплен на корпусе автомобиля. В случае тюнинга турбированного мотора ДАД зачастую располагают на воздуховодах.
Если давление во впускном коллекторе низкое, то и выдаваемое датчиком сигнальное напряжение также будет низким, и наоборот, по мере возрастания давления растет и выходное напряжения, передаваемое в качестве сигнала от ДАД к ЭБУ. Так, при полностью открытой заслонке, то есть, при низком давлении (приблизительно 20 кПа, отличается у разных машин) значение напряжения сигнала будет находиться в пределах 1…1,5 Вольта. При закрытой заслонке, то есть, при высоком давлении (около 110 кПа и выше) соответствующее значение напряжения будет равно 4,6…4,8 Вольта.
Проверка датчика ДАД
Проверка датчика абсолютного давления в коллекторе сводится к тому что сначала необходимо убедится в его чистоте, а соответственно чувствительности к изменению потока воздуха и потом уже узнать его сопротивление и выдаваемое напряжение при работе двигателя.
Чистка датчика абсолютного давления
Обратите внимание, что в результате своей работы датчик абсолютного давления постепенно забивается грязью, которая блокирует нормальную работу мембраны, что может вызвать частичный выход ДАД из строя. Поэтому перед проверкой датчика его нужно обязательно демонтировать и выполнить чистку.
Для выполнения чистки датчик необходимо демонтировать с его посадочного места. В зависимости от марки и модели автомобиля методы крепления и место расположения будут отличаться. У турбированных двигателей обычно имеется два датчика абсолютного давления, один во впускном коллекторе, другой на турбине. Обычно крепится датчик при помощи одного-двух крепежных болтов.
Чистку датчика необходимо выполнять аккуратно, с помощью специальных карбклинеров или подобных чистящих средств. В процессе чистки нужно очистить его корпус, а также контакты. При этом важно не повредить уплотнительное кольцо, элементы корпуса контакты и мембрану. Нужно просто брызнуть внутрь небольшое количество чистящего средства и вылить его обратно вместе с грязью.
Очень часто такая простая чистка уже восстанавливает работу MAP сенсора и производить дальнейшие манипуляции уже нет потребности. Так что после чистки можно поставить датчик давления воздуха на место и проверить работу двигателя. Если же она не помогла, то стоит перейти к проверке ДАД тестером.
Проверка датчика абсолютного давления мультиметром
Для проверки узнайте из руководства по ремонту какой провод и контакт за что отвечает в конкретном датчике, то есть, где провода питания, «массы» и сигнальный (сигнальные в случае четырехпроводного датчика).
Чтобы разобраться как проверить датчик абсолютного давления мультиметром необходимо для начала убедится что проводка между ЭБУ и самим сенсором цела и нигде не коротит, ведь от этого будет зависеть точность результата. Делается это тоже при помощи электронного мультиметра. С его помощью необходимо проверить как целостность проводов на обрыв, так и целостность изоляции (определить значение сопротивления изоляции на отдельно взятых проводах).
Рассмотрим выполнение соответствующей проверки на примере автомобиля Chevrolet Lacetti. У него к датчику подходят три провода — питание, «масса» и сигнальный. Сигнальный провод идет прямиком на электронный блок управления. «Масса» же соединена с минусами других датчиков — датчика температуры воздуха, поступающего в цилиндры и датчика кислорода. Питающий провод соединен с датчиком давления в системе кондиционирования. Дальнейшая проверка датчика ДАД выполняется по следующему алгоритму:
- Необходимо отсоединить минусовую клемму с аккумуляторной батареи.
- Отсоединить колодку с электронного блока управления. Если рассматривать именно Лачетти, то у этого авто она находится под капотом с левой стороны, возле аккумулятора.
- Снять фишку с датчика абсолютного давления.
- Установить на электронном мультиметре режим измерения электрического сопротивления с диапазоном приблизительно 200 Ом (зависит от конкретной модели мультиметра).
- Проверить значение сопротивления щупов мультиметра, просто соединив их между собой. На экране будет показано значение их сопротивления, которое в дальнейшем нужно будет учитывать при выполнении проверки (обычно оно составляет около 1 Ом).
- Один щуп мультиметра необходимо подключить к контакту номер 13 на колодке ЭБУ. Второй щуп аналогично подключить к первому контакту колодки датчика. Таким образом «прозванивается» провод «массы». Если провод целый и у него не повреждена изоляция, то значение сопротивления на экране прибора будет составлять приблизительно 1…2 Ома.
- Далее нужно подергать жгуты с проводами. Это делается для того, чтобы убедиться, что провод не поврежден и меняет свое сопротивление в процессе движения автомобиля. При этом показания на мультиметре не должны изменяться и находиться на том же уровне, что и в статике.
- Одним щупом подключиться к контакту номер 50 на колодке блока, а вторым щупом подключиться к третьему контакту на колодке датчика. Таким образом «прозванивается» провод питания, по которому на датчик подается стандартные 5 Вольт.
- Если провод целый и не поврежденный, то значение сопротивления на экране мультиметра будет также равно приблизительно 1…2 Ома. Аналогично необходимо подергать жгут с тем, чтобы исключить повреждение провода в динамике.
- Подключить один щуп к контакту номер 75 на колодке ЭБУ, а второй — к сигнальному контакту, то есть, контакту номер два на колодке датчика (среднему).
- Аналогично, если провод не поврежден, то сопротивление провода должно составлять около 1…2 Ом. Также нужно подергать жгут с проводами, чтобы убедиться в надежности контакта и изоляции проводов.
После проверки целостности проводов и их изоляции необходимо проверить, приходит ли питание на датчик от электронного блока управления (питающие 5 Вольт). Для этого нужно обратно подсоединить колодку ЭБУ к блоку управления (установить ее на ее посадочное место). После этого ставим назад клемму на АКБ и включаем зажигание не запуская двигатель. Щупами мультиметра, переключеного в режим измерения постоянного напряжения, касаемся к контактам датчика — питающему и «массе». Если питание подается, то на экране мультиметра будет значение около 4,8…4,9 Вольт.
Аналогично проверяется напряжение между сигнальным проводом и «массой». Перед этим нужно запустить двигатель. Далее необходимо переключиться щупами к соответствующим контактам на датчике. Если датчик в порядке, то на экране мультиметра будет информация о напряжении на сигнальном проводе в диапазоне от 0,5 до 4,8 Вольта. Низкое напряжение соответствует холостым оборотам двигателя, а высокое — высоким оборотам двигателя.
Проверка с помощью шприца
Проверить работу датчика абсолютного давления можно с помощью медицинского одноразового шприца объемом 20 «кубиков». Также для проверки нужен будет герметичный шланг, который нужно подсоединить к демонтированному датчику и непосредственно к горловине шприца.
Соответственно, для проверки ДАД необходимо демонтировать датчик абсолютного давления с его посадочного места, однако фишку оставить подключенной к нему. В контакты лучше всего вставить металлическую скрепку, а щупы (или «крокодилы») мультиметра уже подсоединять к ним. Проверку питания необходимо выполнять аналогично, как описано в предыдущем разделе. Значение питания должно находиться в пределах 4,8…5,2 Вольта.
Для проверки сигнала с датчика необходимо включить зажигание автомобиля, но двигатель не запускать. При нормальном атмосферном давлении значение напряжения на сигнальном проводе будет приблизительно 4,5 Вольта. При этом шприц должен находиться в «выжатом» состоянии, то есть, его поршень должен быть полностью погружен в тело шприца. Далее для проверки необходимо вытаскивать поршень из шприца. Если датчик работоспособен, то при этом напряжение будет понижаться. В идеале при сильном разрежении значение напряжения опустится до значения 0,5 Вольта. Если же напряжение опустилось лишь до 1,5…2 Вольт и ниже не опускается — датчик неисправен.
Обратите внимание, что датчик абсолютного давления — хотя и надежные устройства, но достаточно хрупкие. Они являются неремонтопригодными. Соответственно, при выходе датчика из строя его необходимо заменить на новый.
Кислородный датчик Toyota, он же лямбда – зонд, располагается в выпускном коллекторе мотора автомобиля. Задачей такого оборудования становится установление объемов кислорода в выхлопных газах, а стало быть, подача информации об оценке экологичности и для подбора экономичного режима потребления топлива.
Известно, что экологическая ситуация в современных городах оставляет желать только лучшего, и одним из главных негативных факторов становится именно низкое качество воздуха – дефицит кислорода и изобилие в нем вредных загрязнителей. В борьбе за чистоту воздуха из года в год нормы по токсичности выхлопа только ужесточают, и датчик кислорода позволяет осуществлять контроль над качеством выхлопа в рамках отдельного автомобиля, и постоянно получать информацию для катализаторов, которые, ориентируясь на нее, будут следить за показателями выхлопных газов в режиме настоящего времени.
Представляет же собой лямбда зонд Toyota своеобразный гальванический элемент, состоящий из керамического либо циркониевого электролита. Электроды из платины получают доступ как к выхлопам автомобиля, так и к свежему воздуху вокруг, и при температуре порядка 400 градусов начинается процесс, при котором на электродах появляется выходное напряжение. И это напряжение продуцируется благодаря разному содержанию кислорода в выхлопе и в окружающей среде. Если же разницы нет, то и напряжения, соответственно, тоже не появляется. Все эти изменения фиксируются бортовым компьютером, через который и удается получить всю необходимую информацию.
Таблицы распиновки лямбда зондов
Как пользоваться таблицами?
Посмотрите цвета проводов кабеля отходящего от датчика лямбда зонд. В колонках таблиц имеются доступные варианты сочетаний цветов. Если сочетание цветов вашего датчика совпадёт с сочетанием цветов одной из колонок предложенных таблиц, значит, ваш датчик имеет ту или иную конструкцию. Для определения назначения каждого провода обратитесь к левой колонке выбранной таблицы.
Пример.
Ваш датчик имеет 4 провода со следующей цветовой комбинацией: 2 коричневых, 1 фиолетовый и 1 бежевый. Четвёртая колонка Таблицы распиновки циркониевых датчиков имеет такое же сочетание цветов, значит ваш датчик циркониевый. Далее обращаемся к левой колонке этой же таблицы и выясняем назначение каждого провода: оба коричневых – нагревательный элемент фиолетовый – сигнал бежевый – масса (минус) Затем осуществляем соединение проводов по цветам.
Таблица распиновки циркониевых датчиков.
В данной таблице представлена распиновка 4-х проводных циркониевых лямбда зондов, устанавливаемых на 95% автомобилей в период с 1999 года по настоящее время.
Таблица распиновки титановых датчиков.
В данной таблице представлена распиновка 4-х проводных титановых лямбда зондов, устанавливаемых на небольшое число автомобилей в период с 2001 года по настоящее время.
Посмотреть тип вашего датчика можно также воспользовавшись панелью подбора лямбда зонда для вашего автомобиля, где в разделе характеристики, можно увидеть тип датчиков, устанавливаемых на ваш автомобиль.
Датчики на замену
Кислородный датчик для ВАЗ 2110
Если Вы пришли к такой необходимости, как замена лямбда зонда, Вам стоит задуматься, какой именно образец выбрать. Всегда существует возможность выбрать оригинальный вариант, например с каталожным номером 89465-32160 для Toyota Vista, а также 89465-48130, 89465-48020 для Toyota Harrier и Kluger, многие автолюбители хорошо отзываются о Toyota 89465-20270 (для двигателей 3s-fe, 4s-fe), однако желающие сэкономить ищут альтернативы.
В качестве альтернативы может выступать даже аналог для ВАЗ 2110 (Bosch 0 258 005 133), однако придется перепаивать провода. Впрочем, если Вы обращаетесь в сервис, где работают хорошие мастера, или же сами имеете опыт тех или иных работ над автомобилем, проблемы с этим не возникнет.
Выбрать можно как оригинальную деталь, так и просто заводскую, или, как указывалось, даже от другого автомобиля, главное – установить подобающим образом. Эту работу быстро выполнят в мастерской, и к автомобилю вновь вернется его экономичное потребление топлива и экологические параметры, что, собственно, и требуется. При этом стоит помнить, что от качества и грамотности установки зонда может зависеть и точность показаний, а следовательно, объем потребляемого автомобилем топлива. Так что работы нужно доверять только грамотным специалистам.
Назначение и принцип работы
Лямбда зонд – это устройство, предназначенное для контроля состава выхлопных газов. С помощью него определяется объем кислорода, оставшийся после сгорания топлива, а полученные данные по сигнальным проводам передаются на ЭБУ автомобиля. Для чего это нужно?
Дело в том, что работа систем выпуска отработанных газов и топливной тесно взаимосвязаны.
Связующим звеном в этой цепи является электронный блок управления, который не только получает данные от датчика кислорода в виде электрических импульсов, но и передает на его сигнальный вывод опорное напряжение 0.45 вольт (это важно).
ЭБУ, получая данные от датчика кислорода, корректирует, в зависимости от режимов работы двигателя (на холодную, в прогретом состоянии, под нагрузкой и без нее, и т.д.), качество топливовоздушной смеси поступающей в цилиндры двигателя, которая может быть обогащённой, бедной, обедненной и т.д. Корректировка происходит за счет изменения времени открытия топливных форсунок.
Правильное соотношение топлива и воздуха для определенных условий работы двигателя, при которых горючая смесь сгорает полностью, называется стехиометрической топливовоздушной смесью.
Также существует такое понятие как коэффициент избытка воздуха или уровень лямбда.
В идеальных условиях, когда все пропорции топлива и воздуха соблюдены правильно (14,7 частей воздуха и 1 часть топлива) этот коэффициент равен 1.
Если смесь обедненная (15:1 и выше), то уровень лямбда будет больше 1, если обогащенная (ниже 14:1), меньше.
Представим, что лямбда зонд неисправен и передает ошибочные данные на ЭБУ. В результате для разных режимов работы двигателя будет формироваться неправильная топливовоздушная смесь, а это минимум большой расход топлива и потеря мощности.
Инструкция по подключению датчика кислорода
Данная инструкция носит ознакомительный характер. Настоятельно рекомендуется доверять такую ответственную процедуру специалисту сервисного центра, обладающего соответствующим опытом работы.
- Запомнить или записать расположение проводов датчика. Отсоединить штекер от электронной составляющей авто, не повредив и не разомкнув при этом провода самого зонда. Аккуратно вытащить старую лямбду.
- Подрезать проводку нового универсального датчика так, чтобы каждый следующий кабель был на 4 см короче предшествующего (начинать можно с какого угодно). Также укоротить кабели от разъема старого зонда.
- Поместить на каждый из проводов специальную изоляцию и водозащиту (широким концом водозащита обращена к точке соединения провода).
- Снять с каждого провода 8 мм изоляции кусачками, затем надеть контактное соединение и сжать конструкцию так, чтобы соединение было идеальным, а неизолированные провода не выступали. Начинать соединение следует с наиболее короткого провода, так проще.
- Передвинуть водозащиту с обоих концов проводки к соединению, полностью прикрыть место соединения изоляционной трубкой. Закрепить конструкцию при помощи горячего фена.
- Монтировать непосредственно сам датчик, сняв защитный колпак. Распиновка проводов лямбды поможет проложить новую проводку по цветам точно так, как лежала старая. Подключать и крепить проводку необходимо аккуратно, чтобы она не соприкасалась с нейтрализатором, коллектором или другими частями авто, которые нагреваются до высоких температур.
Своевременная замена лямбда-зонда очень важна. Если ЭБУ автомобиля не будет получать достоверную информацию об уровне кислорода в выхлопе, то станет работать на основе усредненных параметров, таким образом топливно-воздушная смесь не будет оптимальной — это отрицательно повлияет на состояние автомобиля.
Наш автосервис в Санкт-Петербурге специализируется на диагностике и ремонте выхлопных систем самых разных авто, от ВАЗ до иномарок. Гарантируем высокое качество ремонта и короткие сроки. Не рискуйте своей техникой — обращение к профессионалам сбережет много нервов, а в перспективе и денег, ведь самостоятельный ремонт по советам с форумов может привести только к более серьезным неисправностям.
Типы датчиков и температурные режимы их работы
На рынке представлены два типа датчиков кислорода – титановые и циркониевые.
Первые изготовлены на основе диоксида титана, а вторые – диоксида циркония.
Отличают их между собой только конструктивные особенности, принцип работы одинаковый.
Титановые датчики в последнее время практически не используются, ранее устанавливались на некоторые марки автомобили, встречаются сейчас очень редко. Циркониевые наоборот, получили широкое распространение.
Основа устройства – керамический элемент, выполненный из указанных выше диоксида циркония (ZrO2) или диоксида титана (Tio2), покрытый платиновой сеткой.
Одна часть элемента расположена в выхлопной трубе и контактирует с выхлопными газами, а другая снаружи, контактирует с атмосферным воздухом через места соединения проводов.
Температура, при которой лямбда зонд начинает функционировать, варьирует от 300 до 400 °С, опасный предел 900 – 1000 °С, за которым устройство может перегреться и выйти из строя. Рабочий температурный режим в движении – около 600 °С.
В современных лямбда зондах, но не во всех, конструктивно предусмотрен нагревательный элемент, который при запуске мотора на холодную прогреет устройство до рабочей температуры в 300 – 400 °С.
Отличительная особенность – наличие трех или четырех проводов, два из которых белого цвета (на японских авто могут быть черного) идут на подогреватель.
Такие устройства могут устанавливаться в выхлопной трубе на значительном расстоянии от двигателя, так как им не нужен интенсивный прогрев выхлопными газами.
В двух или одно проводных датчиках кислорода подогреватели отсутствуют, поэтому устанавливаются они как можно ближе к двигателю, как правило в выпускном коллекторе, но так, чтобы лямбда зонд не вышел из строя от перегрева.
У многих типов датчиков, особенно установленных на немецкие автомобили, но, кроме японских, черный провод является сигнальным, а серый (может быть не всегда) является сигнальной массой.
Проверка питания датчика (напряжение на датчике кислорода)
Прежде чем заменить датчик, нужно удостовериться, что на него поступает питание и исправны все цепи. Для этого открываем капот и отсоединяем разъем датчика (он прикреплен хомутом к патрубку системы охлаждения).
- Проверяем цепь нагревательного элемента. Берём тестер и его «минус» подключаем к двигателю, «плюс» крепим на контакт «В». Включаем зажигание и смотрим на показания тестера: должно показывать 12в. Если показания тестера меньше 12в или вообще отсутствуют, то либо разряжен аккумулятор (что мало вероятно), либо обрыв цепи питания (устраняем неисправность). Так же может быть неисправна эбу, но как правило, бортовой компьютер сразу свидетельствует о данной ошибке.
- Проверяем цепь чувствительного элемента. Измеряем напряжение между контактами «А» и «С». минус на «С» плюс на «А». Напряжение должно быть 0,45в. Если напряжение отсутствует или отличается на 0,02в и более – то неисправна цепь питания (нужно найти и устранить) или неисправен ЭБУ (что так же мало вероятно).
Полностью проверить датчик на работоспособность можно только при помощи осциллографа, чего нет у большинства автолюбителей, поэтому я не вижу смысла описывать данную ситуацию. Скажу лишь то, что для проверки нужно будет искусственно прибеднять и обогащать топливную смесь и смотреть на показания датчика. Если датчик отъездил уже не мало – более 100.000км, то его можно смело заменить. Потому что, даже если он и рабочий, чувствительность заметно ухудшилась – что ведёт к лишним затратам на бензин.
Различия и взаимозаменяемость титановой и циркониевой лямбды
Это касается различий титановой и циркониевой лямбды. Работа их основана на разных принципах. Циркониевая генерирует ЭДС при обнаружении остаточного кислорода в выхлопных газах.
Титановая лямбда изменяет свое сопротивление при обнаружении остаточного кислорода в выхлопных газах. В соответствии с этим включение их в бортовую сеть различное.
Подключение циркония через разъем, в котором два пина — подогрев, один пин — сигнал (напряжение в вольтах от 0,1 в до 0,9В в зависимости от количества кислорода в выхлопных газах) и один пин — масса лямбды.
Подключение титана через разъем, в котором два пина — подогрев, один пин — сигнал лямбды (напряжение в вольтах от 0,1 в до 0,9В, которое меняется в зависимости от изменения сопротивления лямды от количества кислорода в выхлопных газах) и один пин это опорное напряжение +1В, которое подается на лямбду от ЭБУ. Выходной сигнал лямбды, что циркониевой, что титановой — всегда напряжение, которое сравнивается в ЭБУ с опорным напряжением, на компараторе, равным 0,45В.
ВЫВОД : Замен титановой лямбды на циркониевую возможен без применения всяких дополнительных электронных устройств. В этом случае надо использовать трех проводную циркониевую лямбду.
Возможно использовать четырех проводную лямбду, но при этом надо проверить прозванивается ли массовый провод на массу лямбды, если прозванивается, его можно обрезать, если не звониться, то подключаем его на массу автомобиля.
Как правильно установить универсальный кислородный датчик?
1. Обрежьте провода нового кислородного датчика в соответствии с необходимой длиной.
READ Как в билайн подключить к тарифу дополнительные номера
ВАЖНО: Новый датчик, соединенный с имеющимся у вас коннектором, должен быть такой же длины, как и старый датчик с оригинальным коннектором.
2. Обрежьте провод старого кислородного датчика.
3. Зачистите провода нового датчика и коннектора от изоляции примерно на 7 мм каждый.
4. Обожмите стыковые соединения датчика и проводника специальными клещами и закройте термоусадочной трубкой (размер 22–16).
5. Нагревайте горячим воздухом термоусадочную изоляцию до тех пор, пока соединения не будут плотно закрыты.
Признаки неисправности
Признаки неисправности лямбда зонда могут быть следующие:
- Повышается расход топлива;
- «Плавают» обороты мотора на холостых;
- Сбои в работе катализатора, сильное нехарактерное нагревание устройства, потрескивание после остановки, повышенный уровень токсичности в выхлопных газах (резкий неприятный запах);
- Появление «СНЕСК ЕNGINЕ» на панели приборов.
Если не работает лямбда зонд как ведет себя машина?
- Неустойчиво работает двигатель;
- Пропала динамика набора скорости, ощущаются рывки автомобиля.
К сожалению, данные признаки могут указывать и на другие проблемы. Но проверку рекомендуют начинать именно с датчика кислорода хотя бы с его внешнего осмотра.
©А. Пахомов (CTTeam, Школа Диагностики Алексея Пахомова).
Я всегда стараюсь писать статьи только о необычных или достаточно редких случаях диагностики. Об интересных дефектах, потребовавших мозгового штурма. Какой смысл писать «приехала машина, двигатель троит при дросселировании, заменили провода и свечи, всё прошло»? Это банально и неинтересно.
Гораздо полезнее описать случаи, которые случаются раз или два в жизни. Наверно, такие бывают в практике каждого диагноста. Вроде бы дефект явный, ищешь-ищешь его, а никак не получается. Ну не укладывается картина дефекта в нормальную логику!
Один из подобных случаев я описал в статье «Моторист-стоматолог». Напомню, там двигатель Subaru вёл себя абсолютно противоестественно: на холостом ходу работал на двух цилиндрах, а при открытии дросселя – на четырёх. Всё началось после капитального ремонта, но тест Рх, сделанный во всех цилиндрах, показал практически идентичный результат. Кто читал статью, наверняка помнит, чем все это закончилось. А я хочу рассказать о ещё одном случае подобного дефекта.
Только автомобиль на этот раз будет другой.
Итак, старушка Toyota RAV 4 1995 года выпуска с мотором 3 S-FE. Знаю, что кто-то из диагностов попросту не берёт автомобили такого возраста в работу. Мол, что взять с этого старья и его владельца! Ну, во-первых, не все катаются на новеньких Мерседесах, а во-вторых, японские машины весьма надёжны и, как показывает практика, даже в таком возрасте всё ещё находятся в весьма неплохом состоянии.
Дефект необычный. Прежде всего: двигатель запускается и тут же останавливается. Но если немного приоткрыть дроссель, то набирает обороты 1500 – 2000 . Однако при частоте вращения выше двух тысяч двигатель попросту глохнет. Выяснился ещё один интересный момент: если снять разъём с датчика абсолютного давления (а именно он служит для расчёта наполнения воздухом), то можно даже немного «погазовать», но с сильными хлопками во впускной коллектор. Свечи чёрные, покрытые толстым слоем сажи. Значит, смесь богатая.
Хозяин сообщил, что показывал машину мотористу. Тот осмотрел двигатель и заявил: все метки газораспределительного механизма находятся на своих местах. Так как сканер на этих автомобилях показывает лишь несколько параметров, работать придётся мотортестером.
Да, кстати. Как водится, машина в поисках истины побывала уже на трёх автосервисах. Были заменены ДАД и распределитель зажигания, результата это не дало. Давайте начнём!
И прежде всего проверим банальные вещи: давление топлива и компрессию. И то, и другое в норме. Обязательно нужно оценить состояние вакуумного шланга от коллектора до ДАД. Здесь также всё в порядке. Ну и для полного успокоения выворачиваем одну свечу и вновь заводим двигатель. Напомню, что таким образом можно определить непроходимость выпускного тракта. Тоже безрезультатно. Впрочем, этого стоило ожидать.
Руками поработали достаточно. Давайте теперь поработаем мотортестером и прежде всего снимем осциллограмму давления в первом цилиндре (все изображения кликабельны):
Ну, знаете ли… С такой осциллограммой давления двигатель просто обязан работать. Даже навскидку видно, что все характерные точки на месте, нормальная осциллограмма давления исправного мотора приблизительно так и выглядит.
Но настораживают два нюанса… Искрообразование происходит в 29 градусах после ВМТ (на иллюстрации эти моменты указаны красными стрелками), это во-первых. Во-вторых, давление в ВМТ составляет почти 8 бар. Многовато. Впрочем, с таким поздним зажиганием это неудивительно: неоптимальный момент искрообразования скомпенсирован повышенным наполнением цилиндров смесью.
Попробуем снять осциллограмму давления во втором цилиндре:
Странно. Здесь также слишком высокое давление в ВМТ, но зато совершенно нормальный УОЗ, около 7 градусов.
Снимаем осциллограмму давления в оставшихся двух цилиндрах и видим очень необычную закономерность: в первом и четвёртом цилиндрах искра возникает после ВМТ примерно в 29 градусах, а во втором и третьем всё совершенно нормально. Искра в них, как и должно быть, появляется примерно за 7 градусов до ВМТ.
Ко всем загадкам прибавилась ещё одна: почему это ЭБУ двигателя устанавливает столь разный угол опережения зажигания в парах цилиндров 2 – 3 и 1 – 4 . Чудеса, да и только! Если бы это была Лада Калина, я бы сказал, что в ЭБУ двигателя попала охлаждающая жидкость. Но это не Лада, и внутри блока управления антифриза явно нет.
На всякий случай дунем-ка генератором дыма во впускной коллектор. Может быть, большой подсос воздуха сводит блок управления с ума? Быстро выяснилось, что это не так: со впускным коллектором всё в порядке.
Так, с наскока взять крепость не удалось, переходим к длительной осаде. Как и положено в подобных случаях, снимаем осциллограммы высокого напряжения и форсунок. Здесь следует вспомнить, что у Тойоты есть одна особенность: сигнал IGF с коммутатора на блок управления. Если этого сигнала нет, то двигатель работать не будет. Выведем на экран также и его. Ну и для полноты картины – сигнал с датчика положения распределительного вала:
Сверху вниз по порядку – ДПРВ, система зажигания, форсунка, IGF. Как видим, в момент остановки двигателя пропадает управление форсунками. Искра при этом есть, сигнал IGF на входе ЭБУ также есть. Обратите внимание на осциллограмму системы зажигания. Импульсы идут не ровным строем, а парами: в двух цилиндрах нормально, в двух – поздно.
Подумаем. Если бы один из сигналов периодически пропадал, то проявление дефекта было бы спорадическим. То заводится, то нет, то глохнет, то нет… А здесь поведение двигателя подчиняется строгой логике: оно всегда одинаковое, всегда предсказуемое, но всегда совершенно неправильное! Это позволяет сделать грустный вывод: проблема скрыта где-то в ЭБУ. Только он может работать всегда строго по программе, но неправильно.
Возможно, он действительно «поплыл». Но прежде, чем сделать такой вывод, нужно убедиться в том, что на входах ЭБУ присутствуют все необходимые для работы сигналы, и прежде всего сигналы синхронизации. А их два: с датчика положения коленчатого вала и с датчика положения распределительного вала. Подключаемся и смотрим:
Так, а это что за фокус? Что там с задающим диском на коленчатом валу? Зуба нет? Кажется, мы близки к разгадке. Поищем-ка эталонную осциллограмму ДПКВ этого двигателя. Она выглядит вот так:
Собственно, всё, диагностика завершена. Налицо проблема с задающим диском коленчатого вала. Глядя на осциллограмму, можно предположить, что один из зубьев диска сломан.
Передаём машину мотористу для дальнейших изысканий. Ждать пришлось недолго, можно сделать прощальное фото задающего диска со сломанным зубом.
Подведём итог нашей интересной и необычной диагностики. Собственно, главный вывод прозвучал ещё в статье «Моторист-стоматолог»: отсутствие одного или нескольких зубьев на задающем диске приводит к совершенно непредсказуемым изменениям в алгоритме работы ЭБУ. Как блок отреагирует на выбитый зуб, пожалуй, не скажет даже производитель блока.
В нашем случае это привело к остановке двигателя после запуска, совершенно неестественному углу опережения зажигания в двух цилиндрах, богатой смеси и ко всяким прочим чудесам, описанным в начале статьи.
Осталось дождаться новой запчасти, и старушка-Тойота вновь покатится по дороге.
4E-FE MT
1NZ-FE, 2NZ-FE, 1SZ-FE
1KZ-TE
E01 | Масса | THW | Датчик температуры ОЖ |
E02 | Масса | IDL | Датчик положения дроссельной заслонки |
TCV | Клапан регулировки угла опережения впрыска | THA | Датчик температуры воздуха на впуске |
S-REL | Реле свечей накала | VA | Опорное напряжение на датчик ДТ и ДПДЗ |
SPV | Клапан SPV | PIM | Датчик давления наддува |
EGR | Управление клапаном EGR | TFN | Датчик нейтрали в раздатке |
SNW | Включение «зимнего режима» | VC | Датчик положения дроссельной заслонки |
S/TH1 | Управление клапаном № 1 малой заслонки | E2 | Масса датчиков |
S/TH2 | Управление клапаном № 2 малой заслонки | STA | Сигнал стартера |
SNWL | Индикация «зимнего режима» | NSW | Сигнала от выключателя нейтрали или выключателя запрещения запуска |
PS | Датчик давления рейки | A/C | Муфта кондиционера |
2 | Положение селектора 2 (−) | OD1 | Круиз контроль |
L | Положение селектора L (−) | SP1 | Датчик скорости № 1 |
L4 | Пониженная передача | HSW | Включение режима Idle-Up (+) |
SP2 | Датчик скорости № 2 | IMO | Иммобилайзер |
TDS+ | Датчик положения коленвала + | H-IND | Индикатор режима Idle-Up |
TDS- | Датчик положения коленвала - | ACT | Контроллер кондиционера |
NE+ | Датчик частоты вращения ТНВД + | G-IND | Индикатор свечей накала |
NE- | Датчик частоты вращения ТНВД - | TAC | Тахометр |
SP2+ | Датчик скорости № 2 | OIL-W | Индикатор перегрева АКПП |
SP2- | Датчик скорости № 2 | IMI | Иммобилайзер |
S1 | Соленоид АКПП № 1 | W | Индикатор Check Engine |
S2 | Соленоид АКПП № 2 | OD2 | OD / Off |
SL | Соленоид блокировки гидротрансформатора | STP | Стоп-сигнал |
DG | На разъём диагностики | P | Режим Power |
E1 | Масса | PWR | Режим Power |
VF | На разъём диагностики | M-REL | Главное реле |
TT | На разъём диагностики | IG SW | Плюс с замка зажигания |
TE2 | На разъём диагностики | S-REL | Реле свечей накала |
TE1 | На разъём диагностики | SVR | Управление реле SPV |
VRP | Корректирующий резистор № 2 | BATT | Постоянный плюс |
VRT | Корректирующий резистор № 1 | B+ | Плюс с главного реле |
VAT | Корректирующий резистор № 1 | H-IND | Индикатор режима Idle-Up |
THF | Датчик температуры топлива | +BG | Плюс с главного реле |
THO | Датчик температуры жидкости АКПП | +BF | Плюс с главного реле |
Прошу помощи спецов! Суть проблемы\вопроса:
имеем Camry V40. На дросселе есть 6 контактов:
1. VTA1
2. VCTA
3. VTA2
4. ETA
5. M+
6. M-
Что я знаю: VTA1 и VTA2 - это "потенциалы", которые отвечают за положение дроссельной заслонки. Не уверен, но напишу: VTA2 имеет тот же потенциал с VTA1 и является его "эталоном".
Так вот, мне нужно узнать за что отвечают оставшиеся 4 контакта и как их протестировать.
VC всегда означало питание
E на схемах всегда означало землю
М - это привод двигателя заслонки
Interceptor, спасибо. разобрался одновременно с тобой.
Итак, что я нарыл:
VCTA - питание для дросселя. Напряжение 4,5-5,5В;
VTA1 - "датчик" положения дроссельной заслонки. Его данными оперирует ЭБУ двигателя;
VTA2 - является проверочным, эталонным, потенциалом для контроля правильной работы VTA1;
E2 (ETA2) - земля;
M+ и M- - привод сервомотора заслонки (открывает\закрывает).
Теперь пришло время раскрыть принцип работы "транскодера" i-Drive: он имеет чёрный ("масса"), оранжевый (+12В), красный и белый (для подключения к VTA1 и VTA2, порядок подключения не важен). Также есть коричневый и синий провода - они не подключаются на тойотах. А вообще, коричневый предназначен для подключения к ДПДЗ, а синий для датчика температуры всасываемого воздуха.
Вывод: коробка управляет только приводом дроссельной заслонки. и более ничем. По сути это доработанный педальный бустер, имеющий какую-то прошивку))) Чуда не произошло.
Завтра протестирую коробку. Будет время - отпишусь о результатах))) Есть кое-какие мысли. Если подтвердятся - будет круто)))
Этта. ДПДЗ - Датчик Положения Дроссельной Заслонки, объясни, плиз в чем принципиальное отличие от TPS?
И кто мешает все-таки зацепиться на датчик температуры?
зацепиться на ДПДЗ и датчик температуры мешает то, что я не знаю какое напряжение выдают коричневый и синий провода)))
интересный вопрос. я поторопился с выводами. Если мы разорвём цепь и подадим свои подменные данные с коробки на VTA1 и VTA2, то получим, что коробка сама управляет дросселем руководствуясь только своей прошивкой. А теперь помоги мне с мыслью: если мы подключаем эти 2 провода с коробки параллельно к VTA1 и VTA2, то что мы получим.
Вот инструкция от коробки на французском, на всякий случай:
Retirez la clef du contact. Attendre 1 minute
Retirez le connecteur qui se trouve sur le papillon des gas. (voir photo encadre ou fleche)
Mettre la clef de contact sur la derniere position, avant de demarrer le moteur.
A l'aide d'un voltmetre, prendre la mesure par paire donc entre 2 bornes, attention generalement vouz avez des connecteur a 6 bornes sur voiture et trouvez les deux bornes ayant la valeur entre 4.95 et 5.0 Volts
Apres votre mesure la clef du contact. Attendre 1 minute et verrouiller la voiture.
Le fil rouge se raccordera sur le fil relier a ;'une des bornes que vous venez de trouver et le fil blanc sur l'autre.
L'ordre de placement n'a pas d'importance.
Il vous suffit de vous ponter sur les fils d'origine en denudant la gaine isolante et en aucun cas les couper. Vous pouvez les souder ou attacher a l'aide d'attaches rapide (3M).
Ensuite vous faites un essai de a 2 kilometers, vous arretez le vehicule et vous retirez la clef du contact, vous fermez les portes a l'aide de la telecommande et vous attendez 1 minute pour que la mise en lecteur de notre programme se fasse par votre calculateur.
Le boitier fonctionne a 50%, vous aurez du couple mais pas encore la puissance. Il faudra faire 3 cycles de demarrages froid/chaud pur que l'ordinateur enregistre toutes les donnees du boitier a 100%.
Pour qu'un cycle se fasse il faut que le le moteur soit chaud, ensuite qu'il soit tout a fait refroidit (une nuit) entre 2 demarrages.
Читайте также: