Распиновка лямбда зонда нива
Итак, следующим геморроем, которым следовал за датчиком детонации последовал датчик кислорода, хотя нет, наоборот, просто до датчика кислорода я окончательно добрался только сегодня.
В общем после сборки мотора прошедшей осенью встал вопрос замены штанов, дырявые были. А так как датчик кислорода был уже старенький, я его решил в купе и поменять, на ошибки ЭБУ не жаловался, но судя по пробегу уже пора была его поменять в соответствии с рекомендациями завода изготовителя — 90 тысяч вроде, если не ошибаюсь, сейчас уже не помню точно.
С моим ЭБУ, который MP 7.0 устанавливается 133 датчик (Бош 0 258 005 133), был куплен бошевский датчик и установлен в новые штаны и всё это дело собрано. Изначально на разъем датчика я не посмотрел, а просто воткнул его в ответный разъем, зашел он туго, но зашел, ничего не предвещало беды, мотор завелся, показания с датчика идут. Но вот на следующий день выскакивает ошибка P0134 — нет активности датчика кислорода, епта как так? Новый же датчик (в предыдущем посте тоже новый был). Ну я на него подзабил, так как не до него совсем было, а тут на этой неделе решил таки вспомнить, расцепил разъем и смотрю в фишку, а там одна нога в самой фишке на бок стоит и эту ногу я когда ставил фишку усилием выдавил наружу в обратную сторону :)) — Ага, причина найдена, подумалось мне и так как у меня остался старый датчик я просто заменил фишку целиком…
Через два часа — дилинь-дилинь P0134 — нет активности датчика кислорода, да епта, да как так?!
Приехав к диагносту, смотрим — ДК работает, мозг его видит, скинули фишку, подцепили генератор напряжения, проверяем проводку, проводка целая. Выезжаю от диагноста, включаю OpenDiag, включаю график напряжения ДК, поехали. Минут 40 он активно пытался работать, показывая кривые на графике, тут я встал на светефоре и смотрю, а он 0 мне показывает, сплошная линия. Через пару-тройку минут снова начинает работать и так за цикл работы двигателя несколько раз с разной частотой по времени прекращения своей работы.
Что-то поднадоел он мне, этот датчик и решил я взять и новый попробовать, нарыв на просторах сети информацию, что датчик NGK5653
вполне себе пойдет как замена 133 датчику, выбор пал на него, датчик приехал. Сегодня его поставил, показания датчика по графику стабильные, на активность ЭБУ не ругается, но почти сразу вылетела ошибка P1115 — Неисправная цепь управления нагревом датчика кислорода. Значит всё таки NGK5653 не соответствует параметрам сопротивления на цепи нагревателя.
Теперь вопрос знатокам, если вылетает ошибка P1115 и цепь подогрева неисправна, ЭБУ встает в обход показаний датчика или всё же работает по тем показаниям, что он даст независимо от подогрева?
Обновления:
Нашел в сети в обсуждениях информацию:
При пуске включается подогрев для ускорения выхода ДК на рабочий режим. Снимаемое напряжение начинает прыгать в стороны от 0,45В — ДК заработал в нормальном режиме (прогрелся) — подогрев выключается. Но прогреться он может и при неисправном электрическом подогреве, просто больше времени пройдёт. При этом маршрутник видит неисправность нагревателя, но не отменяет свою обязанность считывать показания лямбды. И даже если "показания ДК изменяются в пределах от 0,09 В до 0,81 В" — это не показатель абсолютного здоровья ДК, не надо на основе показаний маршрутника делать однозначные выводы.
Доверюсь этому мнению и пока забью на ДК, возможно потом к нему вернусь, т.к. подогрев влияет лишь на работу датчика в момент пуска и несколько минут после этого, если ЭБУ не встает в обход датчика совсем, значит японца мы пока оставим, по крайней мере у него нет проблем с "активностью" :)
©А. Пахомов 2007 (aka IS_ 18 , Ижевск)
На написание этого материала натолкнуло обилие вопросов на нашем форуме, связанных с непониманием (или недопониманием) принципа работы датчика кислорода, или лямбда-зонда.
Прежде всего, нужно идти от общего к частному и понимать работу системы в целом. Только тогда сложится правильное понимание работы этого весьма важного элемента ЭСУД и станут понятны методы диагностики.
Чтоб не углубляться в дебри и не перегружать читателя информацией, я поведу речь о циркониевом лямбда-зонде, используемом на автомобилях ВАЗ. Желающие разобраться более глубоко могут самостоятельно найти и прочитать материалы про титановые датчики, про широкополосные датчики кислорода (ШДК) и придумать методы их проверки. Мы же поговорим о самом распространенном датчике, знакомом большинству диагностов.
Итак, датчик кислорода. Когда-то очень давно он представлял собой только лишь чувствительный элемент, без какого-либо подогревателя. Нагрев датчика осуществлялся выхлопными газами и занимал весьма продолжительное время. Жесткие нормы токсичности требовали быстрого вступления датчика в полноценную работу, вследствие чего лямбда-зонд обзавелся встроенным подогревателем. Поэтому датчик кислорода ВАЗ имеет 4 вывода: два из них – подогреватель, один – масса, еще один – сигнал.
Из всех этих выводов нас интересует только сигнальный. Форму напряжения на нем можно увидеть двумя способами:
а) сканером
б) мотортестером, подключив щупы и запустив самописец.
Второй вариант, вообще говоря, предпочтительнее. Почему? Потому, что мотортестер дает возможность оценить не только текущие и пиковые значения, но и форму сигнала, и скорость его изменения. Скорость изменения – это как раз характеристика исправности датчика.
Итак, главное: датчик кислорода реагирует на кислород. Не на состав смеси. Не на угол опережения зажигания. Не на что-либо еще. Только на кислород. Это нужно осознать обязательно. Как именно это происходит, в подробностях описано здесь.
На сигнальный вывод датчика с ЭБУ подается опорное напряжение 0 . 45 В. Чтоб быть полностью уверенным, можно отключить разъем датчика и проверить это напряжение мультиметром или сканером. Все в порядке? Тогда подключаем датчик обратно.
К слову, на старых иномарках опорное напряжение «уплывает», и в итоге нормальная работа зонда и всей системы нарушается. Чаще всего опорное напряжение при отключенном датчике бывает выше необходимых 0 . 45 В. Проблема решается путем подбора и установки резистора, подтягивающего напряжение к «массе», тем самым возвращая опорное напряжение на необходимый уровень.
Дальше схема работы датчика проста. Если кислорода в газах, омывающих датчик, много, то напряжение на нем упадет ниже опорного 0 . 45 В, примерно до 0 . 1 В. Если кислорода мало, напряжение станет выше, около 0 . 8 – 0 . 9 В. Прелесть циркониевого датчика в том, что он «перепрыгивает» с низкого на высокое напряжение при таком содержании кислорода в отработанных газах, которое соответствует стехиометрической смеси. Это замечательное его свойство используется для поддержания состава смеси на стехиометрическом уровне.
Поняв, как работает датчик, легко осознать методику его проверки. Предположим, ЭБУ выдает ошибку, связанную с этим датчиком. Например, Р 0131 «Низкий уровень сигнала датчика кислорода 1 ». Нужно понимать, что датчик отображает состояние системы, и если смесь действительно бедная, то он это отразит. И замена его абсолютно бессмысленна!
Как же нам выяснить, в чем кроется проблема – в датчике или в системе? Очень просто. Смоделируем ту или иную ситуацию.
1 . Например, при жалобе на бедную смесь и низком напряжении на сигнально выводе датчика увеличим подачу топлива, пережав шланг обратного слива. Или, при его отсутствии, брызнув во впускной коллектор бензина из шприца. Как отреагировал датчик? Показал ли обогащенную смесь? Если да – то нет никакого смысла его менять, нужно искать причину, почему система подает недостаточное количество топлива.
2 . Если же смесь богатая, и зонд это отображает, попробуйте создать искусственный подсос, сняв какой-нибудь вакуумный шланг. Напряжение на датчике упало? Значит, он абсолютно исправен.
3 . Третий вариант (достаточно редкий, но имеющий место). Создаем подсос, пережимаем «обратку» – а сигнал на датчике не меняется, так и висит на уровне 0 . 45 В, либо меняется, но очень медленно и в небольших пределах. Все, датчик умер. Ибо он должен чутко реагировать на изменения состава смеси, быстро меняя напряжение на сигнальном выводе.
Для более глубокого понимания добавлю, что при наличии небольшого опыта легко установить степень изношенности датчика. Это делается по крутизне фронтов перехода с богатой смеси на бедную и обратно. Хороший, исправный датчик реагирует быстро, переход почти что вертикальный (смотреть, само собой, мотортестером). Отравленный либо просто изношенный датчик реагирует медленно, фронты переходов пологие. Такой датчик требует замены.
Понимая, что датчик реагирует на кислород, можно легко уяснить еще один распространенный момент. При пропусках воспламенения, когда из цилиндра в выпускной тракт выбрасывается смесь атмосферного воздуха и бензина, лямбда-зонд отреагирует на большое количество кислорода, содержащееся в этой смеси. Поэтому при пропусках воспламенения очень возможно возникновение ошибки, указывающей на бедную топливо-воздушную смесь.
Хочется обратить внимание еще на один важный момент: возможный подсос атмосферного воздуха в выпускной тракт перед лямбда-зондом. Мы упоминали, что датчик реагирует на кислород. Что же будет, если в выпуске будет свищ до него? Датчик отреагирует на большое содержание кислорода, что эквивалентно бедной смеси. Обратите внимание: эквивалентно! Смесь при этом может быть (и будет) богатой, а сигнал зонда ошибочно воспринимается системой как наличие бедной смеси. И ЭБУ ее обогатит! В итоге имеем парадоксальную ситуацию: ошибка «бедная смесь», а газоанализатор показывает, что она богатая. Кстати сказать, газоанализатор в данном случае – очень хороший помощник диагноста. Как пользоваться извлекаемой с его помощью информацией, описано в этой статье.
1 . Нужно совершенно четко отличать неисправность ЭСУД от неисправности лямбда-зонда.
2 . Проверить зонд можно, контролируя напряжение на его сигнальном выводе сканером или подключив к сигнальному выводу мотортестер.
3 . Искусственно смоделировав обедненную или, наоборот, обогащенную смесь и отследив реакцию зонда, можно сделать достоверный вывод о его исправности.
4 . По крутизне перехода напряжения от состояния «богато» к состоянию «бедно» и наоборот легко сделать вывод о состоянии лямбда-зонда и его остаточном ресурсе.
5 . Наличие ошибки, указывающей на дефект лямбда-зонда, отнюдь не является поводом для его замены.
Лямбда-зонд Chevrolet Niva совместно с системой сенсоров помогает правильно регулировать работу мотора и предельно эффективно использовать топливо. Это влияет на количество вредных выбросов в атмосферу.
На Шниве датчик предназначен для передачи информации на ЭБУ, касательно количества воздуха, выходящего после сгорания горючего. Информация помогает корректировать состав топливной смеси и раскрывать потенциал мотора. Также значительно увеличивает срок эксплуатации каталитического нейтрализатора.
Датчик кислорода Нива Шевроле: где находится, фото
Первый лямбда стоит в выпускном коллекторе перед катализатором. Такое место расположения выбрано не случайно. Датчик улавливает частицы кислорода, не сгоревшие в моторе. Это позволяет улучшить качество смеси и не дает воздуху преждевременно износить катализатор.
Второй сенсор расположен перед глушителем и анализирует выхлоп уже на выходе из системы очистки, что позволяет диагностировать эффективность ее работы.
Лямбда-зонд Шнивы: устройство и принцип действия
Суть работы устройства кроется в изменении сопротивления датчиков, монтируемых перед и после катализатора. Принцип действия устройства такой.
- Бортовой компьютер посылает на элемент постоянный электрический импульс на уровне 450 мВ.
- Если в выходящих газах присутствует кислород, возникает разница потенциалов.
- В зависимости от уровня концентрации газа в системе, показания прибора изменяются с 50 до 900 мВ.
- Бортовой компьютер считывает разницу данных и корректирует топливную смесь.
Обычно на машинах уровня Евро 4 ставится всего 1 элемент. Для ЕВРО 5 производитель монтирует уже два датчика.
Распиновка лямбды Шнивы
На фото представлена схема подключения датчика кислорода.
«Обманка» лямбды
Сам датчик нередко выходит из строя и достаточно дорогой. По этой причине отдельные автомобилисты монтируют в систему так называемую обманку ДК.
Существует два способа устранить проблему постоянно «барахлящего» лямбды – механический и электронный. Оба способа хороши в определенных условиях.
Механическая «обманка»
На чувствительную зону датчика приваривается металлическая трубка, уменьшающая обдув сенсора. Следовательно, прибор думает, что кислорода поступает меньше и система стабилизируется.
Минусом доработки является малая эффективность. Устройство стабильно работает только на машинах старого образца, где чувствительность электроники не высокая.
Электрическая «обманка»
Для подобной доделки системы специалисты предлагают увеличить сопротивление устройства путем впайки дополнительной детали в цепь датчика. На фото представлен чертеж, как это делается.
Признаки неисправности
Характерными симптомами отказа лямбды являются факторы.
- Усложняется холодный и горячий пуск силовой установки. Машина заводится с второго-третьего раза, и стартер приходится долго крутить. Это явный признак того, что нагреватель неисправен.
- Увеличение расхода топлива, система постоянно думает, что смесь слишком богатая и добавляет бензина в инжектор.
- Сильно снижен разгон.
- Нарушение такта двигателя. Электронный блок управления неправильно подстраивает корректировки, что сказывается на стабильности силовой установки.
- Из выхлопной системы слышны прострелы и хлопки. Проблема свойственна для 1 и 2 лямбд.
Как проверить датчик
Проверка ДК производится независимо от года выпуска машины. Для версий 2004 и 2018 годов информация будет актуальна.
- Снять сенсор с машины для удобства доступа к нему. Также достаточно отключить клеммы питания.
- Мультиметром измерить сопротивление детали на остывшей системе. Если показания прибора нулевые – узел вышел из строя. При противоположном поведении стрелки, все в порядке.
Ошибки лямбды в бортовой системе автомобиля
Коды ошибок на Шниве не показывают точного расположения проблемы. Для диагностики потребуется подключить к автомобилю специальный сканер. Описанные ниже ошибки укажут, где конкретно находится поломка.
- Р-130-132 – проблема кроется в неправильных данных от первого сенсора.
- 0134/135 свидетельствует об обрыве цепи датчика с касанием на массу/бортовую проводку соответственно.
- 136 говорит об аналогичной проблеме только с ДК2.
- 0140-0141 полный отказ сенсора №2 или повреждена его проводка.
Замена лямбда-зонда Шнивы
Чтобы сменить первый и второй датчик кислорода следует выполнить простую последовательность действий.
- Загнать машину на эстакаду или смотровую яму.
- Снять клеммы с аккумулятора.
- Влезть под автомобиль и приготовить ключ №22. В некоторых случаях крепежи прикипают к металлу. Следовательно, раскрепляющий состав также пригодится.
- Гаечным ключом открутить датчики. Если корпуса не поддаются и устройство гарантированно идет под замену, можно обрезать провода и использовать накидной ключ или головку соответствующего размера.
- После отсоединения устройства следует протереть посадочные места датчиков для удаления всей грязи и пыли.
- Монтаж новой детали выполняется в обратном порядке.
Как выполняется подобный ремонт, можно посмотреть на видео.
«Обманка» лямбды на Шниву своими руками
Устаревшие модели датчиков свободно поддаются обману, и установка сопротивления проходит достаточно просто. Схема подключения резистора указана выше. Для монтажа «дополнения» разрывается провод датчика и впаивается дополнительный элемент.
Подобное устройство можно найти в интернете, вместе с обманкой поставляется схема ее подключения и сборки всего модуля.
Оригинальный кислородный датчик АПЗ 21214 имеет артикул 0258030064. Стоимость устройства, в зависимости от региона и магазина может варьироваться от 900 до 1400 рублей.
Аналоги заводского сенсора можно найти на рынке за 500-1000 деревянных.
Специализация: Закончил государственный автомобильный университет, проработал 20 лет на ГАЗ-56, сейчас езжу на жигулях.
Современный автомобиль – это электромеханическая система, которая состоит из множества деталей и узлов, что связаны между собой совокупностью различных датчиков. Эти датчики поддерживают рабочее состояние авто и обеспечивают его продуктивную работу. Сегодня в этой статье мы будем вести речь про датчик кислорода (лямбда зонд). В частности ответим на вопрос как проверить лямбда зонд с 4 проводами тестером. Это самый распространенный тип датчика и он весьма важен.
Перед тем, как приступать к изучению и тестированию работоспособности ЛЗ мы рекомендуем кратко изучить его конструктивные особенности, виды и принцип действия.
Что такое лямбда зонд, принцип действия и его виды
Помни! Для сгорания 1 кг. смеси топлива и воздуха, необходимо затратить около 15-ти кг. кислорода.
Устройство лямбда зонда
Современный датчик воздуха представляет собой небольшое конструктивное устройство внутри которого имеется ряд взаимосвязанных деталей.
- Металлический корпус на котором имеется резьба. Она предназначена для фиксации датчика в посадочном отверстии;
- Изолятор изготовленный из керамики;
- Уплотнитель в виде кольца;
- Проводники;
- Защитная оболочка с отверстием для вентиляции;
- Контакт;
- Керамический наконечник;
- Электрический нагреватель;
- Отверстие для выпускного газа;
- Стальная оболочка.
Как правило, начало измерений отработавших газов наступает при температуре 310-400 градусов. Именно при такой температуре специальный наполнитель в датчике обретает электропроводимость. Пока температура не достигла нужного значения, электронный блок управления автомобиля берет показания с других датчиков, а уже потом с лямбда зонда. Особенность его работы заключается в том, что выхлопные газы и атмосферный воздух разделены емкостью с токогенерирующим составом. В следствии определенных химических воздействий на эту емкость со стороны выхлопа и со стороны воздуха возникает разница концентрации кислорода на основе чего вырабатываться электрический потенциал. Значения этого потенциала отправляются на блок управления автомобилем.
Все датчики кислорода делятся на четыре типа в зависимости от количества проводов в их конструкции:
1. Однопроводные;
2. Двухпроводные;
3. Трехпроводные;
4. Четырехпроводные.
Все вышеперечисленные лямбда зонды бывают узкополосные и широкополосные.
Основные причины неисправностей лямбда-зонда и последствия его поломки
После того, как мы определились с понятием и особенностями работы датчика кислорода, можно сделать вывод, что он играет ключевую функцию в нормальной работе двигателя внутреннего сгорания. Так что же может привести к поломке лямбда зонда и выхода его из строя? Существуют два аспекта в этом вопросе: внешние факторы и внутренние о которых читайте ниже.
- Протекание в корпус датчика охлаждающей жидкости или же тормозной;
- Уход за датчиком средствами, которые не предназначены для таких целей;
- Некачественное топливо с чрезмерным содержанием свинца;
- Перегрев датчика, который также случается при использовании плохого топлива.
После того, как лямбда зонд вышел из строя ваш автомобиль начнет подавать определенные признаки:
- Существенные рывки при движении;
- Чрезмерные расход топлива;
- Плохая работа катализатора;
- Плавающие обороты двигателя;
- Излишки токсических отходов в отработавших газах.
Серьёзность всего вышеперечисленного должна наталкивать водителя на проверку лямбда зонда практически каждые 10 тыс. км. Его полная замена желательна после каждых 40 000 км пробега.
Проверка лямбда зонда с 4 проводами тестером. Методы проверки ЛЗ
Итак, мы подошли к тому вопросу, который волнует каждого автолюбителя: как же проверить датчик лямбда зонд в домашних условиях? Для этого вам понадобится обычный тестер (мультиметр) или вольтметр.
Первым делом необходимо прогреть двигатель, после чего произвести замеры сопротивления на проводах подогревателя. Как правило, это два белых провода полярность между которыми можно не соблюдать. Нормальное сопротивление между ними должно равняться от 2 до 10-ти Ом. Если это значение другое, то следовательно датчик неисправен.
Идем далее. Теперь нужно минусовой провод тестера подключить на корпус двигателя. При этом плюсовой контакт подключите к сигнальному проводу самого датчика. Как правило это будет черный провод. На прогретом двигателе нажмите на педаль газа и наберите обороты до 3000 об/мин. Удерживайте педаль в этом положении около трёх минут. В это время производится прогрев лямбда зонда. Теперь вы можете проверить включение датчика кислорода.
Напряжение между корпусом двигателя и сигнальным (черным проводом) детали должно колебаться в районе от 0,2 до 1 вольта. За каждые прошедшие 10 секунд времени датчик должен включаться около 10-ти раз. В тех случая когда тестер будет показывать 0,4-0,5 вольта и не будет производиться включение, то можно сделать вывод о неисправности лямбда зонда.
Также вам нужно знать о том, что при резком нажатии на педаль газа тестер должен показывать напряжение около 1 вольта. При резком отпускании педали – ноль вольт.
На современных машинах Шевроле Нива, серийно выпускаемых с 2002 года, установлена инжекторная система впрыска топлива, регулируемая электронным блоком управления (ЭБУ). Так как в РФ постепенно повышаются экологические требования к выхлопным газам транспортных средств, производители устанавливают катализаторы и датчики кислорода (лямбда зонды) на выходе из двигателя. Последние помогают в регулировке соотношения топливовоздушной смеси, приближающей выхлопы к минимальному содержанию канцерогенных веществ.
Для чего предназначен и где находится
Нива может снабжаться одним либо двумя кислородными датчиками. Первый датчик контролирует содержание кислорода в отработанных из двигателя газах. Благодаря ему, ЭБУ корректирует подачу топливной смеси в цилиндры двигателя. Лямбда зонд является основным элементом в цепочке контроля наличия кислорода. В Нива Шевроле на выпускном коллекторе двигателя перед катализатором находится датчик кислорода.
Второй датчик показывает количество кислорода после каталитического нейтрализатора и выдает сигнал на контроллер. Поломка либо неправильная работа зондов приводит к повышенному расходу топлива во время движения Нивы. Также, неуправляемый режим работы двигательной системы повышает выбросы углеводородов, оксидов азота, сажи и других вредных элементов в окружающую среду.
Принцип действия
В современных Нивах применяются датчики BOSCH 0 258 006 537; NTK:629-W2:8965 и другие. Это циркониевые элементы, которые реагируют на объемное количество кислорода в выхлопе и вырабатывают выходное напряжение в пределах: 0.1–0.9 В (высокое содержание О2 — низкое содержание О2).
Работа устройства основана на принципе сравнения количества кислорода в выхлопных газах и в атмосферном воздухе, запечатанном во внутреннюю камеру лямбда зонда. Он имеет 2 платиновых электрода, разъединенных между собой диоксидом циркония, которые окружены различными кислородными средами. Устройство начинает работу только при нагреве от 300 °С и выше. При температурном нагреве цирконий получает свойства электролита и между электродами возникает разность потенциалов.
Поэтому, при зажигании, пока прогреется двигатель и заработает датчик кислорода, регулировка подачи топлива в форсунках происходит по циклу, запрограммированному в контроллере ЭБУ.
Признаки неисправности
В случае, если после прогрева автомобиля в течение некоторого времени с частотой оборотов около 1500/мин., зонд выдает низкий или высокий стабильный сигнал, замедленную реакцию, обнаружено отсутствие нагрева элемента, в блок управления двигателем поступают коды ошибок (Р0130 — Р0138). Далее управление двигателем происходит по разомкнутому от датчиков контуру.
Основные признаки, по которым судят о вероятной поломке лямбда зонда:
- Увеличивается расход бензина.
- Нестабильность работы двигательной системы (крутой набор оборотов и резкое затухание).
- Ощутимое уменьшение мощности.
- Приборная панель мигает сигналом об ошибке «check engine».
- Сложно мягко запустить автомобиль.
- Замедленная реакция на педаль газа.
- Периодические хлопающие звуки.
- Изменение цвета выхлопных газов (более темный).
Внимание: Главным признаком неисправности датчика кислорода можно считать заметное снижение мощности машины.
Где купить
Запчасти и другие изделия для автомобиля легко доступны для приобретения в автомагазинах вашего города. Но существует другой вариант, который недавно получил ещё и значительные улучшения. Долго ждать посылку из Китая больше не требуется: в интернет-магазине АлиЭкспресс появилась возможность отгрузки с перевалочных складов, расположенных в различных странах. Например, при заказе вы можете указать опцию «Доставка из Российской Федерации».
Переходите по ссылкам и выбирайте:
Как провести диагностику и замену
Для начала следует найти разъем зонда, поставив автомобиль над смотровой ямой. Можно просто отсоединить фишку от колодки с проводами и выкрутить зонд из своего гнезда ключом, а далее, проверить датчик мультиметром.
На мультиметре выставить измерение сопротивления и проверить клеммы нагревательного элемента, обычно 3 и 4. Сопротивление должно варьироваться в пределах 12–45 Ом. Если оно стремится к бесконечности, то неисправен нагревательный элемент.
Также, может отсутствовать питание на нагревательный элемент. Для его проверки необходимо отсоединить фишки. Присоединить мультиметр к тем разъемам в фишке со жгутом проводов, которые соединяются с нагревателем (обычно 2 и 4). На 4 — положительный, на 2 — отрицательный щупы и замерять напряжение, предварительно включив зажигание. Если напряжение отсутствует, требуется проверка проводки.
Более точная диагностика выходного сигнала напряжения делается на работающем автомобиле. С задней части разъема в 1 (сигнал+) и 2 (масса) клеммы нужно вставить два тонких металлических наконечника, можно скрепки, для соединения с щупами мультиметра. Положительный щуп идет на сигнал, а отрицательный на массу.
Выбрать нейтральную скорость, поставить рычаг на тормоз, домкратом приподнять переднюю часть Нивы и установить на какую-нибудь подпорку. Включить зажигание и наблюдать на мультиметре изменения напряжения, выходящего с зонда.
Пока датчик не нагрелся, мотор работает без его участия (разомкнутый цикл), а показания на приборе должны соответствовать 0.1–0.2 В. Через 2–3 минуты, после прогрева двигателя, показания должны пойти вверх и бегать от 0.1 до 0.9 В. Если сигнал и далее остается низким, как в начале прогрева, либо достигает своего предела с замедлением (через 10 минут и более), то датчик кислорода требует замены.
Замена производится в той же последовательности. Отсоединять старый зонд нужно после остывания двигателя, поставив машину на смотровую яму. Вначале фишки, предварительно отодвинув фиксатор, затем само резьбовое соединение датчика.
Небольшие советы
При замене лямбда зондов следует аккуратно обращаться с рабочими поверхностями и фишками, исключая попадания пыли, грязи и смазочных материалов. Не применять химические растворители для очистки поверхности старого датчика. Не следует ронять устройство. Плохое качество топлива может вывести из строя либо сократить срок службы зондов.
Читайте также: