Почему колеса крутятся в разные стороны когда поднята машина
Иногда во время движения автомобиля создается ощущение, что колеса находятся в неподвижном состоянии или даже вращаются в обратную сторону. Почему так происходит? Давайте разберемся в принципах красивой оптической иллюзии, которую мы часто видим на дороге.
Мы наверняка не раз видели на дороге, по телевизору, в Интернете как колеса автомобиля вращаются вопреки законам физики. То есть колеса вращаются в обратную сторону, несмотря на движение машины в другую сторону. Возможно, эта иллюзия озадачила вас. Самое удивительное, что когда автомобиль трогается с места, сначала вращение колес может казаться нормальным и естественным. То есть вращение колес происходит в правильном направлении. Однако, как только вращение колес достигает определенной скорости, спицы, лучи колесных дисков иногда начинают двигаться в другую сторону или даже перестают вращаться. Что же происходит?
Эта иллюзия демонстрирует, как работает наша функция зрения и как мозг может интерпретировать и обрабатывать информацию, получаемую с органов зрения. Наши глаза способны работать на частоте 200 кадров в секунду при обработке нормального статичного изображения. Но когда дело доходит до фиксации и обнаружения движения, то согласно исследованиям установлено, что зрительная система человека может обнаруживать изменение в движении (например вращение колеса) только со скоростью 13 кадров в секунду.
Хотя, как мы уже сказали, наши глаза и мозг могут обрабатывать информацию с большей частотой кадров. Но информацию о движении объекта мозг может обрабатывать только со скоростью 10-15 кадров в секунду. Хотя установлено что эта скорость обработки информации нашим мозгом с органов зрения может быть увеличена с помощью специальных тренировок.
И так давайте на примере вращения колеса подробнее узнаем, как работает наше зрение и как обрабатывает информацию наш мозг. Предположим, что автомобильное колесо имеет четыре спицы или четыре луча колесного диска, расположенные под углом 90 градусов друг к другу. Представим, что один луч повернут на 12 часов (если представить колесный диск в виде циферблата часов). Теперь представим вращение колеса по часовой стрелке.
Если колесо на небольшой скорости будет двигаться вперед, то луч, расположенный на положении 12 часов переместиться на положение 2 часа. В этом положении наш мозг будет обрабатывать информацию, полученную от органов зрения как отдельный кадр. В этом случае мы будем видеть не отдельные кадры, а непрерывную картинку движения колеса в обычную сторону при движении автомобиля вперед.
Однако если колесо будет вращаться с большой скоростью, то наш мозг будет не успевать обрабатывать каждый кадр получаемой информации о вращении колесного диска. То есть, интервал вращения спиц или лучей колесного диска, расположенных под углом 90 градусов будут попадать на три, шесть, девять и 12 часов в тот момент, когда наш мозг не будет успевать обрабатывать предыдущие кадры. В итоге при определенной скорости вращения колес нам может показаться, что колесные диски остановились, несмотря на движение машины.
То есть, наш мозг, запомнив первоначальное положение колесных спиц или лучей из-за низкой скорости обработки информации (в среднем 13 кадров в секунду), не успевая обрабатывать каждый кадр, будет думать, что колесо стоит на месте.
При увеличении скорости вращения колес, начинает появляться обратный эффект неэффективности обработки визуальной информации нашим мозгом, который заключается в том, что нашему мозгу будет казаться, что центральная спица или луч колесного диска, расположенный ранее на положении 12 часов, после каждого круга вращения будет смещаться против часовой стрелки на 1 час назад, то есть на 11 часов. В итоге после обработки информации наш мозг будет ошибочно думать, что колесо вращается в обратном направлении.
Вот почему, несмотря на движение вперед, наш мозг будет интерпретировать движение колес на определенной скорости в обратную сторону. Все дело в нехватке скорости обработки зрительной информации.
То же самое происходит и при просмотре видео по телевизору или в Интернете, на котором снято движение автомобиля со скоростью 50 кадров в секунду. В идеале мы видим правильное вращение колес на таком видеоролике при скорости полного оборота вращения колеса меньше 1/50 в секунду. Как только скорость вращения колеса сравняется со скоростью работы камеры или станет выше, то камера снимающая ролик будет не успевать фиксировать полное вращение колесных спиц и лучей и нам будет казаться, либо что вращение колеса прекратилось, либо колесо, несмотря на движение машины вперед, начало вращаться в обратную сторону.
Также аналогичный эффект вы можете увидеть при работающих лопастях вертолета или при движении пропеллеров авиадвигателей.
Если следить за колесами машины, когда она набирает скорость, можно заметить, что в какой-то момент кажется, будто они останавливаются, после чего начинают двигаться назад. Почему так происходит и можно ли с помощью таких наблюдений определить скорость авто?
Объяснить, почему иногда колеса машин могут останавливаться и даже начинать крутиться в обратную сторону, поможет физика и биология. А именно, стробоскопический эффект. Дело в том, что у нашего глаза есть предел частоты смены кадра, которую он может увидеть.
Для разных людей этот показатель разный, но, как правило, мы можем различать действия, длящиеся около 20 миллисекунд. Иначе говорят, предел частоты смены кадров для нашего глаза составляет 50 FPS (frames per second — кадров в секунду). После этого мы начинаем видеть события не в виде отдельных кадров — они сливаются в одно действие.
То же самое происходит, когда мы смотрим на вращающиеся колёса автомобиля: сначала он едет медленно и мы можем заметить вращение диска, но после достижения определенной скорости колесо кажется неподвижным. Это происходит, из-за того, что спицы на диске колеса расположены симметрично через четко заданный угол. При определенной скорости спицы так быстро проходят угол, разделяющий их, что кажется, будто они не сдвинулись с места.
Как мы писали выше, в среднем наш глаз способен заметить событие, которое длится не менее 20 миллисекунд. Значит, колесо останавливается для нашего глаза, когда спица проходит расстояние до другой спицы за это время. Диаметр колеса у машин различается, но возьмём значение в 60 сантиметров как среднее. Тогда длина окружности получится равной 188,5 сантиметров.
Допустим, в диске машины пять спиц, а значит они разделены расстоянием примерно 37,7 сантиметров по внешнему диаметру колеса. Значит, чтобы колесо «остановилось», надо, чтобы за 20 мс оно прошло как минимум 37,7 сантиметров. Значит, скорость его вращения должна быть равной примерно 65 километров в час. После достижения этой скорости колеса начинают для наблюдателя вращаться в обратную сторону, так как спицы начинают проходить за 20 мс расстояние больше, чем разделяет их.
Первые конструкции, принципом работы напоминающие дифференциал, появились в Китае еще до нашей эры. В 1720 году Джозеф Вильямсон использовал дифференциальный механизм в часах, чуть больше века спустя Ричард Робертс запатентовал дифференциал для дорожной техники. 1897 год: дифференциал впервые установлен на паровой автомобиль Ширера. Начало 80-х годов прошлого века: самоблокирующиеся дифференциалы приходят в автоспорт, а потом постепенно переселяются и на дорожные версии. На сегодняшних автомобилях распределение крутящего момента по колесам все чаще контролирует электроника.
ЧТО ТАКОЕ ДИФФЕРЕНЦИАЛ?
Устройство свободного дифференциала:
Устройство свободного дифференциала
1 — шестерни полуосей;
2 — ведомая шестерня главной передачи;
3 — ведущая шестерня главной передачи;
4 — сателлиты;
5 — корпус.
В автомобиле это устройство делит крутящий момент между правым и левым колесами (такой дифференциал называют межколесным) либо между передней и задней осями (межосевой дифференциал). Устройство полезное, например, в поворотах, когда внутреннее колесо вращается медленнее наружного. И одновременно вредное, когда автомобиль беспомощно буксует в грязи или на льду.
КАК РАБОТАЕТ ДИФФЕРЕНЦИАЛ
Крутящий момент через ведомую шестерню главной передачи передается на корпус и сателлиты, которые находятся в зацеплении с шестернями полуосей. Когда колеса крутятся с одинаковой скоростью, сателлиты неподвижны относительно своей оси (рис. а):
4_no_copyright
Но едва угловые скорости начинают различаться — одна из покрышек пробуксовывает или автомобиль проходит поворот, — сателлиты приходят в движение, компенсируя разницу в оборотах правого и левого колес (рис. б):
5_no_copyright
СПОРНЫЕ МОМЕНТЫ
Чтобы реализовать крутящий момент на колесе, должна быть противодействующая сила. Один из самых наглядных примеров — колодец. Противодействующую силу в этом случае создает ведро с водой, тянущее своим весом веревку вниз. Чтобы поднять ведро, нужно приложить достаточное усилие к ручке. Как раз это усилие, помноженное на плечо (в этом случае — длина ручки колодца), и называют крутящим моментом.
6_no_copyright
А что произойдет, если веревка оборвется? Ведро упадет, а вместе с ним уйдет и противодействующая сила. А коли нет противодействия, нет и крутящего момента. Барабан будет крутиться вхолостую, не совершая никакой полезной работы. Точно так же происходит, когда одно из колес попадает на скользкое покрытие. Противодействующая сила практически отсутствует, ведь колесу не за что зацепиться, следовательно, падает до нуля и крутящий момент. Так как свободный дифференциал делит тягу пополам, то же происходит и на соседнем колесе.
7_no_copyright
Поднять крутящий момент просто: нужно создать противодействующую силу, например придержать, создав блокировку, противоположное буксующее колесо.
ПРОВЕРЬТЕ СЕБЯ
Перед вами схема классического постоянного полного привода с тремя свободными симметричными дифференциалами (например, трансмиссия «Шевроле-Нива»):
8_no_copyright
В обычных условиях момент равномерно расходится на все четыре колеса — по 25% на каждое. Одно из колес попало на идеально гладкий лед. Коэффициент сцепления падает до нуля, крутящий момент тоже. А каково будет его значение на трех других колесах? Изменится ли что-то, если заблокировать межосевой дифференциал?
Свободный симметричный дифференциал делит крутящий момент между колесами поровну. Соответственно, если он не реализован на одном колесе, то нет его и на другом. Между осями установлен такой же симметричный дифференциал. Значит, если на задней оси крутящий момент равен нулю, то такое же значение и на передней. Таким образом, тяга на всех ведущих отсутствует — одно колесо беспомощно крутится, а остальные стоят неподвижно.
Заблокируем дифференциал — получилась жесткая связь между осями. Теперь на передних колесах крутящий момент по-прежнему ноль, а вся тяга идет назад — соответственно по 50% на каждое колесо.
КАКИЕ ЕЩЕ БЫВАЮТ ДИФФЕРЕНЦИАЛЫ?
9_no_copyright
Свободный симметричный дифференциал на современных автомобилях чаще всего используют как межколесный. Между осями крутящий момент обычно перераспределяют несимметричные дифференциалы (делят тягу не поровну) — повышенного трения и управляемые электроникой. Они сложнее и дороже, чем классический вариант, но в большинстве случаев при правильной настройке помогают эффективнее распределять крутящий момент. Дифференциалы устанавливают даже на радиоуправляемые модели. Устройство и принцип их работы — как у настоящих (на фото).
Многие уже в детстве терроризируют своих родителей вопросом, почему же у машины, которая едет вперед, колеса крутятся назад. Для ребенка, изучающего мир с неуемным любопытством из окна автомобиля, это настоящее волшебство. Тем более, что далеко не все взрослые могут удовлетворить интерес своего чада, регулярно подбрасывающего то неудобные, то слишком сложные задачки.
«Ну, вот такая вот зрительная иллюзия», — неуверенно промычит отец в надежде, что пытливому сыну этого «вразумительного» ответа будет вполне достаточно. И хотел бы он рассказать мальчишке, что именно происходит в тот момент, когда картинка перестает соответствовать реальности, да не может, потому как сам не знает. Так попробуем же разобраться в «пролеме», чтобы в следующий раз вы не попали впросак.
Когда автомобиль трогается с места, его колеса начинают «движение» вместе с ним — в том же направлении. Однако как только машина набирает более-менее высокую скорость, тому, кто наблюдает за ней со стороны, кажется, что диски замерли в одном положении или же «отправились» в обратную сторону вопреки всем законам физики. Подобное можно увидеть как воочию, так и на видеоролике.
Вращающиеся в обратную сторону колеса порождают оживленные дискуссии в интернете. Одни утверждают, что такой визуальный эффект возможен лишь при определенном освещении, другие уверены: свет может быть любой, а разгадка кроется в параметрах видеокамеры, которая снимала движущийся автомобиль.
На самом же деле ни то, ни другое предположение не является всецело корректным. Поскольку, как мы уже сказали, увидеть машину с «гуляющими» колесами можно не только по телевизору, но и вживую. Не только при искусственном, но и при дневном свете.
Что будет, если в мотор вместо бензина АИ-92 залить АИ-100
Зачем водители открывают окна, когда в машине есть кондиционер
РЕШЕНИЕ
Все дело в стробоскопическом эффекте. И да, это ни что иное, как оптический обман зрения, возникающий при искаженном восприятии движущихся предметов: в нашем случае — колес автомобиля, а точнее — спиц колесного диска. Обусловлен он как «мерцающим» освещением, так и рядом биологических факторов, в частности, строением зрительной системы человека.
Если говорить простым языком, то когда спица диска подсвечивается солнечным лучом или придорожным фонарем в одном и том же положении, нам кажется, будто она замерла. Между вспышками проходит чуть больше времени? Значит точка, за которой следит наш глаз, успевает сделать полный оборот и «проехать» еще немного вперед — мы видим, что колесо «движется» в одном направлении с машиной (схема «а»). Мерцания, напротив, происходят чаще? Пожалуйста: диск как бы не «докручивается», и мозг воспринимает это как обратное вращение (схема «б»).
…Кстати сказать, подобный эффект можно наблюдать не только, глядя на колесные диски автомобиля. Точно так же наш орган зрения воспринимает, скажем, лопасти вентилятора или вертолета.
В общем поднял тут оба колеса на домкраты, коробка стояла в режиме паркинга, левое колесо крутишь оно как бы не крутится, а правое крутится свободно.
Вопрос это так и должно быть что в режиме паркинга блокируется только одно колесо или это не есть гуд…
Всем спасибо за внимание.
Mitsubishi Galant 2001, двигатель бензиновый 2.0 л., 145 л. с., передний привод, автоматическая коробка передач — наблюдение
Машины в продаже
Mitsubishi Galant, 1998
Mitsubishi Galant, 2000
Mitsubishi Galant, 1999
Mitsubishi Galant, 1998
Комментарии 13
АКПП в режиме паркинга грубо говоря, блокирует дифф так, что одновременно не крутятся оба колеса. Ни в какую сторону. А вот по одному — вполне себе. Иначе, например, привода фиг поменяешь.
Суппорт могло заклинить.
По поводу диффа. Когда крутишь левое колесо, в противоположную сторону вращается правое, и наоборот.
не не не не, я думаю я как тоне так объясняю, вот, когда ставишь машину в режим паркинга, то она как бы стоит как будто бы на скорости, ну тоесть колесо делает пол оборота и упиратся, так вот, на одной стороне колесо так вот упирается а на другой стороне кртится спокойно без препятствий.
Ну х.з. тогда. Так то дифы у наших коробок нормально живучие. Могло и диск тормозной повести так, что мотору на холостом хватает сил колесо провернуть (все ж он и полторы тонны сдвигает), а вот руками, понятное дело — тяжеловато.
Суппорт могло заклинить.
По поводу диффа. Когда крутишь левое колесо, в противоположную сторону вращается правое, и наоборот.
Читайте также: