Мозги не видят лямбду
Назначение лямбда-зонда (датчика кислорода) — передача информации о составе рабочей смеси с выпускного коллектора в ЭБУ. Качество сгорания топливно-воздушной смеси (ТВС) напрямую влияет на работу двигателя.
Корректная работа датчика кислорода помогает:
Повысить производительность мотора благодаря определению близкого к идеалу пропорции впрыскиваемого топлива и воздуха.
Уменьшить выработку вредных газов (CO, CH, NOx), выбрасываемых в атмосферу и наладить экономичную работу автомобиля за счет правильно подобранного состава рабочей смеси.
На современные автомобили с инжекторным двигателем ставят один или несколько катализаторов и два и более датчика кислорода. Где стоит лямбда-зонд? Зависит от вида авто. Распространены системы с двумя устройствами, которые расположены до и после катализатора. Таким образом определяется избыток кислорода в смеси до попадания газов в устройство. В автомобилях с одним зондом — установлен спереди, на выпускном коллекторе.
Как работает датчик кислорода
ЭБУ отмеряет количество подаваемого топлива с помощью форсунок, задавая объем на определенной момент. Зонд обеспечивает обратную связь, что позволяет точно определит пропорции бензина, дизеля или газа. ЭБУ запрашивает информацию один раз в 0.5 секунды на холостом ходу. На повышенных оборотах частота запросов пропорционально увеличивается. Анализируя данные, блок управления корректирует состав ТВС, делая её беднее или богаче. Поддержание оптимальной ТВС — назначение лямбда-зондов. Идеальным соотношением воздуха и топлива считается пропорции 14.7:1 (бензин), 15.5:1 (газ) и 14.6:1 (дизель).
Виды датчиков кислорода по устройству конструкции и принцип работы:
Двухточечный, узкополосный (простой). Работает основываясь на измерении количества кислорода в выхлопных газах. Чем беднее ТВС, тем ниже напряжение, богаче — выше.
Широкополосный. Генерирует сигнал более широкого диапазона для точной оценки пропорции в ТВС.
Срок службы лямбда-зонда
Средняя продолжительность жизни кислородных датчиков на российском бензине 40 000–100 000 км. Для увеличения срока службы рекомендуется заливать качественное топливо с низким содержанием примесей и тяжелых металлов. Самодиагностикой определить неисправность достаточно сложно, установить причину — практически невозможно. Это может быть износ, низкое качество бензина, механическое повреждение и другие факторы.
Если у вас возникли подозрения в неисправности датчика кислорода, обратитесь к профессиональным диагностам. При помощи осциллограммы специалист определит причины неисправности и подскажет пути устранения.
Из-за чего выходит из строя лямбда-зонд
Механическое повреждение. Сильный удар в результате аварии, наезда на бордюр или езды по бездорожью отрицательно влияет на состояние зонда;
Некорректная работа двигателя и неисправности системы зажигания приводят к перегреву кислородного датчика и поломке;
Засорение системы. Основной причиной неисправности лямбда-зонда будут продукты сгорания некачественного топлива. Чем больше тяжелых металлов, тем скорее он забьется;
Поломка в поршневой группе. Неисправные поршень, поршневой палец и шатун пропускают масло в выхлопную систему, которое забивает зонд;
Попадание жидкости. Загрязнение любого вида сократит срок работы зонда;
Замыкание в проводке;
Слишком богатая или бедная топливно-воздушная смесь;
Разгерметизация выпускной системы пропускает воздух и отработавшие газы, что выводит лямбда-зонд из строя;
Присадки и «улучшайзеры» топлива;
Естественный износ. В условиях некачественного топлива средний срок службы датчика составляет 40–70 тыс. км.
Выход из строя лямбда-зонда происходит постепенно. Последствия неисправного датчика кислорода выливаются в аварийный режим управления двигателем. Так производители уберегают машину от серьезных поломок, а водителя от аварийных ситуаций.
Неисправность лямбда-зонда предотвращается регулярной профилактикой и диагностикой, выявляющей поломки на начальных стадиях.
Признаки неисправности лямбда-зонда
Повышается уровень токсичности газов. Определить токсичность можно с помощью диагностики. Внешне никак не диагностируется, даже запах выхлопа практически не изменится.
Увеличивается расход топлива. Каждый автомобилист следит за наполненностью бака, старается найти свою крейсерскую скорость, когда расход минимальный. Поэтому увеличившееся потребление топлива заметит сразу. В зависимости от серьезности неисправности лямбда-зонда, он вырастает на 1–4 литра. Повышенный расход, конечно, способен вызвать не только неисправный датчик кислорода.
Выдаются ошибки кислородного датчика (P0131, P0135, P0141 и другие), загорается «Check Engine». Обычно чек появляется при неисправности зондов или катализатора. Диагностика установит точную причину.
Перегревается катализатор. Неисправные лямбда-зонды подают неправильные сигналы в ЭБУ, что может привести к некорректной работе катализатора, его перегреву вплоть до раскаленного состояния, и последующего выхода из строя.
Появляется дерганье и нехарактерные хлопки в двигателе. Лямбда-зонды перестают генерировать правильный сигнал, из-за чего дестабилизируется работа оборотов холостого хода. Обороты колеблются в широком диапазоне, что приводит к ухудшению качества топливной смеси.
Ухудшаются динамические характеристики автомобиля, теряется мощность, тяга. Подобные признаки появляются в запущенных ситуациях. Неисправные датчики также перестают работать на непрогретом двигателе, а машина различными способами сигнализирует о неполадках в системе.
Если вас беспокоит один из этих признаков, обратитесь к специалисту. С помощью диагностического оборудования он определит точную область поломки и поможет в исправлении.
Как проверить лямбда-зонд
Итак, автомобиль едет рывками, повысился расход топлива, загорелся «Check Engine». Признаки не характерны только для поломки лямбды, поэтому нужна полная диагностика систем. Но если вы уверены, что дело в нем, рассказываем, как проверить датчик своими руками.
Проверять кислородные датчики рекомендуют через замер значений напряжения. Подобную проверку лямбда-зонда мультиметром, тестером и омметром можно провернуть в собственном гараже.
Порядок действий следующий:
Прогрейте двигатель до рабочей температуры. Непрогретый лямбда-зонд не заработает.
Снимите и осмотрите зонд и проводку на предмет механических повреждений и загрязнений. Если он погнут, поцарапан или покрыт наростом сажи, свинцовым налетом, белым или серым нагаром, меняйте.
Проверьте работоспособность лямбда-зонда омметром. Часто причина неисправности кроется в поломке спирали подогрева или проводов к нему. Как его «прозвонить»? Присоедините омметр между проводами нагревателя, предварительно отсоединенные от колодки. При исправной работе сопротивление сигнальной цепи на разных автомобилях варьируется от 2 до 10 Ом и от 1 ком до 10 мОм в цепи подогрева. Если его нет совсем, в проводке обрыв.
Протестируйте сигнал зонда с помощью мотор-тестера, стрелочного вольтметра или осциллографа. Подсоедините тестер между проводом массы и сигнальным, поднимите обороты до 3 000 Нм, засеките время и следите за показаниями. Они должны изменяться от 0.1 до 0.9 вольт. Рекомендуем заменить датчик, если диапазон изменений меньше или за 10 секунд сменилось меньше 9–10 показаний. Причина ошибки может быть в «усталости» и медленном отклике системы.
Проверьте исправность лямбда-зонда через опорное напряжение. Заведите машину, измерьте напряжение между массой и сигнальным проводом. Если показатели отличаются от 0.45 вольт больше, чем на 0.2, датчик или цепи в цепи, ведущие к нему, неисправны.
Если нет приборов для проверки работоспособности лямбда-зонда, обратитесь к специалистам. Они проведут полную диагностику и точно назовут причину неисправности за меньшие деньги и время, которые бы вы потратили на покупку устройств и выявление неисправности самостоятельно.
Кислородный датчик – устройство, предназначенное для фиксирования количества оставшегося кислорода в отработавших газах двигателя автомобиля. Он расположен в выпускной системе вблизи катализатора. На основе данных, полученных кислородным датчиком, электронный блок управления двигателем (ЭБУ) корректирует расчет оптимальной пропорции топливовоздушной смеси. Коэффициент избытка воздуха в ее составе обозначается в автомобилестроении греческой буквой лямбда ( λ ), благодаря чему датчик получил второе название – лямбда-зонд.
Все современные автомобили оборудованы датчиками кислорода (лямбда зонды). Они являются очень важной составляющей системы впрыска топлива на инжекторных двигателях. При выходе из строя лямбда зонда, увеличивается расход топлива причем в разы. у меня мотор 1,6 кушал 20 литров на 100 км пробега. Для проверки лямбды не достаточно иметь простой мультиметр, так как сигнал с датчика на переходных режимах меняется практически мгновенно, и тестер просто не успевает его измерить. Поэтому было принято решение, сделать простой недорогой тестер, специально для проверки датчиков кислорода. В качестве индикации служит линейка из 10 светодиодов которая позволяет оперативно контролировать выходной сигнал с датчика и определить его исправность.
Внимание! датчики кислорода бывают одно, двух, трех и четырех проводные! Однопроводные очень старые модели с ними все понятно масса и сигнальный провод. В двух проводных датчиках черный провод сигнал, а серый масса. Трех проводные имеют 2 белых провода подогрев, черный сигнал, масса берется с коллектора. Четырех проводной датчик также как 3х проводной 2 белых подогрев, черный сигнал, серый масса.
Тестер для проверки лямбда-зонда своими руками
Схема тестера для проверки лямбда зонда довольно проста, ее сердце микросхема-генератор LM3914, которая может работать в 2х режимах, бегущая полоса или бегущая точка. на входе стоит делитель который настроен на входное напряжение 0-1 V, каждый светодиод 0,1 V. Чего как раз достаточно практически для всех типов зондов, обычно диапазон лямбда зондов 0-0,9 V.
Настройка заключается в подстройке делителя напряжения на входе тестера, подстроечным резистором. Для этого нужен регулируемый блок питания и мультиметр. Необходимо выставить напряжение 0,5 V на блоке питания и добиться загорания 5 и 6 светодиодов. т.е. средина светодиодной линейки, далее поднимаем напряжение до 0,9 V и смотрим чтоб горел предпоследний светодиод. На этом настройка окончена.
Все собрано на печатной плате размером 31 х 27 мм. светодиоды подключены проводами. Питается устройство от 3х батареек типа ААА.
Печатная плата
Что касается корпуса, здесь на усмотрение. Кто что придумает, так он и будет выглядеть.
Конечно же есть и другие варианты схем такого тестера, собраны они также на микросхеме-генераторе LM3914:
Если внимательно присмотреться к схеме каждого варианта, можно найти небольшие различия включения микросхемы, здесь выбирать только Вам!
Кислородный датчик можно проверить также простым мультиметром, зная основные параметры работы датчика.
Переводим режим мультиметра в измерение постоянного напряжения в пределах «20 В». Включаем зажигание автомобиля, но не заводим двигатель. На приборе должно быть значение «0,45 В». Это нормальное показание, опорное напряжение в норме.
Если оно отсутствует или сильно занижено, значит, блок управления двигателем не выдает необходимого опорного напряжения на лямбда-датчик. Он правильно работать не будет. Нужно искать проблему в ЭБУ мотора.
В случае двухпроводной лямбды может отсутствовать «земля» на сером проводе. Возможен обрыв на нем или блок управления не «присылает» минус – проблемы в электронике блока. Чтобы в этом убедиться, можно минусовый щуп мультиметра подключить к «минусу» аккумулятора. Если на приборе покажутся заветные «0,45 В», значит нет «массы» в ЭБУ.
Проверяем работоспособность активного элемента лямбда-зонда
Щупы прибора оставляем в таком же положении. Заводим мотор автомобиля, даем ему немного прогреться. Показания мультиметра должны изменяться приблизительно в течение 1 секунды от 0,1 до 0,9 В. Если они неизменные, то датчик неисправен.
Показания прибора при работающем двигателе не меняются, значит лямбда не работает!
Чтобы сильнее убедиться в работоспособности лямбды, можно снять с ресивера вакуумный шланг, то есть увеличить количество воздуха во впускном коллекторе после ДМРВ (датчика массового расхода воздуха), тем самым обеднить смесь. Показания мультиметра должны измениться, то есть, границы амплитуды изменения напряжения поменяются.
Обманка кислородного датчика (лямбда-зонда)
Есть категория автолюбителей, предпочитающих обход различных электронных узлов автомобиля. Обманка всё решит! Здесь выскажу своё личное мнение.
Зачем отключать или выводить из работоспособности целые узлы автомобиля, превращая его в Жигули? Покупаем сразу простейший автомобиль и не морочим никому голову!
Тем не менее, приведём варианты обманок кислородного датчика
Как видим по схемам обманок, они типовые. Но, покупая хороший автомобиль, нужно предполагать расходы на его содержание и обслуживание. Такие варианты отключения датчиков ни к чему хорошему не приводят!
Парни подскажите! Поставил новый лямбда-зонд "Мобилетрон" и сразу вылезла ошибка лямбды! Где-то в поиске на Драйв-ру прочитал, что наш движок не видит левые лямбды(заменители тобишь) кто какие лямбды ставил и какие по ним отзывы?!
Оригинал не предлагать, бабки стоит нереальные!
OFFLINE Boxing- Пол: Мужчина
Характеристики автомобиля: Opel Omega B, 2002, АКПП Z22XE- Имя: Антон
- Город: Санкт-Петербург
- Пол: Мужчина
Характеристики автомобиля: Opel Omega b 2003 Акпп Z22XE- Имя: Павел
- Город: Смоленск
Boxing,Обманку? На первую лямбду?? У меня вырезан катализатор, стоит внизу обманка на лямбде, НО на нижней лямбде, а мозг не видит ВЕРХНЮЮ!
OFFLINE Boxing- Пол: Мужчина
Характеристики автомобиля: Opel Omega B, 2002, АКПП Z22XE- Имя: Антон
- Город: Санкт-Петербург
- Пол: Мужчина
Характеристики автомобиля: Opel Omega b 2003 Акпп Z22XE- Имя: Павел
- Город: Смоленск
Boxing,Верхняя лямбда за всё отвечает, она же первая! Вторая внизу, на трубе, перед каталиком, вот она пофиг! А у меня не видит первую, верхнюю, ошибка 0130, 0135. это как раз моя новая лямбда Мобилетрон, которую мозги не видят! При этом машина заводится и летает шикарно! НО, жрёт как слон, 18,7/100 сегодня было и бортовик не врёт, засекал по заправкам!
OFFLINE Boxing- Пол: Мужчина
Характеристики автомобиля: Opel Omega B, 2002, АКПП Z22XE- Имя: Антон
- Город: Санкт-Петербург
Изменено: Boxing, 20 Май 2016 - 08:00
OFFLINE Pauls67- Пол: Мужчина
Характеристики автомобиля: Opel Omega b 2003 Акпп Z22XE- Имя: Павел
- Город: Смоленск
Boxing,странно, у нас все спецы наоборот говорят, только верхняя за всё отвечает!)))
OFFLINE Boxing- Пол: Мужчина
Характеристики автомобиля: Opel Omega B, 2002, АКПП Z22XE- Имя: Антон
- Город: Санкт-Петербург
- Пол: Мужчина
Характеристики автомобиля: Opel Omega B седан 1999 автомат Ч20ЧУМ- Имя: Олег
- Город: МО г.Железнодорожный
вроде первая связана с смесеобразованием, вторая отвечает за выхлоп после катализатора и сигнализирует когда пизнес катализатору, если он есть.
Изменено: OlegMaslov, 20 Май 2016 - 15:33
OFFLINE Ilia007- Пол: Мужчина
Характеристики автомобиля: Volvo S80 II, 2.5T, АКПП- Имя: Ильяс
- Город: Москва
- Пол: Мужчина
Характеристики автомобиля: Opel Omega b 2003 Акпп Z22XE- Имя: Павел
- Город: Смоленск
вроде первая связана с смесеобразованием, вторая отвечает за выхлоп после катализатора и сигнализирует когда пизнес катализатору, если он есть.
во-во, так мне и объяснили, так и руководстве написано! первая-это смесь, вторая-выхлоп.
OFFLINE Alex26Кислородник можно ставить от любого современного мотора, они все одинаковые, различие только в разъёме. У меня прекрасно работает Denso от Мицубона, показания как в учебнике.
OFFLINE OlegMaslov- Пол: Мужчина
Характеристики автомобиля: Opel Omega B седан 1999 автомат Ч20ЧУМ- Имя: Олег
- Город: МО г.Железнодорожный
Как интересно, а номерок можно?
OFFLINE Alex26Часа через полтора сфотографирую, машина дома стоит
OFFLINE Pauls67- Пол: Мужчина
Характеристики автомобиля: Opel Omega b 2003 Акпп Z22XE- Имя: Павел
- Город: Смоленск
Любой? Почему же тогда Мобилетрон который бьётся на мой мотор, он не видит?
Лет 15 назад лямбда-зонд был страшилкой почище «автомата» в первые годы нашего знакомства с иномарками. Увеличившийся вдруг расход топлива, не изучая причин, почти без вариантов вешали на него. Показывали владельцу какие-то «циферки» на экранчике, приговаривали «кислородник» и ставили перед фактом — надо менять. С другой стороны, присадки в бензин тогда на самом деле быстро выводили «лямбды» из строя. А как с этим дела обстоят сейчас? Что, кроме топлива, может приговорить датчик, как его проверить и на что менять?
С ним точнее, чем без него
Как мы недавно рассказывали, MAF и MAP — это первый и основной инструмент, от показаний которого отталкивается блок управления двигателем, приготавливая топливовоздушную смесь. Какое-то время обходились только ими. Но скоро стало понятно, что рассчитывать количество топлива, которое нужно подать, исходя лишь из поступающего в двигатель воздуха, получается не совсем точно. Якобы Bosch, купивший у американцев лицензию на систему впрыска Bendix Electrojector, уже в 60-х (в 1967-м появился немецкий D-Jetronic) работал над кислородным датчиком. Правда, таковой появился только в 1976 году — в рамках механического впрыска K-Jetronic. Считается, что первыми автомобилями, получившими «кислородник», стали Volvo 260-й серии и знаменитый DeLorean.
При этом Bosch продолжал выпускать механическую систему без «лямбды». В 80-х у фирмы был и электронный впрыск, лишенный кислородного датчика. Однако к тому моменту уже стало ясно — с обратной связью блок управления точнее оперирует подачей топлива. Просто не всегда это было необходимо по соображениям экономии и экологии. Тем не менее с начала того десятилетия Bosch запускает LU1- и LU2-Jetronic, которые имеют лямбда-регулирование. А к концу 80-х лямбда-зонд получает повсеместное распространение. Причем тогда же на отдельных моделях, предназначенных для рынков с самыми жесткими эконормами, в датчике появился нагревательный элемент, призванный максимально быстро выводить его на рабочий режим. Разберемся в конструкции «кислородника».
Точность — понятие относительное
Лямбда-зонд — это фактически два электрода, разделенные твердым электролитом в виде керамики из диоксида циркония. Редко — из диоксида титана.
Внешний электрод (скрыт под защитным колпачком с прорезями) находится в потоке выхлопных газов.
Внутренний электрод расположен в воздухе под атмосферным давлением. Воздух попадает внутрь либо через место, где в датчик входит проводка, .
. либо через специальные отверстия, прикрытые неким пористым материалом.
Два электрода с электролитом между ними образуют собой гальванический элемент. Но проводимым диоксид циркония становится только при разогреве до более чем 300 градусов. Иными словами, сразу после пуска лямбда-зонд не работает. Выхлоп «грязнее», чем при выходе «кислородника» на рабочий режим. Именно для этого в датчик стали добавлять нагревательный элемент, который гораздо быстрее, нежели выхлопные газы, доводит его до нужной температуры. Такие датчики отличаются тремя или четырьмя проводами вместо одного либо двух.
При работе зонда, если кислород есть лишь на внутреннем электроде, датчик генерирует соответствующее напряжение, которое видит блок управления. ЭБУ понимает это как «богатая смесь» и корректирует подачу топлива. Если кислород появляется в выхлопных газах, то напряжение, подаваемое с датчика, падает. Для ЭБУ это сигнал о том, что смесь бедная. Конечно, связь идет не по принципу «включено/выключено». Например, «кислородник» видит стехиометрическую (идеальную, с отношением 14,7:1) смесь. И все-таки лямбда-зонд оценивает наличие кислорода довольно грубо — есть он или нет. Коррекция идет в небольшом диапазоне, по напряжению — всего лишь в пределах от 0 до 1 вольта. А состав выхлопных газов, то есть то, насколько смесь отличается от стехиометрической, он определить не в состоянии.
Поэтому еще в начале 90-х NTK (суббренд NGK) предложила так называемый широкополосный лямбда-зонд, или датчик состава смеси. Снаружи он напоминает обычную «лямбду». Но имеет другую конструкцию.
Внутри у него две ячейки — измерительная и насосная. Еще с простых датчиков стехиометрической смеси соответствует напряжение в 0,45 В. Если оно изменяется, насосная ячейка подает в измерительную или откачивает оттуда некое количество воздуха. И по изменению тока, требуемого для этого, блок управления видит состав смеси и корректирует подачу топлива.
Диапазон измерений лежит в пределах до 5 В. Естественно, используется нагревательный элемент. А связь с ЭБУ состоит из пяти или шести проводов. С конца 90-х (эконормы Евро-3) широкополосный датчик стал неотъемлемым атрибутом автомобилей классом выше среднего. А с начала — середины 2000-х, ближе к появлению Евро-4 или уже с этими экотребованиями, датчики состава смеси вытеснили обычные лямбда-зонды. Тогда же или чуть раньше за катализатором, придвинутым вплотную к выпускному коллектору, появился второй датчик.
В первую очередь он оценивает состояние нейтрализатора — какова у того проходная способность, то есть оплавился он или нет. «Лямбда» за конвертером стоит простая. Однако считается, что, по крайней мере в ряде случаев, и она способна оказывать влияние на подготовку ЭБУ топливовоздушной смеси. Шансов того, что этот второй кислородный датчик как-то пострадает, меньше, чем у первого. Все-таки расположен за катализатором и принимает на себя уже очищенные выхлопные газы. Хотя и в отношении него есть определенные правила эксплуатации. Ну а первый «кислородник» тем более в зоне риска. Так от чего может страдать тот и другой?
Ресурс велик, но есть нюансы
Основным врагом кислородного датчика всегда являлись присадки в топливо — в первую очередь октаноповышающие и антидетонационные. И тетраэтилсвинец, который давно не используют. И тем более железосодержащие, покрывавшие его токопроводящим налетом, отчего «лямбда» «путалась в показаниях», если вовсе не выходила из строя.
Сейчас ферроценовыми присадками, если и пользуются, то ограниченно. Хотя нарваться на них где-нибудь в провинции наверняка можно. Впрочем, многие соединения, добавленные в топливо, способны загрязнять внешний электрод, выводя «кислородник» из строя. В состоянии это сделать и приличный (скажем, от нескольких сот граммов на 1000 км) расход масла на угар. Наконец, есть у датчиков определенный ресурс. Правда, по распространенной информации, лежащий в очень широких пределах — от 40 000 до более чем 100 000 км.
Симптомы потери работоспособности датчика могут быть разными. Объединяет едва ли не все системы то, что, скорее всего, загорится check engine. Но и это не обязательное условие. Растет расход топлива, однако не всегда настолько, что владелец это обязательно заметит. От переливов топлива из выхлопной трубы может попахивать бензином. Кроме того, двигатель способен перебоить на холостом ходу и иметь провалы тяги на разгоне. Да попросту глохнуть.
Но это что касается выхода из строя непосредственно основного рабочего органа — гальванического элемента. А ведь бывает так, что у датчика отказывает нагревательный модуль — по сути, пластинка или спиралька, как у чайника-кипятильника. Из-за чего? Бензин или масло здесь уже не упрекнешь. Остается естественное старение. Причем психологически напрячь владельца нагреватель способен — check при его отказе зажжется. А вот почувствовать какие-то изменения, во всяком случае не в пределах смены времени года или стиля езды, удастся вряд ли. Безусловно, будучи без прогрева, какое-то время после пуска «лямбда» не посылает сигнал блоку управления. И теоретически в этот момент двигатель должен потреблять больше топлива. В реальности же его перерасход может оказаться настолько мизерным, что владелец этого не заметит. Впрочем, выслушаем диагностов.
— Теоретически любые примеси в бензине могут вывести лямбда-зонд из строя. Тем более моторное масло, которое, если расход на угар велик, в сгоревшем виде попадает на его внешний электрод. Точных значений последнего не скажу. Отмечу лишь, что сейчас все-таки повальных отказов не наблюдаем.
Последствия выхода из строя могут быть крайне разнообразны. Кто-то даже не заметит изменений в расходе топлива, который сильно зависит от забортной температуры. Он, кстати, может даже несколько снизиться — такие случаи известны. На отдельных моделях — например, современных Mercedes-Benz — при любой ошибке активируется аварийный режим с ограничением тяги. И «кислородник» тут не исключение, пусть даже у него отказал лишь нагревательный элемент. Некоторые Honda 2000-х годов на удивление тоже инициируют «аварию» — всего лишь по причине неработоспособности второй «лямбды».
Без работоспособного датчика перед катализатором блок управления будет неправильно готовить топливовоздушную смесь, переливать или обеднять. В первом случае излишки топлива будут догорать в катализаторе. При бедной смеси в камерах сгорания не будет вспышки и несгоревший бензин опять же отправится в нейтрализатор. Излишне говорить, что с ним в итоге произойдет.
Раньше не все сканеры видели показания «лямбды». Проверяли в основном осциллографом, который до сих пор может дать более полную картину ее работоспособности. Но сейчас острой необходимости пользоваться этим прибором нет. По крайней мере, в ряде случаев увидеть работу датчика позволяет даже диагностическая колодка и соответствующая программа в телефоне.
Покупка универсального датчика — лотерея. Да, они дешевле оригинальных. А гарантии, что будут работать, нет. Во всяком случае, нам известны примеры, когда распиновка в разъемах не совпадала с той, что на автомобиле. Это решаемо. Хуже то, что система может просто не увидеть универсальную «лямбду». При этом продавцы обратно их, как правило, не принимают — видят, что их уже устанавливали, по сплющенной уплотнительной шайбе. Альтернатива оригинальным, хотя бы для автомобилей немолодых и недорогих, — покупка бэушных. Такие нередко еще могут поработать достаточно долго.
Еще одна точка зрения, в основном по «японцам» разных лет выпуска.
— Как обычные лямбда-зонды, так и датчики состава смеси, то есть широкополосные, проверяются элементарно. Осциллограф, конечно, точный и надежный инструмент диагноста. Но грамотный мастер увидит состояние датчика и по значениям на сканере. Тем более что непринципиально, не работает «лямбда» совсем или дает не вполне корректную информацию и неоперативно. Все равно смесеобразование идет неправильно.
Другой пример вероятной возможности приговорить датчик — ехать вброд. Погрузиться достаточно глубоко, чтобы залить первую «лямбду». На автомобилях немолодых катализатор может быть расположен довольно низко, а датчик — непосредственно перед ним.
Второй «кислородник», который контролирует катализатор и также всегда имеет нагрев, находится ниже, и «намочить» его можно даже в глубокой луже. Резкий перепад температуры выведет нагрев из строя.
При этом я бы не сказал, что на замену лямбда-зондов клиенты едут валом. Не попадались мне и датчики в «шубе» из сажи. Вообще ресурс их немал. Например, по мануалам Toyota их нужно проверять на 100 000 км и только при необходимости менять. На моем Harrier с 5S «лямбда» отходила 230 000 км.
Но игнорировать неисправность датчика не получится — она приводит к нарушениям в работе системы управления двигателем. На «японках» 90-х двигатель вполне мог глохнуть. Работал с перебоями, с провалами на разгонах. Правда, некоторые автомобили никак не реагируют на проблемную «лямбду».
На моделях посвежее и тем более современных система запросто может встать в «аварию». Иной раз не «увидев» показаний и со второго лямбда-зонда. В этой ситуации надо смотреть катализатор. Если из строя вышел первый датчик — обязательно менять! ЦПГ переливами топлива по этой причине не загубит. Но сам нейтрализатор, очень вероятно, оплавится.
Покупать «кислородники» малоизвестных брендов не стоит. Хотя и оригинальные, бывало, работали буквально неделю-две. В целом же советую Bosch, Denso, NGK. Универсальные обычно продаются без «фишки». У Bosch с разъемом, но тоже не всегда. Мы используем NGK/NTK — за все время с их отказами по причине низкого качества не сталкивались.
А вот мнение из «конкурирующего лагеря» — из структуры, занимающейся обслуживанием и ремонтом «немцев»:
— Лямбда-зонд — довольно выносливая штука. Конечно, ее может прикончить и паленый бензин, и «масложор». Другое дело, что первый в более-менее крупных городах уже редкость. А второй, если доходит до полулитра-литра на 1000 км, то автовладельца вряд ли будет беспокоить какой-то там датчик. Нередко «кислородники» (особенно вторая «лямбда») расположены достаточно низко и постоянно подвергаются обработке грязью, влагой. И все равно работают! Ресурс? К примеру, Bosch заявляет о работоспособности своих датчиков на протяжении как минимум 150 000 км. Мы это в общем подтверждаем, за исключением редких случаев.
Элемент нагрева лямбда-зондов столь же ресурсен и, как правило, отказывает лишь по причине естественного износа. Однако бывает, что он повреждается механически — например, дорожными камешками или от естественных колебаний при демонтаже-монтаже выхлопа. Ни к каким последствиям, по сути, это не ведет — загорится Check, и лямбда-регулирование состава топливовоздушной смеси или «лямбда-слежка» за чистотой выхлопа будут включаться позже, по мере прогрева зонда естественным путем от выхлопных газов. Выход из строя подогрева второго лямбда-зонда за катализатором не приведет ни к чему, кроме индикатора на панели приборов, но если речь о первой «лямбде», то выхлоп в первые минуты станет чуточку грязнее и на толику вырастет расход топлива. Для владельца первое будет не принципиально, а второе он, скорее всего, не заметит.
Но на неисправность самого лямбда-зонда не обратить внимание трудно. Автомобиль либо «зачекует», либо заработает неровно и из выхлопной трубы запахнет несгоревшим бензином. Также двигатель может глохнуть, троить, не развивать мощность. Для немецких машин с их прецизионными моторами даже загоревшийся безо всяких дополнительных симптомов Check Engine — уже повод ехать на диагностику. А тут такое! Впрочем, переживать за ЦПГ не стоит. Однако если на это плюнуть (вполне возможно, что автомобиль будет как-то передвигаться), рано или поздно произойдет разрушение катализатора — он оплавится.
Мы на автомобили клиентов устанавливаем ремонтные датчики Bosch. Все «немцы» комплектуются лямбда-зондами этого производителя на конвейере, а ремкомплект отличается от оригинала лишь чуть большей универсальностью — длиной проводов и совместимостью разъемов. При этом периодически наблюдаем, как в других сервисах, меняя датчики на V6, V8, V10 и V12, путают правую и левую стороны — нестабильная работа двигателя на холостых и потеря мощности в движении в этом случае гарантированы.
Добавим, что на V-«образниках» или «оппозитниках» при неисправности датчика с одной стороны блока (неважно, от заправки некачественным топливом или подошел к концу ресурс) в скором времени стоит ожидать «окончания» и второго. А менять их надо парами — чтобы исключить вероятность несинхронной работы.
Скажем еще, что далеко не всегда для первой и второй «лямбды» есть аналоги от Bosch, Denso, Delphi, NGK. И даже от производителей из Китая. Последнее, пожалуй, к лучшему. Но отсутствие альтернативы от фактических конвейерных поставщиков заставляет покупать детали под брендами автопроизводителей. А это значительно дороже.
Установленный до катализатора лямбда зонд (верхний датчик кислорода) отслеживает содержание кислорода в выхлопных газах. По его показаниям ЭБУ двигателя видит – богатая топливная смесь сейчас в двигателе или бедная, тем самым подстраивая ее до оптимальной. Именно при этих условиях происходит наилучшее сгорание топливной смеси. Более того, при этих условиях достигается оптимальное соотношение мощности двигателя и расхода топлива.
Стандарт Евро-3 и более.
Зачем отключать датчик кислорода?
А вот второй лямбда-зонд, который стоит после катализатора, отключают с целью удаления катализатора. Если же просто удалить катализатор и не отключить программно второй лямбда-зонд, неминуемо загорится ошибка, двигатель перейдет в аварийный режим и повысится расход топлива.
Как правильно отключить датчик кислорода.
Единственно правильный вариант — программное отключение. Программа двигателя изменяется для работы без датчика кислорода, так как это было во времена Евро-2 или Евро-0.
Отключение лямбда-зондов программно совместно с чип-тюнингом принесет приятные бонусы:
- Увеличение мощности и крутящего момента;
- Снижение расхода топлива (по сравнению с аварийным режимом);
- Улучшение тяги на низах;
- Более отзывчивая педаль газа;
- Улучшение общей динамики автомобиля;
- Более плавные переключения коробки передач;
- Оптимизируется работа двигателя с включенным кондиционером.
Грамотное отключение лямбда-зонда (датчика кислорода).
Стоимость программного отключения составляет от 1500руб. зависит от установленного блока управления.
Читайте также: