Лямбда зонд на honda crv 3 поколения после катализатора какой номер
Здравствуйте друзья. Всех с наступающим Новым годом и удачи на дорогах!
Просветите пожалуйста по лямбда зондам на наше поколение. Информация в нете крайне скудная.
Для начала, для чего это. Замучился уже в своего коня лить бенз. Купил осенью, пока привыкал к манере
езды расход был около 17 по городу. Настали холода и расход полез в гору. Правда езжу только на работу и обратно
примерно по 20 км в день по небольшим пробкам. Расход 21,5. Ну и прогрев недолго около 10 мин. По трассе еще далеко не ездил. Не далеко около 17.
Заменил все расходники: масло, фильтры, свечи. Колеса 2.1 по кузову 235/60 18 Хака 5, развал-схождение.
Счастливцы пишут что зимний расход при таком раскладе должен быть по городу около 16-17 л. Поэтому задумался о непоследнем звене в этой цепи, те лямбдах. При покупке диагностику проходил. Написали, что живые. Но вот насколько задумался только сейчас. Пробег 90 т.
При нашем бензине срок немаленький. Тем более я четвертый и неизвестно чем кормили коня, предыдущие хозяева.
Можете мне подсказать про такой расход. Нужно ли менять лямбды при таком пробеге?
Наши такие 36531RNA003 И 36532RNAA01. Различаются только длиной хвостов. Цена 7-11 тр(((
Аналог Denso DOX 1454 от 4,5 до 5,5 тр
И еще много пишут про универсальный Denso DOX 0109 без разъема и юбки. 2 тр, НО
не наше поколение, а на II. В комплекте обжимки с термотрубкой для сращивания.
Все качества OE. Что это такое? Насколько критично отсутствие защитной юбки? Нигде не могу найти различая параметров 1454 и 0109 кроме отсутствия разъема и юбки. Разница в 3 тр.
Ну и также много пишут про Bosch от Лад и Калин 0258006537, 0258986602. По сопротивлению подогрева
подходят 9-10 Ом. Но тоже в основном про первое и второе поколение CRV. Цена 1,5 тр.
В чем такая критичная разница между поколениями?
Кстати по другим машинам тоже винегрет мнений и понятий. Полный разброд и шатания.
Лямбда-зонд устанавливается в потоке отработавших газов двигателя и служит для определения наличия кислорода в отработавших газах. Когда двигатель работает на обогащённой топливо-воздушной смеси, уровень содержания кислорода в отработавших газах понижен, при этом датчик генерирует сигнал высокого уровня напряжением 0,65…1,0V. При поступлении сигнала высокого уровня от лямбда-зонда, блок управления двигателем начинает уменьшать длительность впрыска топлива, тем самым обедняя топливо-воздушную смесь. Когда двигатель работает на обеднённой топливо-воздушной смеси, уровень содержания кислорода в отработавших газах повышен, при этом датчик генерирует сигнал низкого уровня напряжением 40…200mV. При поступлении сигнала низкого уровня от лямбда-зонда, блок управления двигателем начинает увеличивать длительность впрыска топлива, тем самым обогащая топливо-воздушную смесь. Таким образом, по сигналу от лямбда-зонда блок управления двигателем корректирует длительность впрыска топлива так, что состав топливо-воздушной смеси оказывается максимально близким к стехиометрическому (идеальное соотношение воздух/топливо).
Исправный лямбда-зонд начинает работать только после прогрева чувствительного элемента до температуры не ниже 350°С. Существуют одно-, двух-, трёх- и четырёх-проводные двухуровневые циркониевые лямбда-зонды BOSCH. Одно- и двух-проводные лямбда-зонды устанавливаются в выпускном коллекторе двигателя максимально близко к выпускным клапанам газораспределительного механизма и прогреваются до рабочей температуры за счёт высокой температуры отработавших газов. Трёх- и четырёх-проводные лямбда зонды прогреваются до рабочей температуры за счёт встроенного электрического нагревательного элемента и могут быть установлены на значительном расстоянии от выпускных клапанов газораспределительного механизма двигателя.
При условии сгорания стехиометрической топливо-воздушной смеси, напряжение выходного сигнала лямбда-зонда равно 445…450mV. Но расстояние от выпускных клапанов газораспределительного механизма двигателя до места расположения датчика и значительное время реакции чувствительного элемента датчика приводят к некоторой инерционности системы, что не позволяет непрерывно поддерживать стехиометрический состав топливо-воздушной смеси. Практически, при работе двигателя на установившемся режиме, состав смеси постоянно отклоняется от стехиометрического в диапазоне ±2…3% с частотой 1…2раза в секунду. Этот процесс чётко прослеживается по осциллограмме напряжения выходного сигнала лямбда-зонда.
Осциллограмма напряжения выходного сигнала исправного лямбда-зонда BOSCH. Двигатель работает на холостом ходу. Частота переключения сигнала составляет
Проверка выходного сигнала датчика.
Измерение напряжения выходного сигнала лямбда-зонда блок управления двигателем производит относительно сигнальной "массы" датчика. Сигнальная "масса" двух- и четырёх-проводных лямбда-зондов BOSCH выведена через отдельный провод (провод серого цвета идущий от датчика) на разъём датчика. Сигнальная "масса" одно- и трёх-проводных лямбда-зондов BOSCH соединена с металлическим корпусом датчика и при установке датчика автоматически соединяться с "массой" автомобиля через резьбовое крепление датчика. Выведенная через отдельный провод на разъём датчика сигнальная "масса" лямбда-зонда в большинстве случаев так же соединена с "массой" автомобиля. Встречаются блоки управления двигателем, где провод сигнальной "массы" лямбда-зонда подключен не к "массе" автомобиля, а к источнику опорного напряжения. В таких системах, измерение напряжения выходного сигнала лямбда-зонда блок управления двигателем производит относительно источника опорного напряжения, к которому подключен провод сигнальной "массы" лямбда-зонда.
Для просмотра осциллограммы напряжения выходного сигнала лямбда-зонда, разъём осциллографического щупа должен быть подключен к любому из аналоговых входов №1-4 USB Autoscope II, чёрный зажим типа "крокодил" осциллографического щупа должен быть подсоединён к "массе" двигателя диагностируемого автомобиля, пробник щупа должен быть подсоединён параллельно сигнальному выводу датчика (провод чёрного цвета идущий от датчика).
Схема подключения к лямбда-зонду BOSCH (на основе оксида циркония).
1 – точка подключения чёрного зажима типа "крокодил" осциллографического щупа;
2 – точка подключения пробника осциллографического щупа.
В окне программы "USB Осциллограф", необходимо выбрать подходящий режим отображения, в данном случае "Управление => Загрузить настройки пользователя => Lambda".
Когда лямбда-зонд прогревается до рабочей температуры, его выходное электрическое сопротивление значительно снижается, и он приобретает способность отклонять опорное напряжение, поступающее от блока управления двигателем через резистор с постоянным электрическим сопротивлением. В большинстве блоков управления двигателем, значение опорного напряжения равно 450mV. Такой блок управления двигателем считает лямбда-зонд готовым к работе только после того, как вследствие прогрева датчик приобретает способность отклонять опорное напряжение в диапазоне более чем ±150…250mV.
Осциллограмма напряжения выходного сигнала исправного лямбда-зонда BOSCH. Пуск прогретого до рабочей температуры двигателя. Время прогрева лямбда-зонда до рабочей температуры равно
Опорное напряжение на сигнальном проводе лямбда-зонда некоторых блоков управления двигателем может иметь другое значение. Например, для блоков управления производства Ford оно равно 0V, а для блоков управления двигателем производства Daimler Chrysler – 5V.
Типовые неисправности.
Низкая частота переключения выходного сигнала лямбда-зонда указывает на увеличенный диапазон отклонения состава топливо-воздушной смеси от стехиометрического.
Осциллограмма напряжения выходного сигнала неисправного лямбда-зонда BOSCH. Двигатель работает на холостом ходу. Частота переключения сигнала занижена и составляет
Снижение частоты переключения выходного сигнала лямбда-зонда может быть вызвана возросшим временем перехода выходного напряжения зонда от одного уровня к другому из-за старения или химического отравления датчика. Неисправность может привести к раскачке частоты вращения двигателя на режиме холостого хода и к потере "приёмистости" двигателя.
Ресурс датчика содержания кислорода в отработавших газах составляет 20 000…80 000 km. Из-за старения, выходное электрическое сопротивление лямбда-зонда снижается при значительно более высокой температуре чувствительного элемента до значения, при котором датчик приобретает способность отклонять опорное напряжение. Из-за возросшего выходного электрического сопротивления, размах выходного напряжения сигнала лямбда-зонда уменьшается. Стареющий лямбда-зонд легко можно выявить по осциллограмме напряжения его выходного сигнала на таких режимах работы двигателя, когда поток и температура отработавших газов снижаются. Это режим холостого хода и малых нагрузок. Практически, стареющий лямбда-зонд всё ещё работает на движущемся автомобиле, но как только нагрузка на двигатель снижается (холостой ход), размах сигнала быстро начинает уменьшаться вплоть до пропадания колебаний.
Осциллограмма напряжения выходного сигнала неисправного лямбда-зонда BOSCH. Двигатель работает на холостом ходу. Переключения выходного сигнала отсутствуют.
Напряжение выходного сигнала стареющего лямбда-зонда при работе двигателя на холостом ходу становится почти стабильным, его значение становится близким опорному напряжению 300…600mV.
Лямбда-зонд устанавливается в потоке отработавших газов двигателя и служит для определения наличия кислорода в отработавших газах. Когда двигатель работает на обогащённой топливо-воздушной смеси, уровень содержания кислорода в отработавших газах понижен, при этом датчик генерирует сигнал высокого уровня напряжением 0,65…1,0V. При поступлении сигнала высокого уровня от лямбда-зонда, блок управления двигателем начинает уменьшать длительность впрыска топлива, тем самым обедняя топливо-воздушную смесь. Когда двигатель работает на обеднённой топливо-воздушной смеси, уровень содержания кислорода в отработавших газах повышен, при этом датчик генерирует сигнал низкого уровня напряжением 40…200mV. При поступлении сигнала низкого уровня от лямбда-зонда, блок управления двигателем начинает увеличивать длительность впрыска топлива, тем самым обогащая топливо-воздушную смесь. Таким образом, по сигналу от лямбда-зонда блок управления двигателем корректирует длительность впрыска топлива так, что состав топливо-воздушной смеси оказывается максимально близким к стехиометрическому (идеальное соотношение воздух/топливо).
Исправный лямбда-зонд начинает работать только после прогрева чувствительного элемента до температуры не ниже 350°С. Существуют одно-, двух-, трёх- и четырёх-проводные двухуровневые циркониевые лямбда-зонды BOSCH. Одно- и двух-проводные лямбда-зонды устанавливаются в выпускном коллекторе двигателя максимально близко к выпускным клапанам газораспределительного механизма и прогреваются до рабочей температуры за счёт высокой температуры отработавших газов. Трёх- и четырёх-проводные лямбда зонды прогреваются до рабочей температуры за счёт встроенного электрического нагревательного элемента и могут быть установлены на значительном расстоянии от выпускных клапанов газораспределительного механизма двигателя.
При условии сгорания стехиометрической топливо-воздушной смеси, напряжение выходного сигнала лямбда-зонда равно 445…450mV. Но расстояние от выпускных клапанов газораспределительного механизма двигателя до места расположения датчика и значительное время реакции чувствительного элемента датчика приводят к некоторой инерционности системы, что не позволяет непрерывно поддерживать стехиометрический состав топливо-воздушной смеси. Практически, при работе двигателя на установившемся режиме, состав смеси постоянно отклоняется от стехиометрического в диапазоне ±2…3% с частотой 1…2раза в секунду. Этот процесс чётко прослеживается по осциллограмме напряжения выходного сигнала лямбда-зонда.
Осциллограмма напряжения выходного сигнала исправного лямбда-зонда BOSCH. Двигатель работает на холостом ходу. Частота переключения сигнала составляет
Проверка выходного сигнала датчика.
Измерение напряжения выходного сигнала лямбда-зонда блок управления двигателем производит относительно сигнальной "массы" датчика. Сигнальная "масса" двух- и четырёх-проводных лямбда-зондов BOSCH выведена через отдельный провод (провод серого цвета идущий от датчика) на разъём датчика. Сигнальная "масса" одно- и трёх-проводных лямбда-зондов BOSCH соединена с металлическим корпусом датчика и при установке датчика автоматически соединяться с "массой" автомобиля через резьбовое крепление датчика. Выведенная через отдельный провод на разъём датчика сигнальная "масса" лямбда-зонда в большинстве случаев так же соединена с "массой" автомобиля. Встречаются блоки управления двигателем, где провод сигнальной "массы" лямбда-зонда подключен не к "массе" автомобиля, а к источнику опорного напряжения. В таких системах, измерение напряжения выходного сигнала лямбда-зонда блок управления двигателем производит относительно источника опорного напряжения, к которому подключен провод сигнальной "массы" лямбда-зонда.
Для просмотра осциллограммы напряжения выходного сигнала лямбда-зонда, разъём осциллографического щупа должен быть подключен к любому из аналоговых входов №1-4 USB Autoscope II, чёрный зажим типа "крокодил" осциллографического щупа должен быть подсоединён к "массе" двигателя диагностируемого автомобиля, пробник щупа должен быть подсоединён параллельно сигнальному выводу датчика (провод чёрного цвета идущий от датчика).
Схема подключения к лямбда-зонду BOSCH (на основе оксида циркония).
1 – точка подключения чёрного зажима типа "крокодил" осциллографического щупа;
2 – точка подключения пробника осциллографического щупа.
В окне программы "USB Осциллограф", необходимо выбрать подходящий режим отображения, в данном случае "Управление => Загрузить настройки пользователя => Lambda".
Когда лямбда-зонд прогревается до рабочей температуры, его выходное электрическое сопротивление значительно снижается, и он приобретает способность отклонять опорное напряжение, поступающее от блока управления двигателем через резистор с постоянным электрическим сопротивлением. В большинстве блоков управления двигателем, значение опорного напряжения равно 450mV. Такой блок управления двигателем считает лямбда-зонд готовым к работе только после того, как вследствие прогрева датчик приобретает способность отклонять опорное напряжение в диапазоне более чем ±150…250mV.
Осциллограмма напряжения выходного сигнала исправного лямбда-зонда BOSCH. Пуск прогретого до рабочей температуры двигателя. Время прогрева лямбда-зонда до рабочей температуры равно
Опорное напряжение на сигнальном проводе лямбда-зонда некоторых блоков управления двигателем может иметь другое значение. Например, для блоков управления производства Ford оно равно 0V, а для блоков управления двигателем производства Daimler Chrysler – 5V.
Типовые неисправности.
Низкая частота переключения выходного сигнала лямбда-зонда указывает на увеличенный диапазон отклонения состава топливо-воздушной смеси от стехиометрического.
Осциллограмма напряжения выходного сигнала неисправного лямбда-зонда BOSCH. Двигатель работает на холостом ходу. Частота переключения сигнала занижена и составляет
Снижение частоты переключения выходного сигнала лямбда-зонда может быть вызвана возросшим временем перехода выходного напряжения зонда от одного уровня к другому из-за старения или химического отравления датчика. Неисправность может привести к раскачке частоты вращения двигателя на режиме холостого хода и к потере "приёмистости" двигателя.
Ресурс датчика содержания кислорода в отработавших газах составляет 20 000…80 000 km. Из-за старения, выходное электрическое сопротивление лямбда-зонда снижается при значительно более высокой температуре чувствительного элемента до значения, при котором датчик приобретает способность отклонять опорное напряжение. Из-за возросшего выходного электрического сопротивления, размах выходного напряжения сигнала лямбда-зонда уменьшается. Стареющий лямбда-зонд легко можно выявить по осциллограмме напряжения его выходного сигнала на таких режимах работы двигателя, когда поток и температура отработавших газов снижаются. Это режим холостого хода и малых нагрузок. Практически, стареющий лямбда-зонд всё ещё работает на движущемся автомобиле, но как только нагрузка на двигатель снижается (холостой ход), размах сигнала быстро начинает уменьшаться вплоть до пропадания колебаний.
Осциллограмма напряжения выходного сигнала неисправного лямбда-зонда BOSCH. Двигатель работает на холостом ходу. Переключения выходного сигнала отсутствуют.
Напряжение выходного сигнала стареющего лямбда-зонда при работе двигателя на холостом ходу становится почти стабильным, его значение становится близким опорному напряжению 300…600mV.
Этот достаточно хрупкий прибор находится в очень агрессивной среде, поэтому его работу необходимо постоянно контролировать, так как при его поломке дальнейшее использование автомобиля невозможно. Периодическая проверка лямбда зонда станет гарантом стабильной работы автотранспортного средства.
Принцип действия лямбда зонда
Основной задачей лямбда зонда является определение химсостава выхлопных газов и уровня содержания в них молекул кислорода. Этот показатель должен колебаться в пределах от 0,1 до 0,3 процентов. Бесконтрольное превышение этого нормативного значения может привести к неприятным последствиям.
При стандартной сборке автомобиля, лямбда зонд монтируется в выпускном коллекторе в области соединения патрубков, однако, иногда бывают и другие вариации его установки. В принципе, иное расположение не влияет на рабочую производительность данного прибора.
Сегодня можно встретить несколько вариаций лямбда зонда: с двухканальной компоновкой и широкополосного типа. Первый вид чаще всего встречается на старых автомобилях, выпущенных в 80-е годы, а также на новых моделях эконом-класса. Датчик широкополосного типа присущ современным авто среднего и высшего класса. Такой датчик способен не только с точностью определить отклонение от нормы определенного элемента, но и своевременно сбалансировать правильное соотношение.
Благодаря усердной работе таких датчиков существенно повышается рабочий ресурс автомобиля, снижается топливный расход и повышается стабильность удержания оборотов холостого хода.
С точки зрения электротехнической стороны, стоит отметить тот момент, что датчик кислорода не способен создавать однородный сигнал, так как этому препятствует его расположение в коллекторной зоне, ведь в процессе достижения выхлопными газами прибора может пройти определенное количество рабочих циклов. Таким образом, можно сказать, что лямбда зонд реагирует скорее на дестабилизацию работы двигателя, о чем он собственно впоследствии и оповещает центральный блок и принимает соответствующие меры.
Основные признаки неисправности лямбда зонда
Основным признаком неисправности лямбда зонда служит изменение работы двигателя, так как после его поломки значительно ухудшается качество поступаемой топливной смеси в камеру сгорания. Топливная смесь, по сути, остается бесконтрольной, что недопустимо.
Причиной выхода из рабочего состояния лямбда зонда может быть следующее:
- разгерметизация корпуса;
- проникновение внешнего воздуха и выхлопных газов;
- перегрев датчика вследствие некачественной покраски двигателя или неправильной работы системы зажигания;
- моральный износ;
- неправильное или прерывающееся электропитание, которое ведет к основному блоку управления;
- механическое повреждение в следствие некорректной эксплуатации автомобиля.
Во всех вышеперечисленных случаях, кроме последнего, выход из строя происходит постепенно. Поэтому те автовладельцы, которые не знают как проверить лямбда зонд и где он вообще расположен, скорее всего, не сразу заметят неисправность. Однако, для опытных водителей определить причину изменения работы двигателя не составит никакого труда.
Постепенный выход из строя лямбда зонда можно разбить на несколько этапов. На начальной стадии датчик перестает нормально функционировать, то есть, в определенных рабочих моментах мотора устройство перестает генерировать сигнал, впоследствии чего дестабилизируется налаженность оборотов холостого хода.
Иными словами, они начинают колебаться в достаточно расширеном диапазоне, что в конечном итоге приводит к потере качества топливной смеси. При этом авто начинает беспричинно дергаться, также можно услышать нехарактерные работе двигателя хлопки и обязательно на панели приборов загорается сигнальная лампочка. Все эти аномальные явления сигнализируют автовладельцу о неправильной работе лямбда зонда.
На втором этапе датчик и вовсе перестает работать на не прогретом двигателе, при этом автомобиль будет всевозможными способами сигнализировать водителю о проблеме. В частности, произойдет ощутимый упадок мощности, замедленное реагирование при воздействии на педаль акселератора и все те же хлопки из-под капота, а также неоправданное дергание автомобиля. Однако, самым существенным и крайне опасным сигналом поломки лямбда зонда служит перегрев двигателя.
В случае полного игнорирования всех предшествующих сигналов свидетельствующих об ухудшении состояния лямбда зонда, его поломка неизбежна, что станет причиной большого количества проблем. В первую очередь пострадает возможность естественного движения, также значительно увеличится расход топлива и появится неприятный резкий запах с ярко выраженным оттенком токсичности из выхлопной трубы. В современных автоматизированных автомобилях в случае поломки кислородного датчика может попросту активизироваться аварийная блокировка, в результате которой последующее движение автомобиля становится невозможным. В таких случаях сможет помочь только экстренный вызов эвакуатора.
Однако, самым худшим вариантом развития событий является разгерметизация датчика, так как в этом случае движение автомобиля становится невозможным по причине высокой вероятности поломки двигателя и последующего дорогостоящего ремонта. Во время разгерметизации отработанные газы вместо выхода через выхлопную трубу, попадают в заборный канал атмосферного эталонного воздуха. Во время торможения двигателем лямбда зонд начинает фиксировать переизбыток молекул кислорода и экстренно подает большое количество отрицательных сигналов, чем полностью выводит из строя систему управления впрыском.
Основным признаком разгерметизации датчика является потеря мощности, особенно это ощущается во время скоростного движения, характерное постукивание из-под капота во время движения, которое сопровождается неприятными рывками и неприятный запах, который выбрасывается из выхлопа. Также о разгерметизации свидетельствует видимый осадок сажных образований на корпусе выпускных клапанов и в области свечей.
Как определить неисправность лямбда зонда рассказывается на видео:
Электронная проверка лямбда зонда
Узнать о состоянии лямбда зонда можно путем его проверки на профессиональном оборудовании. Для этого используется электронный осциллограф. Некоторые специалисты определяют работоспособность кислородного датчика при помощи мультиметра, однако, он способен только констатировать или же опровергнуть факт его поломки.
Проверяется устройство во время полноценной работы двигателя, так как в состоянии покоя датчик не сможет полностью передать картину своей работоспособности. В случае даже незначительного отхождения от нормы, лямбда зонд рекомендуется заменить.
Замена лямбда зонда
В большинстве случаев такая деталь, как лямбда зонд не подлежит ремонту, о чем свидетельствуют утверждения о невозможности произведения ремонта от многих автомобильных производителей. Однако, завышенная стоимость такого узла у официальных дилеров отбивает всякую охоту его приобретения. Оптимальным выходом из сложившейся ситуации может стать универсальный датчик, который стоит гораздо дешевле родного аналога и подходит практически всем автомобильным маркам. Также в качестве альтернативы можно приобрети датчик бывший в использовании, но с продолжительностью гарантийного периода или же полностью выпускной коллектор с установленным в него лямбда зондом.
Однако, бывают случаи, когда лямбда зонд функционирует с определенной погрешностью из-за сильного загрязнения в результате оседания на нем продуктов сгорания. Для того чтобы убедиться, что это действительно так, датчик необходимо проверить у специалистов. После того как проверка лямбда зонда состоялась и подтвержден факт его полной работоспособности, его нужно снять, почистить и установить обратно.
Для того чтобы демонтировать датчик уровня кислорода, необходимо прогреть его поверхность до 50 градусов. После снятия, с него снимается защитный колпачок и только после этого можно приступать к очистке. В качестве высокоэффективного очищающего средства рекомендуется использовать ортофосфорную кислоту, которая с легкостью справляется даже с самыми стойкими горючими отложениями. По окончании процедуры отмачивания, лямбда зонд ополаскивается в чистой воде, тщательно просушивается и устанавливается на место. При этом не стоит забывать о смазке резьбы специальным герметиком, который обеспечить полную герметичность.
Устройство автомобиля очень сложное, поэтому он нуждается в постоянной поддержке работоспособности и проведении своевременных профилактических работ. Поэтому в случае возникновения подозрений о неисправности лямбда зонда, необходимо незамедлительно произвести диагностику его работоспособности и в случае подтверждения факта выхода из строя, заменить лямбда зонд. Таким образом, все важнейшие функции транспортного средства будут сохранены на прежнем уровне, что станет гарантом отсутствия дальнейших проблем с двигателем и прочими важными элементами автомобиля.
Начиная с экологического класса ЕВРО-2 выхлопные системы современных автомобилей в обязательном порядке оборудуются катализатором. Он служит для дожигания несгоревшего топлива и нейтрализации особенно вредных продуктов сгорания, содержащихся в выхлопных газах.
Вообще это штука достаточно полезная, ведь она убирает неприятный запах сгоревшего бензина, и помогает поддерживать экологическую обстановку в больших городах.Однако срок службы катализатора достаточно ограничен, и в среднем составляет порядка 100-200 тысяч километров пробега.
Также срок службы сильно зависит от качества топлива и исправности агрегатов. Топливо, производимое в России, имеет повышенное содержание серы, что существенно сокращает срок службы катализатора в разы. А неисправность турбины при которой моторное масло попадает в выхлопную систему способно "убить" катализатор за несколько тысяч километров.
Итак, в какой-то момент многие автомобилисты сталкиваются с тем, что срок жизни катализатора подошел к концу. Он забивается и мешает выхлопным газам выходить через выхлопную систему. Это приводит к ощутимому снижению мощности, а порой и к аварийному режиму работы двигателя, при котором скорость и обороты ограничены, а машина настоятельно рекомендует посетить станцию технического обслуживания.
При посещении автосервиса автолюбителя ждет крайне неприятный сюрприз в виде цены на новый оригинальный катализатор. Для иномарок средняя цена нового - порядка 100 тысяч рублей, что очень и очень ощутимо для семейного бюджета.
Конечно, есть люди, которые могут себе позволить замену катализатора на оригинальный, что является самым правильным решением, но доступным далеко не всем. Остается только два варианта починки своего любимого автомобиля: установка универсальных катализаторов, что тоже неплохо (они кстати в разы дешевле, но все равно дорогие, так как сделаны из редкоземельных металлов) и полное удаление катализатора.
Об удалении и пойдет речь дальше.Процедура удаления катализатора состоит либо в удалении всего расширения выхлопной трубы, в которой содержатся ячейки катализатора, и заменой на прямой участок новой трубы, либо во вскрытии трубы и удалении оттуда катализатора с последующей сваркой корпуса обратно.
Подобная процедура занимает совсем немного времени и весьма бюджетна, ее стоимость редко превышает 10 тысяч рублей.
Кстати обратите внимание, что даже полностью "убитый" катализатор - это ценная вещь. Он сделан из редкоземельных металлов, в том числе платины. И его можно сдать переработчикам по цене порядка 20 тысяч рублей. Так что я бы рекомендовал не оставлять его в сервисе, где производилось удаление, а забрать себе с простой и понятной целью.
Если у Вас автомобиль экологического класса ЕВРО-2, то миссия выполнена, и автомобиль обратно готов к работе. Однако обладателей автомобилей с классом выше ЕВРО-3 будет ждать еще один неприятный сюрприз.Стандарт ЕВРО-3 и выше требует наличия двух лямбда зондов: до катализатора и после.
Лямбда зонд - это устройство для определения соотношения топлива и воздуха в выхлопных газах. Именно по нему автомобиль корректирует подачу топлива именно в тех пропорциях, в которых оно будет сгорать полностью.
Первый лямбда-зонд, расположенный в выхлопной трубе между двигателем и катализатором обеспечивает первичную корректировку топливовоздушной смеси.
Второй лямбда-зонд, установленный после катализатора, помогает произвести дополнительную корректировку смесеобразования с учетом особенностей работы конкретного катализатора.
И при удалении катализатора второй лямба-зонд будет получать совсем "неожиданные" автомобилем значения, что скорее всего приведет к ошибке "CHECK-ENGINE" и/или аварийному режиму.
Поэтому народные умельцы, освоившие болгарку и сварку, но не сильно дружащие с компьютерами придумали простой и изящный способ обхода этой досадной проблемы - обманка катализатора или обманка лямбда-зонда.
Обманка вваривается в то место, где стоит второй лямбда-зонд и представляет собой миникатализатор, который помогает зонду получать желаемые значения вместо реальных. Она стоит несколько тысяч рублей и предлагается в большинстве сервисов по ремонту выхлопных систем.
Установка такой обманки позволяет машине в целом функционировать без ошибок, но к сожалению, не все так просто и хорошо, как хотелось бы.
Из-за того, что показания второго зонда становятся ненастоящими, электронный блок управления двигателем больше не может поддерживать правильную топливовоздушную смесь и в большинстве случаев делает ее богаче (то есть повышает подаваемое количество топливо относительно сжигаемого воздуха). Богачение смеси приводит к уменьшение мощности автомобиля, а также к повышенному расходу топлива в режиме езды, ведь лишнее топливо не может сгореть из-за недостатка воздуха и просто напросто вылетает в трубу. Обычно расход может вырасти более чем на 10%, что согласитесь, не очень приятно.
Также в программе ЭБУ прописаны такие процедуры как прогрев катализатора и его прожигание, которые однозначно не будут корректно работать на обманке. Чаще всего это приводит к тому, что процедура прогрева катализатора не завершается, и двигатель работает на повышенных холостых оборотах. При этом расход с нормальных 1.1-1.4 литра в час для двухлитрового мотора возрастает до 1.7-1.9 л/ч. А это уже даже сильно больше чем повышение расхода на 10%.
Еще недогоревшее топливо проникает сквозь поршневые кольца в картер и разбавляет масло. Конечно, это не сильно страшно, так как бензин испаряется через вентиляцию картерных газов, но на ресурс масла это влияет точно не положительно.
Поэтому единственным правильным способом полного удаления катализатора является его полное программное отключение путем изменения прошивки двигателя. Вы будете удивлены, но в большинстве современных ЭБУ присутствуют "выключатели" этого режима. То есть это относительно штатная процедура, и да, она предусмотрена большинством производителей авто.
Так что если Вы соберетесь удалять катализатор, то я настоятельно рекомендую обратить внимание именно на такой подход. По стоимости эта процедура обычно стоит не дороже установки обманки, а по качеству и правильности намного ее превосходит.
Если Вам интересна данная тематика, и хочется узнать еще больше, то подписывайтесь и ставьте лайки. Новые интересные статьи не заставят себя долго ждать!
Читайте также: