Лямбда зонд делфи 28122177 распиновка
Уважаемые покупатели, во избежание ошибок при отправке датчика кислородного, в строке "Комментарий" указывайте модель вашего автомобиля и год выпуска.
Датчик кислорода, чаще всего заменяется следующими терминами: О2-датчик, лямбда зонд (ЛЗ). Поэтому, если вы услышите эти термины, то знайте, что речь идёт об одном и том же.
Жесткие экологические нормы давно узаконили применение на автомобилях каталитических нейтрализаторов (в обиходе – катализаторы) – устройств, способствующих снижению содержания вредных веществ в выхлопных газах. Катализатор вещь хорошая, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси обеспечить катализаторам «долголетие» невозможно – вот тут и приходит на помощь датчик кислорода.
Другие артикулы товара и его аналогов в каталогах: 21074-3850010.
Особенности изделия:
Датчик кислорода Делфи (обозначение по каталогу " DELPHI " 28122177) , предназначен для контроля состава топливно-воздушной смеси и устанавливается в автомобилях оборудованных электронной системой управления двигателем .
Применяемость: ВАЗ-21041, ВАЗ 2105, ВАЗ-21067, ВАЗ-21074-20, ВАЗ-21074-30, ВАЗ-21074-40 .
Название датчика происходит от греческой буквы λ (лямбда) , которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится 1 часть топлива, l равна 1 (график 1). «Окно» эффективной работы катализатора очень узкое: l=1±0,01. Обеспечить такую точность возможно только с помощью систем питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда-зонда.
Избыток воздуха в смеси измеряется весьма оригинальным способом – путем определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда зонд и стоит в выпускном коллекторе перед катализатором. Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ) , а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива. На некоторых современных моделях автомобилей имеется еще один лямбда-зонд. Расположен он на выходе катализатора . Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора (рис. 1).
График 1. Зависимость мощности двигателя (P) и расхода топлива (Q) от коэффициента избытка воздуха (l) Полное сгорание и максимальная мощность достигается при l=1.
Рис. 1. Схема l-коррекции с одним и двумя датчиками кислорода двигателя 1 – впускной коллектор; 2 – двигатель; 3 – блок управления двигателем; 4 – топливная форсунка; 5 – основной лямбда-зонд; 6 – дополнительный лямбда-зонд; 7 – каталитический нейтрализатор.
Принцип работы Лямбда-зонд действует по принципу гальванического элемента с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Керамика легирована оксидом иттрия, а поверх нее напылены токопроводящие пористые электроды из платины. Один из электродов «дышит» выхлопными газами, а второй – воздухом из атмосферы (рис.2). Эффективное измерение остаточного кислорода в отработавших газах лямбда-зонд обеспечивает после разогрева до температуры 300 – 400оС.
Только в таких условиях циркониевый электролит приобретает проводимость, а разница в количестве атмосферного кислорода и кислорода в выхлопной трубе ведет к появлению на электродах лямбда-зонда выходного напряжения.
При пуске и прогреве холодного двигателя управление впрыском топлива осуществляется без участия этого датчика, а коррекция состава топливо-воздушной смеси осуществляется по сигналам других датчиков ( положения дроссельной заслонки , температуры охлаждающей жидкости, числа оборотов коленвала и др.). Особенностью циркониевого лямбда-зонда является то, что при малых отклонениях состава смеси от идеального (0,97 Ј l Ј 1,03) напряжение на его выходе изменяется скачком в интервале 0,1 - 0,9 В. (график 2).
Кроме циркониевых, существуют кислородные датчики на основе двуокиси титана (TiO2). При изменении содержания кислорода (О2) в отработавших газах они изменяют свое объемное сопротивление. Генерировать ЭДС титановые датчики не могут; они конструктивно сложны и дороже циркониевых, поэтому, несмотря на применение в некоторых автомобилях (Nissan, BMW, Jaguar), широкого распространения не получили.
Для повышения чувствительности лямбда-зондов при пониженных температурах и после запуска холодного двигателя используют принудительный подогрев. Нагревательный элемент (НЭ) расположен внутри керамического тела датчика и подключается к электросети автомобиля (рис. 3).
График 2. Зависимость напряжений лямбда-зонда от коэффициента избытка воздуха (l) при температуре датчика 500-800оС
А – условная точка средних показаний (Uвых » 0,5 В, при l=1,0). (Обогащение смеси (уменьшение О2 в выхлопе). Обеднение смеси (увеличение О2 в выхлопе).
Рис. 3. Конструкция датчика кислорода с подогревателем
1 – керамическое основание; 2, 8 – контакты НЭ; 3 – нагревательный элемент (НЭ); 4 – твердый электролит ZrO2 с напыленными платиновыми электродами; 5 – защитный кожух с прорезями; 6 – металлический корпус с резьбой крепления; 7 – уплотнительное кольцо; 9 – выводы датчика.
Если ЛЗ «врет». В этом случае ЭБУ начинает работать по усредненным параметрам, записанным в его памяти: при этом состав образующейся топливно-воздушной смеси будет отличаться от идеального.
В результате появится повышенный расход топлива, неустойчивая работа двигателя на холостом ходу, увеличение содержания СО в отработавших газах, снижение динамических характеристик, но машина при этом остается на ходу.
В некоторых моделях автомобилей ЭБУ реагирует на отказ лямбда-зонда очень серьезно и начинает так рьяно увеличивать количество подаваемого в цилиндры топлива, что запас горючего в баке «тает» на глазах, из трубы валит черный дым, СО «зашкаливает», а двигатель «тупеет» и на ближайшую СТО Вам, скорее всего, придется добираться на буксире.
Перечень возможных неисправностей лямбда зонда достаточно большой и некоторые из них (потеря чувствительности, уменьшение быстродействия) самодиагностикой автомобиля не фиксируются. Поэтому окончательное решение о замене датчика можно принять только после его тщательной проверки, которую лучше всего поручить специалистам.
Следует особо отметить, что попытки замены неисправного лямбда-зонда имитатором ни к чему не приведут – ЭБУ не распознает «чужие» сигналы, и не использует их для коррекции состава приготавливаемой горючей смеси, т.е. попросту «игнорирует».
При сгоревшем или отключенном лямбда зонде содержание СО в выхлопе возрастает на порядок: от 0,1 – 0,3% до 3 – 7% и уменьшить его значение не всегда удается, т. к. запаса хода винта качества смеси может не хватить. В автомобилях, система l-коррекции которых имеет два кислородных датчика, дело обстоит еще сложнее. В случае отказа второго лямбда-зонда (или «пробивки» секции катализатора) добиться нормальной работы двигателя практически невозможно.
Универсальный лямбда зонд DELPHI – наиболее уязвимый датчик автомобиля с системой впрыска. Его ресурс составляет 40 – 80 тыс. км в зависимости от условий эксплуатации и исправности двигателя. Плохое состояние маслосъемных колец, попадание антифриза в цилиндры и выпускные трубопроводы, обогащенная топливно-воздушная смесь, сбои в системе зажигания сильно сокращают срок его службы.
Применение этилированного бензина категорически недопустимо – свинец «отравляет» платиновые электроды лямбда зонда за несколько бесконтрольных заправок.
Рис. 2. Схема лямбда зонда bosch на основе диоксида циркония, расположенного в выхлопной трубе
1 – твердый электролит ZrO2; 2, 3 – наружный и внутренний электроды; 4 – контакт заземления; 5 – «сигнальный контакт»; 6 – выхлопная труба.
Рис. 4. Контактные выводы наиболее распространенных циркониевых лямбда-зондов
а – без подогревателя; б, с – с подогревателем.
* цвет вывода может отличаться от указанного.
Рекомендованный заводом-изготовителем лямбда зонд DELPHI и сходные по конструкции циркониевые датчики взаимозаменяемы. Возможна замена неподогреваемых датчиков на подогреваемые (но не наоборот!). Однако при этом может возникнуть проблема несовместимости разъемов и отсутствия в машине цепи питания для нагревателя лямбда зонда.
Уважаемые покупатели и посетители ! Обращаем Ваше внимание что Мы отправляем заказы из города Тольятти !
Перед отправкой тчательно проверим, бережно упакуем и быстро доставим на Почту России или в транспортную компанию !
Удачных Вам покупок !
Уважаемые посетители и покупатели обращаем Ваше внимание какими способами можно оплатить заказы
Оплатить любой кортой на сайте за заказ и доставку. Есть так же Вариант оплатить только за заказ - а за доставку оплатить при получении товара
Лямбда-зонд — это датчик, который определяет процентное содержание кислорода в выхлопных газах и передает эти сведения на электронный блок управления. На основе полученных данных ЭБУ регулирует состав топливно-воздушной смеси. В некоторых случаях кислородный датчик нуждается в замене, но его подключение на первый взгляд выглядит сложным. Рассмотрим, какие используются в датчике лямбда провода и как правильно их подсоединить.
Общие правила подключения
Начиная с 1999 года на автомобили, как правило, устанавливаются циркониевые либо титановые кислородные датчики, отвечающие определенным стандартам относительно расцветки проводов. Количество проводов – обычно четыре. Чуть ниже представлены таблицы для тех и других зондов. В подавляющем большинстве случаев для проверки вам потребуется первая таблица – для циркониевых датчиков, но изредка можно встретить и титановые.
Если при сверке выявлено, что сочетание цветов в одной из колонок таблицы соответствует цветам проводов лямбда-зонда вашего автомобиля, то это означает, что зонд конструктивно устроен именно так, и распиновку следует производить в соответствии с этими данными.
Сочетания цветов (циркониевые зонды)
Сочетания цветов (титановые зонды)
Совет по использованию таблицы:
- Проверьте провода датчика кислорода в своем авто.
- Сравните их цвета с колонками в таблицах.
- Если с одной из них цвета полностью совпадают, значит, у вас именно такая конструкция и от нее следует отталкиваться.
Например, ваш лямбда-зонд оснащен четырьмя проводами таких цветов: бежевый, фиолетовый и два коричневых. Такое же сочетание указано в четвертой колонке первой таблицы. Значит, у вас циркониевое устройство с такими же проводами и принципом работы. Далее смотрим первую колонку этой же таблицы и видим, что расположение проводов по схеме следующее: бежевый идет на массу (минус), фиолетовый отвечает за передачу сигнальных данных, а два коричневых нужны для работы нагревателя. Таким образом вы сможете безошибочно определить провода по их оттенкам.
Инструкция по подключению датчика кислорода
Данная инструкция носит ознакомительный характер. Настоятельно рекомендуется доверять такую ответственную процедуру специалисту сервисного центра, обладающего соответствующим опытом работы.
- Запомнить или записать расположение проводов датчика. Отсоединить штекер от электронной составляющей авто, не повредив и не разомкнув при этом провода самого зонда. Аккуратно вытащить старую лямбду.
- Подрезать проводку нового универсального датчика так, чтобы каждый следующий кабель был на 4 см короче предшествующего (начинать можно с какого угодно). Также укоротить кабели от разъема старого зонда.
- Поместить на каждый из проводов специальную изоляцию и водозащиту (широким концом водозащита обращена к точке соединения провода).
- Снять с каждого провода 8 мм изоляции кусачками, затем надеть контактное соединение и сжать конструкцию так, чтобы соединение было идеальным, а неизолированные провода не выступали. Начинать соединение следует с наиболее короткого провода, так проще.
- Передвинуть водозащиту с обоих концов проводки к соединению, полностью прикрыть место соединения изоляционной трубкой. Закрепить конструкцию при помощи горячего фена.
- Монтировать непосредственно сам датчик, сняв защитный колпак. Распиновка проводов лямбды поможет проложить новую проводку по цветам точно так, как лежала старая. Подключать и крепить проводку необходимо аккуратно, чтобы она не соприкасалась с нейтрализатором, коллектором или другими частями авто, которые нагреваются до высоких температур.
Своевременная замена лямбда-зонда очень важна. Если ЭБУ автомобиля не будет получать достоверную информацию об уровне кислорода в выхлопе, то станет работать на основе усредненных параметров, таким образом топливно-воздушная смесь не будет оптимальной — это отрицательно повлияет на состояние автомобиля.
Наш автосервис в Санкт-Петербурге специализируется на диагностике и ремонте выхлопных систем самых разных авто, от ВАЗ до иномарок. Гарантируем высокое качество ремонта и короткие сроки. Не рискуйте своей техникой — обращение к профессионалам сбережет много нервов, а в перспективе и денег, ведь самостоятельный ремонт по советам с форумов может привести только к более серьезным неисправностям.
Жесткие экологические нормы определили применение на автомобилях каталитических нейтрализаторов для снижения содержания вредных веществ в выхлопных газах. Однако катализатор эффективно работает лишь при определенных условиях, для создания которых необходим постоянный контроль состава топливно-воздушной смеси. Что и выполняет датчик кислорода, он же лямбда-зонд.
Название датчика происходит от греческой буквы l (лямбда), которой в теории ДВС обозначается коэффициент избытка воздуха в топливно-воздушной смеси. Оптимальный, то есть стехиометрический состав этой смеси – 14,7 части воздуха к 1 части топлива. Диапазон эффективной работы катализатора очень узкий: l=1±0,01, и обеспечить такую точность может только топливная система с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда-зонда.
Закрытая система, или система с замкнутым контуром представляет собой стратегию, при которой система управления двигателем полагается только на те данные, которые были предоставлены кислородными датчиками с целью регулирования продолжительности впрыска топлива.
Избыток воздуха в смеси определяется путем измерения содержания в выхлопных газах остаточного кислорода (О2). Поэтому лямбда зонд и стоит в выпускном коллекторе перед катализатором. Электрический сигнал датчика считывается электронным блоком управления системы впрыска, и согласно ему ЭБУ оптимизирует состав смеси. На современных моделях автомобилей есть второй лямбда-зонд на выходе катализатора – для еще большей точности смесеобразования и контроля эффективности работы катализатора.
Принцип измерений
Способ измерения остаточного кислорода состоит в том, что одна часть элемента открывается в атмосферу, а другая взаимодействует с отработавшими газами. Самым распространенным типом датчика, установленным на системах впрыска бензинового топлива, является циркониевый. Он действует по принципу гальванического элемента с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Керамика легирована оксидом иттрия, а поверх нее напылены токопроводящие пористые электроды из платины.
Платиновый контакт присоединен к каждой из сторон элемента. Отрицательно заряженные ионы кислорода собираются на платиновых электродах, и когда датчик достигает температуры около 400°C, любая разность потенциалов образует электрическое напряжение. В случае если смесь бедная, содержание кислорода в отработавших газах высокое. При сравнении с содержанием кислорода в атмосфере существует только очень маленькая разность потенциалов, и, как следствие, возникает небольшое напряжение (около 0,2-0,3 В).
В случае если смесь богатая, то содержание кислорода в отработавших газах низкое. Создается большая разность потенциалов, поэтому возникает относительно более высокое напряжение (0,7-0,9 В). Система управления двигателем будет непрерывно подстраивать длительность импульсного сигнала под форсунки с целью выйти на среднее напряжение, составляющее около 0,4-0,6 В при значении лямбда около 1,0. Поскольку в процессе движения режимы работы двигателя постоянно изменяются, значение напряжения колеблется в обе стороны от среднего значения. Поэтому этот датчик в силу своей неспособности определить небольшие изменения в содержании кислорода известен как узкополосный.
Новые технологии Delphi
Новый тип датчиков кислорода, разработанный компанией Delphi, – мини-датчик (Mini-Switching Oxygen Sensor) – основан на технологии Switching Oxygen Sensor и представляет собой радикально уменьшенный в размерах датчик кислорода. Этого требуют производители автомобилей для более компактной компоновки двигателей и их выпускной системы, а также гибкости в производстве. Двигатели становятся экономичнее, а соответственно, объем выхлопа в пересчете на литраж мотора уменьшается. Новые датчики легко совместимы с более тонкими выхлопными трубами, а их малые размеры снижают влияния самого датчика на поток газов.
Mini-Switching датчики обеспечивают более точный контроль и лучшую диагностику системы выхлопа, ускоренное время реакции для экономии топлива и снижения эмиссии на холодном старте, имеют большую выносливость к высоким температурам, меньшее энергопотребление. Интегрированный нагреватель позволяет устанавливать их дальше по ходу выпускного тракта. Датчики разработаны как для бензиновых и газовых двигателей, так и моторов с топливной системой газ/бензин. В датчиках уже заложено соответствие будущим стандартам по эмиссии вредных веществ. Ведь можно не сомневаться, что нормы будут ужесточаться и дальше, и Delphi к этому уже готов.
Эффективное измерение остаточного кислорода в отработавших газах лямбда-зонд обеспечивает после разогрева до температуры 300-400°С. Только в таких условиях циркониевый электролит приобретает проводимость, а разница в количестве кислорода в атмосфере и выхлопном тракте ведет к появлению на электродах лямбда-зонда выходного напряжения. При пуске и прогреве холодного двигателя управление впрыском топлива осуществляется без участия этого датчика, а коррекция состава топливо-воздушной смеси осуществляется по сигналам других датчиков (положения дроссельной заслонки, температуры охлаждающей жидкости, числа оборотов коленвала и др.).
Особенностью циркониевого лямбда-зонда является то, что при малых отклонениях состава смеси от идеального (0,97 Ј – Ј 1,03) напряжение на его выходе изменяется скачком в интервале 0,1-0,9 В. Датчик, установленный после каталитического нейтрализатора отработавших газов, действует по тому же принципу, что и датчик перед ним, но с одним очень большим отличием. После того, как газы были обработаны каталитическим нейтрализатором, содержание кислорода в них остается на неизменном уровне. Это обеспечивает постоянное напряжение около 0,4-0,6 В, соответственно требуется датчик, способный более адекватно «оценивать» количество кислорода.
Кроме циркониевых, существуют кислородные датчики на основе двуокиси титана (TiO2). При изменении содержания кислорода (О2) в отработавших газах они изменяют свое объемное сопротивление. Генерировать ЭДС титановые датчики не могут; они конструктивно сложны и дороже циркониевых, поэтому, несмотря на применение в некоторых автомобилях (Nissan, BMW, Jaguar), широкого распространения не получили. Для повышения чувствительности лямбда-зондов при пониженных температурах и после запуска холодного двигателя используют принудительный подогрев. Нагревательный элемент (НЭ) расположен внутри керамического тела датчика.
Когда с ростом требований по снижению расхода топлива и выбросов возникла необходимость эксплуатировать двигатели, в которых смесеобразование выводится за пределы стехиометрии, были разработаны так называемые широкополосные датчики. Они обладают линейной характеристикой сигнала, то есть способны генерировать напряжение пропорциональное содержанию остаточного кислорода в отработавшем газе.
Широкополосные датчики
Широкополосные датчики имеют две ячейки – измерительную ячейку и ячейку накачки. С помощью измерительной ячейки определяется содержание кислорода в отработавшем газе, и затем сравнивается с заданной величиной. Если эта величина отличается, то ячейка накачки включает ток накачки, при этом в измерительную камеру поступают ионы кислорода до тех пор, пока величина напряжения измерительной ячейки не будет снова соответствовать эталонному напряжению. Выходной сигнал соответствует току накачки, который является измерительной величиной, почти линейно описывающей точную лябда-величину смеси. Чем больше отклонение проникающего отработавшего газа от этой величины, тем больше ток накачки и, таким образом, выходной сигнал датчика.
Планарный элемент широкополосного кислородного датчика состоит из нескольких слоев. Кроме ячейки накачки и измерительной ячейки, в нем обязательно присутствует встроенный нагреватель, чтобы датчик независимо от внешних условий работал при температуре, создающей условия для измерения. Эти датчики применяются в бензиновых двигателях в качестве регулирующего датчика, а сейчас все чаще применяются и в дизельных автомобилях.
Кислородный датчик в деталях
A. Двухслойное защитное покрытие обеспечивает безотказную работу датчика в течение продолжительного срок службы.
B. Эксклюзивное защитное покрытие устойчиво к агрессивным загрязнителям, вызывающим загорание check engine и преждевременную смерть датчика.
C. Датчики кислорода с планарным чувствительным элементом и интегрированным нагревателем демонстрируют самое короткое в отрасли время прогрева для сокращения вредных выбросов при «холодном» запуске, обеспечивая повышенную экономию топлива.
D. Корпус датчика из нержавеющей стали протестирован на надежность, производительность и экологическую безопасность - до 15 лет/240 тс.км пробега.
E. Дышащий мембранный фильтр обеспечивает лучшее поступление кислорода к центральной части датчика для оптимальной работы.
F. Система гидроизоляции устойчива к высоким температурам, вибрации и коррозии для поддрежания точности сигнала и гарантирует долгий срок службы датчика.
Неисправности датчика кислорода – причины и последствия
Специалисты Delphi выделяют несколько наиболее заметных факторов риска для кислородных датчиков. Все они, так или иначе, связаны с посторонними примесями, которые попадают в камеру сгорания, а оттуда – в выхлопную систему. Так, весьма опасны присадки в топливо, используемые для повышения октанового числа. Применение этилированного бензина категорически недопустимо – свинец «отравляет» платиновые электроды лямбда зонда за несколько бесконтрольных заправок.
В тех же случаях, когда используется кондиционное топливо, главную угрозу для датчика представляют неисправности двигателя. Сильный угар масла, неправильное зажигание, несвоевременная замена топливного фильтра – все эти факторы могут привести к снижению работоспособности лямбда-зонда. Правда, в отличие от некачественного топлива, которое полностью выводит датчик из строя за несколько сотен километров пробега, эти факторы приводят к постепенному снижению его чувствительности и быстродействия. Чем больше износ двигателя, тем короче срок службы лямбда-зонда.
При неисправности лямбда-зонда ЭБУ начинает работать по усредненным параметрам, и состав топливно-воздушной смеси будет отличаться от идеального. В результате возрастет расход топлива, работа двигателя на холостом ходу станет неустойчивой, увеличится содержание СО в ОГ, ухудшится динамика автомобиля, но он остается на ходу. Однако в некоторых моделях автомобилей ЭБУ реагирует на отказ лямбда-зонда значительным увеличением расхода топлива, из трубы валит черный дым, СО «зашкаливает», а двигатель страшно «тупит». То есть фактически автомобиль к эксплуатации непригоден, и даже до СТО порой доехать проблематично.
При сгоревшем или отключенном лямбда зонде содержание СО в выхлопе возрастает на порядок: от 0,1-0,3% до 3-7% и уменьшить его значение не всегда удается, т. к. запаса хода винта качества смеси может не хватить. В автомобилях с двумя кислородными датчиками в случае отказа второго лямбда-зонда добиться нормальной работы двигателя практически невозможно. В довершение всего, избыток кислорода в переобогащенной смеси в кратчайшие сроки полностью уничтожает дорогостоящий каталитический нейтрализатор.
В датчиках кислорода Delphi с планарным чувствительным элементом применяются разъемы для стандартного оборудования и варианты длины проводов, отличающиеся от спецификаций оригинального оборудования не более чем на 3 дюйма (8 см). Это обеспечивает более легкую установку и устойчивость к высоким температурам, вибрационным повреждениям и коррозии проводов, поддерживая точность и продолжительность сигнала.
Запатентованные конструкция и дизайн датчика Delphi обеспечивают длительную и надежную работу на протяжении всего срока службы датчика, а также самое короткое в отрасли время прогрева для сокращения вредных выбросов при "холодном" запуске, не говоря уже о повышенной топливной экономичности в сравнении с более ранними моделями датчиков.
Уникальные защитные покрытия для датчиков оберегают элементы от преждевременного износа, будучи сертифицированными на пожизненную эксплуатацию с E85 и другими видами спиртового топлива. На самом деле, благодаря запатентованному защитному покрытию для датчиков, Delphi является отраслевым лидером по устойчивости к загрязнениям кремний-органическими, фосфорными и другими добавками к топливам и маслам. Датчики рассчитаны на сохранение производительности и соответствия экологическим нормам в расчете на срок службы до 15 лет или до 240 000 км пробега.
Диагностика кислородных датчиков
Перечень возможных неисправностей лямбда зонда достаточно большой и некоторые из них (потеря чувствительности, уменьшение быстродействия) самодиагностикой автомобиля не фиксируются. Однако зная, как работает датчик, вы получаете ключ к успешной диагностике кислородных датчиков. Конечно, если у вас есть диагностический код неисправности, он даст вам некоторое представление о целостности цепи, но вы узнаете гораздо больше, если сами проведете испытание датчика.
На датчике с четырьмя проводами два провода отвечают за нагревательный элемент, который предназначен для того, чтобы как можно быстрее довести температуру датчика до рабочей температуры 400°C. Самое простое, с чего можно начать, – проверить целостность цепи элемента нагревателя. Отключите датчик и измерьте сопротивление на контактах 1 и 2. Если оно лежит в пределах 5-30 Ом, проверьте сигнал, который поступает от электронного блока управления двигателем. Обычно он приводится в действие за счет сигнала модуляции длительности импульса (PWM), поступающего от электронного блока управления. Чтобы замерить воздействующий сигнал нагревателя, потребуется задействовать осциллоскоп.
Следующий шаг – испытание самого датчика; сначала проверьте контакт между зажимом заземления 4 и землей. Если это возможно, исследуйте сигнал только после того, как двигатель достигнет рабочих условий, т.е. достаточно прогреется, и система управления начнет работать с замкнутым контуром. Сигнал должен переключаться между богатым и бедным состояниями (с 0,2-0,3 В на 0,7-0,9 В); данное переключение должно происходить приблизительно каждую секунду. Если сигнал мал (среднее напряжение 0,3 В) или слишком велик (среднее напряжение 0,7 В), то, вероятно, датчик стал жертвой коррозии на платиновых электродах или загрязнения в отверстиях.
Если автомобиль оснащен несколькими кислородными датчиками pre и post, можно получить более точную информацию. Используя данные двух или четырех каналов и накладывая сигналы, можно получить точные сведения о времени реакции и операционной/рабочей эффективности: сигналы от исправных датчиков должны быть зеркальным отражением друг друга».
Цветовая маркировка выводов лямбда-зондов может различаться, но сигнальный провод всегда будет иметь темный цвет (обычно – черный). «Массовый» провод может быть белым, серым или желтым. Обратите внимание, что все проверки сопротивления и непрерывности цепи необходимо выполнять при разъединенной цепи. Титановые лямбда-зонды от циркониевых легко отличить по цвету «накального» вывода подогревателя – он всегда красный.
Варианты замены датчика
Возможна замена неподогреваемых датчиков на подогреваемые (но не наоборот!). Однако при этом может возникнуть проблема несовместимости разъемов и отсутствия в машине цепи питания для нагревателя лямбда зонда. Недостающие провода можно проложить самостоятельно, а вместо разъема использовать стандартные автомобильные контакты.
При замене 3-контактного лямбда зонда на 4-контактный необходимо надежно соединить с «массой» автомобиля провод заземления подогревателя и сигнальный «минус», а накальный провод подогревателя через реле и предохранитель подключить к «плюсу» аккумулятора. Подключение напрямую к катушке зажигания нежелательно, т. к. в цепи ее питания может стоять понижающее сопротивление. Подключиться к контактам топливного насоса достаточно сложно. Лучше всего подключить реле подогревателя лямбда зонда к замку зажигания.
Следует особо отметить, что попытки замены неисправного лямбда-зонда имитатором ни к чему не приведут – ЭБУ не распознает «чужие» сигналы, и не использует их для коррекции состава приготавливаемой горючей смеси, т.е. попросту «игнорирует». И конечно, не стоит соблазняться слишком доступными предложениями от непроверенных поставщиков. Датчик кислорода сложен в изготовлении и при этом определяет работу двигателя. Поэтому стоит доверять только тем производителям, качество продукции которых признано автопроизводителями.
Кислородный датчик – устройство, предназначенное для фиксирования количества оставшегося кислорода в отработавших газах двигателя автомобиля. Он расположен в выпускной системе вблизи катализатора. На основе данных, полученных кислородным датчиком, электронный блок управления двигателем (ЭБУ) корректирует расчет оптимальной пропорции топливовоздушной смеси. Коэффициент избытка воздуха в ее составе обозначается в автомобилестроении греческой буквой лямбда ( λ ), благодаря чему датчик получил второе название – лямбда-зонд.
Все современные автомобили оборудованы датчиками кислорода (лямбда зонды). Они являются очень важной составляющей системы впрыска топлива на инжекторных двигателях. При выходе из строя лямбда зонда, увеличивается расход топлива причем в разы. у меня мотор 1,6 кушал 20 литров на 100 км пробега. Для проверки лямбды не достаточно иметь простой мультиметр, так как сигнал с датчика на переходных режимах меняется практически мгновенно, и тестер просто не успевает его измерить. Поэтому было принято решение, сделать простой недорогой тестер, специально для проверки датчиков кислорода. В качестве индикации служит линейка из 10 светодиодов которая позволяет оперативно контролировать выходной сигнал с датчика и определить его исправность.
Внимание! датчики кислорода бывают одно, двух, трех и четырех проводные! Однопроводные очень старые модели с ними все понятно масса и сигнальный провод. В двух проводных датчиках черный провод сигнал, а серый масса. Трех проводные имеют 2 белых провода подогрев, черный сигнал, масса берется с коллектора. Четырех проводной датчик также как 3х проводной 2 белых подогрев, черный сигнал, серый масса.
Тестер для проверки лямбда-зонда своими руками
Схема тестера для проверки лямбда зонда довольно проста, ее сердце микросхема-генератор LM3914, которая может работать в 2х режимах, бегущая полоса или бегущая точка. на входе стоит делитель который настроен на входное напряжение 0-1 V, каждый светодиод 0,1 V. Чего как раз достаточно практически для всех типов зондов, обычно диапазон лямбда зондов 0-0,9 V.
Настройка заключается в подстройке делителя напряжения на входе тестера, подстроечным резистором. Для этого нужен регулируемый блок питания и мультиметр. Необходимо выставить напряжение 0,5 V на блоке питания и добиться загорания 5 и 6 светодиодов. т.е. средина светодиодной линейки, далее поднимаем напряжение до 0,9 V и смотрим чтоб горел предпоследний светодиод. На этом настройка окончена.
Все собрано на печатной плате размером 31 х 27 мм. светодиоды подключены проводами. Питается устройство от 3х батареек типа ААА.
Печатная плата
Что касается корпуса, здесь на усмотрение. Кто что придумает, так он и будет выглядеть.
Конечно же есть и другие варианты схем такого тестера, собраны они также на микросхеме-генераторе LM3914:
Если внимательно присмотреться к схеме каждого варианта, можно найти небольшие различия включения микросхемы, здесь выбирать только Вам!
Кислородный датчик можно проверить также простым мультиметром, зная основные параметры работы датчика.
Переводим режим мультиметра в измерение постоянного напряжения в пределах «20 В». Включаем зажигание автомобиля, но не заводим двигатель. На приборе должно быть значение «0,45 В». Это нормальное показание, опорное напряжение в норме.
Если оно отсутствует или сильно занижено, значит, блок управления двигателем не выдает необходимого опорного напряжения на лямбда-датчик. Он правильно работать не будет. Нужно искать проблему в ЭБУ мотора.
В случае двухпроводной лямбды может отсутствовать «земля» на сером проводе. Возможен обрыв на нем или блок управления не «присылает» минус – проблемы в электронике блока. Чтобы в этом убедиться, можно минусовый щуп мультиметра подключить к «минусу» аккумулятора. Если на приборе покажутся заветные «0,45 В», значит нет «массы» в ЭБУ.
Проверяем работоспособность активного элемента лямбда-зонда
Щупы прибора оставляем в таком же положении. Заводим мотор автомобиля, даем ему немного прогреться. Показания мультиметра должны изменяться приблизительно в течение 1 секунды от 0,1 до 0,9 В. Если они неизменные, то датчик неисправен.
Показания прибора при работающем двигателе не меняются, значит лямбда не работает!
Чтобы сильнее убедиться в работоспособности лямбды, можно снять с ресивера вакуумный шланг, то есть увеличить количество воздуха во впускном коллекторе после ДМРВ (датчика массового расхода воздуха), тем самым обеднить смесь. Показания мультиметра должны измениться, то есть, границы амплитуды изменения напряжения поменяются.
Обманка кислородного датчика (лямбда-зонда)
Есть категория автолюбителей, предпочитающих обход различных электронных узлов автомобиля. Обманка всё решит! Здесь выскажу своё личное мнение.
Зачем отключать или выводить из работоспособности целые узлы автомобиля, превращая его в Жигули? Покупаем сразу простейший автомобиль и не морочим никому голову!
Тем не менее, приведём варианты обманок кислородного датчика
Как видим по схемам обманок, они типовые. Но, покупая хороший автомобиль, нужно предполагать расходы на его содержание и обслуживание. Такие варианты отключения датчиков ни к чему хорошему не приводят!
а после замены почувствовал разницу.
вот тоже сегодня думаю поменять его сняв защиту. если дождь не прекратится)
вообще у кого есть результаты?до и после его замены?ответьте плизззз
Дык этож более 600км, если мне память не изменяет, из них более 100км практически по бездорожью!
атож.. причем разница офигенная в поведении машинки.
Как то долго ездил с одним неисправным ЛЗ (всего два их), сменил, через пару недель второй пошёл следом за первым. Так что поводов почувствовать разницу было навалом :).
Иной раз даже прикольно себя машинка ведёт.. странно, но прикольно.
К примеру на 1450 - 1500 оборотах движка уверенно и тяговито тянет на 60 км/ч (для 2AZ обычно это чуть выше обороты в тех же условиях, на подъемчиках с исправным ДЗ до 1700-1800 об.), но динамики набора оборотов - никакой, едва едва раскручивается.
Сделал вывод, что смесь льётся переобогащенная и не вся сгорает.
Расходик великоват опять жеж был (в городе с его частыми стартами / стопами) под 15-16 литров. На трассе те же 10, ну иной раз 9, если больше 90-100 км/ч не ехать и не обгонять резво.
вот подогрев то на них и перегорает. :)
7000) со сгоревшим одним датчиком. Поставил оригинал 3600р., машина лучше поехала, даже намного лучше чем ехала сразу после покупки. Расход пока не измерял. Но мучают 2 вопроса:
1. чем черевата езда со сгоревшей лямбдой.
2. стоит ли менять сразу второй датчик, характеристики наверняка уже не те. Пробег 190тк.
При покупке машины (АСМ26) сразу же заменил лямбды на универсальные NGK/NTK. Проверил тестером - работают нормально (+0,1 до 0,9вольт с частотой более 8 колебаний за 10 секунд). Так ездил два года. Расход в городе 15-18л, по трассе 9. Большой расход. Ошибок никаких нет, двигатель исправен.
На днях решил проверить лямбды не тестером, а осциллографом. И тут я обнаружил, что одна из лямбд работает лишь до +0,6вольт (максимум) и падает до 0, а иногда и до -0,2вольта (минимум). А так не должно быть - лямбда однозначно дохлая. Заменил. Вторая лямбда как работала правильно, так и работает.
Вроде бы как расход уменьшился, но пока не знаю насколько. Ещё не скатал бак.
зы На моём Т.Чейзере стояла тоже универсальная лямбда. Работала исправно. Решил раскошелиться на любимую машинку и порадовать её покупкой оригинальной лямбды. Купил за 3600 оригинал. Проверил в работе. Всё, казалось бы, в норме. По крайней мере, разницы в работе с универсальной лямбдой я не увидел. Но расход реально увеличился. Ошибок нет, комп обнулял. Я только расстроился - сплошные траты (на лямбду и за бенз).
Так что, оригинал не всегда панацея.
Читайте также: