Какие силы действуют на колесо автомобиля
Как будто все просто: вращение вала автомобильного двигателя, переданное через механизмы силовой передачи, заставляет вращаться колеса, колеса катятся по дороге; оси вращения при перекатывании колес перемещаются вперед; оси так или иначе связаны с рамой и кузовом автомобиля; значит, вместе с осями перемещается и кузов, и автомобиль. Однако такого описания недостаточно. Необходимо знать, какие силы действуют на колесо. Вот они:
- вращающий момент Мк, заставляющий колесо вращаться и создающий тяговую силу Рк
- сила тяжести, соответствующая нагрузке на колесо Gk
- вертикальная реакция дороги Z и горизонтальная X, действующая в направлении движения (т.е. обратном действию силы Рк).
Тяговая сила Рк (в кг) равна подводимому к колесам вращающему моменту Мк (в кгм), деленному на радиус качения колеса (в м):
Момент Мк зависит от крутящего момента двигателя Ме, передаточных чисел в системе силовой передачи и коэффициента полезного действия n силовой передачи, который для обычных автомобилей равен 0,9. Чем больше передаточные числа в коробке передач и в заднем мосту, тем больше подводимый к колесам вращающий момент:
Мк = Me*iк*i0*n кгм
где iк — передаточное число в коробке передач;
i0 — передаточное число главной передачи.
Рис. Слева — силы, действующие на колесо. Справа — дорога толкает колесо, ось перемещается вперед и толкает рессоры, рессоры толкают кузов.
Таким образом, тяговая сила на ведущих колесах автомобиля:
Теперь можно высказать два на первый взгляд неожиданных положения:
- Движение колеса происходит под действием силы (реакции) X, т. е. дорога толкает автомобиль. Выше был приведен пример действия силы прыгуна на площадку и силы противодействия площадки. Точно так же и ведущее колесо автомобиля отталкивает от себя назад дорогу с силой Рк, а дорога противодействует этому силой (реакцией) X. Реакция X толкает вперед колесо, а оно через ось и подвеску толкает вперед весь автомобиль.
- В каждое отдельно взятое мгновение ближайшие к дороге точки колеса неподвижны, не перемещаются относительно поверхности дороги. Более того, если бы они перемещались, автомобиль не двигался бы, а колесо скользило бы по поверхности дороги. Происходило бы то, что называется на языке автомобилистов буксованием колеса.
Чтобы точки контакта колеса с дорогой были неподвижными, требуется хорошее сцепление шины с поверхностью дороги.
Сцепление шины с дорогой оценивают так называемым коэффициентом сцепления Ф («фи»).
Рис. Величина коэффициента сцепления зависит от состояния поверхности дороги.
Коэффициент сцепления равен отношению наибольшей величины реакции X (при проскальзывании, буксовании колеса) к величине реакции Z:
Величина коэффициента сцепления Ф колеблется в пределах 0,5—0,8 для сухих твердых дорог и 0,15—0,4 для обледенелых или мокрых. Из приведенного графика видно, как влияет состояние поверхности асфальтовой дороги на коэффициент сцепления.
Коэффициент сцепления на сухой дороге лишь незначительно изменяется в зависимости от изменений нагрузки на колесо, давления в шине и скорости движения, но на мокрой или обледенелой дороге с увеличением скорости происходит резкое уменьшение коэффициента сцепления, так как шина не успевает выдавливать влагу, находящуюся в области контакта шины с дорогой, и остающаяся пленка влаги облегчает скольжение шины.
Необходимое для движения сцепление шины с дорогой связано с нежелательным трением. Но о каком трении может идти речь, если соприкасающиеся точки неподвижны? При внимательном изучении ближайшего к поверхности дороги участка шины видим, что:
- шина сжимается, деформируется; происходит местное сжатие, а затем снова расширение шины; сжатие и расширение содержащегося в камере шины воздуха, взаимное перемещение частиц резины и частиц воздуха вызывает трение между ними;
- к точке контакта шины с дорогой все время подходят сжатые элементы шины, а от точки отрыва шины от дороги отходят, наоборот, растянутые; так как резина эластична и прочна, шина не разрывается, а только сжимается и растягивается в области контакта ее с дорогой, поэтому происходит некоторое скольжение отдельных частиц шины по поверхности дороги и, как следствие, трение;
- в углублениях поверхности дороги и рисунка протектора находится воздух; набегая на дорогу, участки протектора сплющиваются, резина заполняет углубления, выжимает из них воздух и как бы присасывается к поверхности дороги, и на отрыв шины от дороги требуется затрата дополнительной силы.
Рис. Работа колеса вызывает деформацию (изменение формы) шины.
Нетрудно сделать вывод, что описанные явления трения или сопротивления качению должны усиливаться при понижении давления в шине (так как при этом увеличиваются ее деформации) и при возрастании окружной скорости шины, а также при неровной или шероховатой поверхности дороги и при наличии заметных выступов и углублений в рисунке протектора шины.
Это на твердой дороге. А мягкую или не очень твердую дорогу, даже размягченный жарой асфальт, шина проминает и на это тоже приходится затрачивать часть тяговой силы.
Сопротивление качению колеса оценивается коэффициентом сопротивления качению f.
Коэффициент сопротивления качению равен отношению величины силы Pf, необходимой для качения колеса, к величине реакции Z:
Величина коэффициента сопротивления качению f возрастает с уменьшением давления в шине, с увеличением скорости движения (при малых скоростях увеличение коэффициента f незначительно) и с увеличением неровности дороги. Изменение величины f ясно видно из рассмотрения графика зависимости коэффициента f от скорости движения и давления в шине (на асфальте). Ниже даны значения этого коэффициента для различных видов дорог для скорости 30—60 км/час и при давлении в шинах около 2,5 кг/см2.
Коэффициент сопротивления качению | |
Асфальт | 0,015 |
Булыжник в хорошем состоянии | 0,018 |
Былыжник в плохом состоянии | 0,023 |
Брусчатая мостовая | 0,017 |
Гравийное шоссе в хорошем состоянии | 0,022 |
Гравийное шоссе в плохом состоянии | 0,028 |
Ровная твердая проселочная дорога | 0,023 |
Проселочная дорога среднего качества | 0,026 |
Тяжелая проселочная дорога | 0,03 |
Песок средней рыхлости | 0,15 |
Снег утрамбованный | 0,029 |
Так как сопротивление качению находится в прямой зависимости от величины коэффициента можно установить, что если для движения автомобиля по асфальту требуется определенная сила, то для движения по булыжнику и по гравийному шоссе нужна в 1,5 раза большая сила, для движения по проселку — в 2 раза, по песку — в 10 раз.
Из уравнения следует, что сила сопротивления качению равна:
или, так как реакция Z равна нагрузке на колесо,
Подсчитав силы сопротивления качению для отдельных колес и сложив их, получаем силу сопротивления качению автомобиля. Хотя сопротивление качению передних, задних, левых и правых колес неодинаковое, без большой ошибки допустимо подсчитывать суммарную силу сопротивления качению для движения с определенной скоростью по уравнению:
Pf = Gaf, кг
где Ga — полный вес автомобиля в кг.
Рис. Коэффициент сопротивления качению увеличивается с возрастанием скорости и с понижением давления в шинах.
На преодоление сопротивления качению затрачивается энергия и нужно уметь вычислить расходуемую при этом мощность.
Прежде чем перейти к мощности, вспомним, что отрезок пути S, пройденный автомобилем в единицу времени t, называется скоростью движения:
Путь измеряют метрами или километрами, а время — секундами или часами; поэтому единицами измерения скорости будут либо метры в секунду (Vа м/сек), либо километры в час (Vа км/час), причем 1 м/сек = 3,6 км/час.
Мощность вычисляют как отношение работы (PS кгм) ко времени (t сек.); так как отношение пути ко времени выражает скорость, то мощность можно вычислить и как произведение силы на скорость:
Значит, чтобы узнать мощность Nf в л.с., расходуемую на сопротивление качению, нужно помножить силу сопротивления Pf на скорость движения va в м/сек и разделить на 75, так как 1 л. с. соответствует механической работе в 75 кгм в 1 сек. Если скорость V выражена в км/час, нужно умножить полученное уравнение мощности на 1000 (метров в километре) и разделить на 3600 (секунд в часе):
Для того чтобы автомобиль двигался, тяговая сила Рк на ведущих колесах должна быть меньше силы сцепления колес с грунтом (иначе колеса будут скользить, буксовать) и не меньше силы сопротивления движению, которую при езде по горизонтальной дороге с невысокой постоянной скоростью (когда сопротивление воздуха незначительно) можно считать равной силе сопротивления качению, иначе колеса не смогут вращаться и двигатель перестанет работать.
В зависимости от числа оборотов вала двигателя и от открытия дроссельной заслонки крутящий момент двигателя изменяется. Почти всегда можно сочетать различные значения момента двигателя и передаточных чисел в коробке передач таким образом, чтобы, как сказано выше, тяговая сила была меньше силы сцепления и не меньше силы сопротивления движению.
Для небыстрого движения по асфальту всем автомобилям требуется значительно меньшая сила тяги, чем они могут развить даже на высшей передаче, поэтому ехать нужно с прикрытой дроссельной заслонкой. Как говорят, автомобили в этом случае обладают большим запасом тяги.
На проселочной дороге дело несколько меняется. Легковые автомобили, если нет ухабов, могут ехать на высшей передаче, но при сильном нажатии на педаль подачи топлива. У грузовых автомобилей (с полной нагрузкой) разница между максимальной тяговой силой на высшей передаче и силой сопротивления качению на проселке очень невелика. Поэтому незначительное отклонение от скорости, соответствующей наибольшему крутящему моменту двигателя (40—32 км/час), вызывает необходимость включения следующей передачи (вспомним, что при уменьшении числа оборотов или подачи топлива крутящий момент уменьшается, а вместе с ним и тяговая сила).
Для движения легковых автомобилей по песку тяговой силы на прямой передаче вообще недостаточно, а на второй передаче движение возможно лишь с определенной скоростью (32—26 км/час) и при полной подаче топлива; практически нужно ехать на первой передаче. Автомобиль ГАЗ-51 способен идти по песку только на первой передаче, а ЗИЛ-150 — только на первой и второй передачах. Следует оговориться, что есть такие пески, по которым обычный автомобиль и на первой передаче проехать не может.
Сила сцепления на сухом асфальте больше тяговой силы на любой передаче у любого из рассматриваемых автомобилей. Но на мокром или обледенелом асфальте движение на пониженных передачах и трогание с места без буксования возможно на легковых автомобилях только при неполном открытии дроссельной заслонки, т. е. со сравнительно небольшим крутящим моментом двигателя; для грузовых автомобилей это относится к первой и второй передачам.
Изменение направления движения любого тела можно достичь только приложением к нему внешних сил. При движении транспортного средства на него действует множество сил, при этом шины выполняют важные функции: каждое изменение направления или скорости движения транспортного средства вызывает появление в шине действующих сил.
Шина – это элемент связи между транспортным средством и проезжей частью. Именно в месте контакта шины с дорогой решается главный вопрос безопасности движения транспортного средства. Через шину передаются все силы и моменты, возникающие при разгоне и торможении автомобиля, при изменении направления его движения.
Шина воспринимает действия боковых сил, удерживая автомобиль на выбранной водителем траектории движения. Поэтому физические условия сцепления шины с поверхностью дороги определяют границы динамических нагрузок, действующих на транспортное средство.
Рис. 01: Посадка бескамерной шины на ободе;
1. Обод; 2. Подкат (Хамп) на поверхности посадки борта шины; 3. Борт обода; 4. Каркас шины; 5. воздухонепроницаемый внутренний слой; 6. Брекерный пояс; 7. Протектор; 8. Боковина шины; 9. Борт шины; 10. Сердечник борта; 11. Вентиль
Решающие критерии оценки:
-Обеспечение устойчивого прямолинейного движения при действии на автомобиль боковых сил
-Обеспечение устойчивого движения на поворотах Обеспечение сцепления на различных поверхностях проезжей части Обеспечение сцепления с дорогой при различных погодных условиях
-Обеспечение хорошей управляемости автомобиля Обеспечение комфортных условий движения (гашение колебаний, обеспечение плавности хода , минимальная шумность качения)
-Прочность, износостойкость, высокий срок службы
-Невысокая цена
-Минимальный риск повреждения шины при её пробуксовке
Проскальзывание шины
Проскальзывание шины или её буксование происходит из разницы между теоретической скоростью движения, обусловленной вращением колеса, и действительной скоростью движения, обеспечиваемой силами сцепления колеса с дорогой
Рис.02: Пример движения шины без проскальзывания (а) и с проскальзыванием (b);
Посредством приведенного примера можно пояснить это утверждение: пусть длина окружности по внешней беговой поверхности шины легкового автомобиля составляет около 1,5 м. Если при движении автомобиля колесо поворачивается вокруг оси вращения 10 раз, то пройденный автомобилем путь должен составить 15 м. Если же происходит проскальзывание шины, то пройденный автомобилем путь становится короче Закон инерции Каждое физическое тело стремится либо сохранять состояние покоя, либо сохранять состояние прямолинейного движения.
Чтобы вывести физическое тело из состояния покоя или отклонить его от прямолинейного движения к телу должна быть приложена внешняя сила. Изменение скорости движения, как во время разгона автомобиля, так и при торможении потребует соответствующего приложения внешних сил. Если водитель пытается тормозить на повороте на покрытой льдом поверхности дороги, автомобиль будет стремиться двигаться прямо без явно выраженного стремления изменить скорость движения, при этом реакция на поворот рулевого колеса будет слишком вялой.
На обледенелой поверхности через колеса автомобиля может передаваться только маленькие силы торможения и боковые усилия, поэтому вождение автомобиля на скользкой дороге является непростой задачей. Моменты сил При вращательном движении на тело действуют или оказывают влияние моменты сил.
В режиме движения колеса вращаются вокруг своих осей, преодолевая моменты инерции покоя. Момент инерции колес возрастает с увеличением скорости его вращения и вместе с тем, скоростью движения автомобиля. Если транспортное средство находится одной стороной на скользкой проезжей части (например, обледенелой поверхности дороги), а другая сторона на дороге с нормальным коэффициентом сцепления (неоднородный коэффициент сцепления μ), то при торможении автомобиль получает вращательное движение вокруг вертикальной оси. Это вращательное движение называют моментом рысканья
Рис. 03: Возникновение момента рысканья при торможении или разгоне на участке дороги с различным коэффициентом продольного сцепления μHF;
Распределение сил наряду с весом тела (силой тяжести) на автомобиль действуют различные внешние силы, величина и направление которых зависит от режима и направления движения транспортно-го средства. При этом речь идет о следующих параметрах:
Силах, действующих в продольном направлении, (например, силе тяги, силе сопротивления воздуха или силе трения качения)
Силах, действующих в поперечном направлении, (например, усилие, прилагаемое к управляемым колесам автомобиля, центробежной силе при движении на повороте, или силе действия бокового ветре или силе, возникающей при движении на косо-горе).
Эти силы принято обозначать, как силы бокового увода автомобиля. Силы, действующие в продольном или поперечном направлении, передаются на шины, и через них на проезжую часть дороги в вертикальном или горизонтальном направлении, вызывая деформацию шины в про-дольном или поперечном направлении.
Рис. 04: Горизонтальная проекция угла бокового увода α и влияние бокового усилия Fs; vn = Скорость в направлении бокового увода vx = Скорость в продольном направлении Fs, Fy = Боковые усилия α = Угол бокового увода
Эти силы передаются на корпус авто-мобиля через:
шасси автомобиля (так называемые ветровые силы)
органы управления (рулевая сила)
двигатель и агрегаты трансмиссии (движущая сила)
тормозные механизмы (тормозные силы)
В противоположном направлении эти силы действуют со стороны дорожной поверхности на шины, передаваясь затем на транспортное средство. Это связано с тем, что: любая сила вызывает противодействие
Рис. 05: Скорость колеса vx в продоль-ном направлении, тормозная сила FB и тормозной момент MB; vx = Скорость колеса в продольном направлении FN = Вертикальная сила (нормальная реакция опоры) FB = Тормозная сила
MB = Тормозной момент
Для обеспечения движения тяговая сила, передаваемая на колесо посредством крутящего момента, создаваемого двигателем, должна превосходить все внешние силы сопротивления (продольные и поперечные силы), которые возникают, например, при движении автомобиля по дороге с поперечным уклоном.
Для оценки динамики движения, а также устойчивости движения транс-портного средства должны быть известны силы, действующие между шиной и дорожным полотном в так называемом пятне контакта шины с дорогой. Внешние силы, действующие в площадке соприкосновения шины с дорогой, передаются через колесо на транспортное средство. С увеличением практики вождения водитель все лучше и лучше учится реагировать на эти силы.
По мере приобретения опыта вождения, у водителя все отчетливее возникают ощущения сил действующих в пятне контакта шины с дорогой. Величина и направление внешних сил зависит от интенсивности разгона и торможения автомобиля, при действии боковых сил от ветра, или при движении по дороге с поперечным уклоном. Особняком стоит опыт вождения по скользким дорогам, когда чрезмерное воздействие на органы управления могут сорвать шины автомобиля в скольжение.
Но самое главное это то, что водитель обучается правильным и дозированным действиям органами управления, которые препятствуют возникновению неуправляемого движения. Неумелые действия водителя при высокой мощности двигателя особенно опасны, так как силы, действующие в пятне контакта, могут превысить допустимый предел по сцеплению, что может вызвать занос автомобиля или полную потерю управляемости, и повышает износ шин.
Силы в пятне контакта шины с дорогой Только строго дозированные силы в пятне контакта колеса с дорогой способны обеспечить соответствующие желанию водителя скорость и изменение направления движения. Суммарная сила в пятне контакта шины с дорогой складывается из следующих составляющих её сил:
Касательная сила, направленная по окружности шины Касательная сила Fμ возникает в результате передачи крутящего момента приводным механизмом или при торможении автомобиля. Она действует в продольном направлении на поверхность дороги (продольная сила) и дает возможность водителю произвести разгон при воздействии на педаль газа или обеспечить замедление движения при его воздействии на педаль тормоза.
Вертикальная сила (нормальная реакция опоры) Вертикальная сила между шиной и поверхностью дороги обозначается как радиально направленная сила, или как нормальная реакция опоры FN. Вертикальная сила между шиной и поверхностью дороги присутствует всегда, как при движении транспортного средства, так и при его неподвижности. Вертикальная сила, действующая на опорную поверхность, определяется частью веса автомобиля, приходящегося на это колесо, плюс дополнительная вертикальная сила, возникающая в результате перераспределения веса при разгоне, торможении или движении в повороте.
Вертикальная сила увеличивается или уменьшается при движении автомобиля на подъем или под уклон, при этом увеличение или уменьшение вертикальной силы зависит от направления движения автомобиля. Нормальная реакция опоры определяется при неподвижном положении транспортного средства, установленного на горизонтальной поверхности.
Дополнительные силы могут увеличить или уменьшить значение вертикальной силы между колесом и поверхностью дороги (нормальной реакции опоры). Так при движении не повороте дополнительная сила уменьшает вертикальную составляющую на внутренних к центру поворота колесах и увеличивает вертикальную составляющую на колесах внешней стороны транспортного средства.
Площадка контакта шины с поверхностью дороги деформируется прилагаемой к колесу вертикальной силой. Так как боковины шины подвергаются соответствующей деформации, вертикальная сила не может распределяться равномерно по всей площади пятна контакта, а возникает трапецевидное распределение давления шины на опорную поверхность. Боковины шины принимают на себя внешние силы, и шина деформируется в зависимости от величины и направления внешней нагрузки.
Боковая сила
Боковые силы оказывают действие на колесо, например, при действии бокового ветра, или при движении автомобиля на повороте. Управляемые колеса движущегося автомобиля при их отклонении от прямолинейного положения также подвергаются действию боковой силы. Боковые силы вызывает измерение направления движения транспортного средства.
Рис. 07: Деформация шины, вызванная радиальной силой FN, направленная перпендикулярно к плоскости обода, в сочетании с боковой силой Fs, приложенной в
поперечном к шине направлении (вид спереди);
FN = Вертикальная сила (нормальная реакция опоры)
Fs = Боковая сила
Тормозной момент
При торможении фрикционные накладки тормозной колодки прижимаются к поверхности тормозного диска или тормозного барабана. При этом возникают силы трения, величина которых зависит от силы нажатия водителем на тормозную педаль.
Произведение силы трения на плечо приложения этой силы в итоге дают тормозной момент MB.
Эффективный момент, возникающий в процессе торможения, действует в пятне контакта колеса с дорогой.
Сила трения и коэффициент сцепления
Тормозная сила FB возникает между шиной и поверхностью дороги в результате приложения к колесу тормозного момента.Величину приложенной к поверхности дороги тормозной силы, обозначают как силу трения FR. Сила трения FR зависит от вертикальной силы FN и выражается следующим соотношением: FR = μHF*FN
Фактор μHF называется коэффициентом сцепления шины с поверхностью дороги или, для лучшего восприятия, коэффициентом силы трения.Он характеризует свойства различных соприкасающихся поверхностей, и, в нашем случае, зависит от состояния покрытия проезжей части дороги и особенностей конструкции шины.Коэффициент сцепления является мерой прилагаемой к поверхности дороги тормозной силы.
Он зависит:
от состояния проезжей части
от состояния шин
от скорости движения
от погодных условий
От величины коэффициента сцепления зависит, какой тормозной момент может быть приложен в данных дорожных условиях и режиме движения.Для автомобильной шины максимальное значение коэффициента сцепления достигается при движении по сухой и чистой проезжей части, а самое низкое значение – на подтаявшем льду.
Наличие влаги или грязи на поверхности дороги снижает коэффициент сцепления.Кроме того, на влажной поверхности дороги коэффициент сцепления сильно зависит от скорости движения транспортного средства.
Чрезмерное усилие, прилагаемое к тормозной педали при высокой скорости движения и соответствующих дорожных условиях, может привести к блокировке колес, если сила трения между шиной и проезжей части, обусловленная коэффициентом сцепления, окажется меньше тормозной силы.
Если колесо автомобиля заблокировано, то оно оказывается не способным передавать никакие боковые силы, поэтому транспортное средство становится неуправляемым
На автомобиль, независимо от того, движется он или неподвижен, действует сила тяжести (вес), направленная отвесно вниз.
Сила тяжести прижимает колеса автомобиля к дороге. Равнодействующая этой силы, размещена в центре тяжести. Распределение веса автомобиля по осям зависит от расположения центра тяжести. Чем ближе к одной из осей расположен центр тяжести, тем больше будет нагрузка на эту ось. На легковых автомобилях нагрузка на оси распределяется примерно поровну.
Действие силы тяжести на автомобиль
Большое значение на устойчивость и управляемость автомобиля имеет расположение центра тяжести не только в отношении продольной оси, но и по высоте. Чем выше центр тяжести, тем менее устойчивым будет автомобиль. Если автомобиль находится на горизонтальной поверхности, то сила тяжести направлена отвесно вниз. На наклонной поверхности она раскладывается на две силы (см. рисунок): одна из них прижимает колеса к поверхности дороги, а другая стремится опрокинуть автомобиль. Чем выше центр тяжести и чем больше угол наклона автомобиля, тем скорее нарушится устойчивость и автомобиль может опрокинуться.
Во время движения, кроме силы тяжести, на автомобиль действует и ряд других сил, на преодоление которых затрачивается мощность двигателя.
Схема сил, действующих на автомобиль во время движения
На рисунке показана схема сил, действующих на автомобиль во время движения. К ним относятся:
- сила сопротивления качению, затрачиваемая на деформирование шины и дороги, на трение шины о дорогу, трение в подшипниках ведущих колес и др.;
- сила сопротивления подъему (на рисунке не показана), зависящая от веса автомобиля и угла подъема;
- сила сопротивления воздуха, величина которой зависит от формы (обтекаемости) автомобиля, относительной скорости его движения и плотности воздуха;
- центробежная сила, возникающая во время движения автомобиля на повороте и направленная в противоположную от поворота сторону;
- сила инерции движения, величина которой состоит из силы, необходимой для ускорения массы автомобиля в его поступательном движении, и силы, необходимой для углового ускорения вращающихся частей автомобиля.
Движение автомобиля возможно только при условии, что его колеса будут иметь достаточное сцепление с поверхностью дороги.
Если сила сцепления будет недостаточной (меньше величины силы тяги на ведущих колесах), то колеса пробуксовывают.
Сила сцепления с дорогой зависит от веса, приходящегося на колесо, от состояния покрытия дороги, давления воздуха в шинах и рисунка протектора.
Для определения влияния состояния дороги на силу сцепления служит коэффициент сцепления, который определяют делением силы сцепления ведущих колес автомобиля на вес автомобиля, приходящийся на эти колеса.
Коэффициент сцепления с дорогой в зависимости от покрытия
Коэффициент сцепления зависит от вида покрытия дороги и от его состояния (наличия влаги, грязи, снега, льда); величина его приведена в таблице (см. рисунок).
На дорогах с асфальтобетонным покрытием коэффициент сцепления резко уменьшается, если на поверхности имеется влажная грязь и пыль. В этом случае грязь образует пленку, резко уменьшающую коэффициент сцепления.
На дорогах с асфальтобетонным покрытием в жаркую погоду появляется на поверхности маслянистая пленка из выступающего битума, снижающая коэффициент сцепления.
Уменьшение коэффициента сцепления колес с дорогой наблюдается также при увеличении скорости движения. Так, при возрастании скорости движения на сухой дороге с асфальтобетонным покрытием с 30 до 60 км/ч коэффициент сцепления уменьшается на 0,15.
Разгон, ускорение, накат
Мощность двигателя затрачивается на приведение во вращение ведущих колес автомобиля и преодоление сил трения в механизмах трансмиссии.
Если величина усилия, с которым вращаются ведущие колеса, создавая тяговую силу, будет больше чем суммарная сила сопротивления движению, то автомобиль будет двигаться с ускорением, т.е. с разгоном.
Ускорением называется прирост скорости за единицу времени. Если тяговое усилие равно силам сопротивления движению, то автомобиль будет двигаться без ускорения с равномерной скоростью. Чем выше максимальная мощность двигателя и меньше величина суммарных сил сопротивления, тем быстрее автомобиль достигнет заданной скорости.
Кроме того, на величину ускорения влияет вес автомобиля, передаточное число коробки передач, главной передачи, количество передач и обтекаемость автомобиля.
Во время движения накапливается определенный запас кинетической энергии, и автомобиль приобретает инерцию. Благодаря инерции автомобиль может двигаться некоторое время с отключенным двигателем – накатом. Движение накатом используют для экономии топлива.
Торможение автомобиля
Торможение автомобиля имеет большое значение для безопасности движения и зависит от его тормозных качеств. Чем лучше и надежнее тормоза, тем быстрее можно остановить движущийся автомобиль и тем с большей скоростью можно двигаться, а следовательно, и больше будет его средняя скорость.
Во время движения автомобиля накопленная кинетическая энергия поглощается при торможении. Торможению помогают силы сопротивления воздуха, сопротивления качению и сопротивления подъему. На уклоне силы сопротивления подъему отсутствуют, а к инерции автомобиля добавляется составляющая сила тяжести, которая затрудняет торможение.
При торможении между колесами и дорогой возникает тормозная сила, противоположная направлению силы тяги. Торможение зависит от соотношения между тормозной силой и силой сцепления. Если сила сцепления колес с дорогой будет больше тормозной силы, то автомобиль затормаживается. Если тормозная сила будет больше силы сцепления, то при заторможенных колесах произойдет их скольжение относительно дороги. В первом случае при торможении колеса катятся, постепенно замедляя вращение, а кинетическая энергия автомобиля превращается в тепловую энергию, нагревающую тормозные колодки и диски (барабаны). Во втором случае колеса перестают вращаться и будут скользить по дороге, поэтому большая часть кинетической энергии будет превращаться в тепло трения шин о дорогу. Торможение с остановившимися колесами ухудшает управляемость автомобиля, особенно на скользкой дороге, и приводит к ускоренному износу шин.
Наибольшую тормозную силу можно получить только тогда, когда тормозные моменты на колесах будут пропорциональны нагрузкам, приходящимся на них. Если такая пропорциональность не будет соблюдена, то тормозная сила на одном из колес не будет полностью использована.
Эффективность торможения оценивается по тормозному пути и величине замедления.
Тормозной путь – это расстояние, которое проходит автомобиль от начала торможения до полной остановки. Замедление автомобиля – это величина, на которую уменьшается скорость автомобиля за единицу времени.
Управляемость автомобиля
Под управляемостью автомобиля понимают его способность изменять направление движения.
Стабилизирующее действие углов продольного и поперечного наклона оси поворота колеса
Во время движения автомобиля по прямой очень важно, чтобы управляемые колеса не поворачивались произвольно и водителю не нужно было бы затрачивать усилия для удержания колес в нужном направлении. На автомобиле предусмотрена стабилизация управляемых колес в положении движения в прямом направлении, которая достигается продольным углом наклона оси поворота и углом между плоскостью вращения колеса и вертикалью. Благодаря продольному наклону колесо устанавливается так, что его точка опоры по отношению оси поворота снесена назад на величину а и его работа подобна ролику (см. рисунок).
При поперечном наклоне повернуть колесо всегда труднее, чем вернуть его в исходное положение – движения по прямой. Это объясняется тем, что при повороте колеса передняя часть автомобиля приподнимается на величину б (водитель прилагает сравнительно большее усилие к рулевому колесу).
Для возвращения управляемых колес в положение, соответствующее движению по прямой, вес автомобиля помогает поворачиванию колес и водитель прикладывает к рулевому колесу небольшое усилие.
Схема бокового увода колеса
На автомобилях, особенно у тех, где давление воздуха в шинах невелико, возникает боковой увод. Боковой увод возникает в основном под действием поперечной силы, вызывающей боковой прогиб шины; при этом колеса катятся не по прямой, а смещаются в сторону под действием поперечной силы (см. рисунок).
Оба колеса передней оси имеют одинаковый угол увода. При уводе колес меняется радиус поворота, который увеличивается, уменьшая поворачиваемость автомобиля, а устойчивость движения при этом не изменяется.
При уводе колес задней оси радиус поворота уменьшается, особенно это заметно, если угол увода задних колес больше, чем у передних, стабильность движения нарушается, автомобиль начинает «рыскать» и водителю все время приходится подправлять направление движения. Для уменьшения влияния увода на управляемость автомобиля давление воздуха в шинах передних колес должно быть несколько меньше, чем у задних. Увод колес будет тем больше, чем большей будет боковая сила, действующая на автомобиль, например, на крутом повороте, где возникают большие центробежные силы.
Занос автомобиля
Заносом называется боковое скольжение задних колес при продолжающемся поступательном движении автомобиля. Иногда занос может привести к повороту автомобиля вокруг своей вертикальной оси.
Занос может возникать в результате ряда причин. Если резко повернуть управляемые колеса, то может оказаться, что инерционные силы станут больше, чем сила сцепления колес с дорогой, особенно часто это случается на скользких дорогах.
Схема заноса автомобиля на повороте
При неодинаковых тяговых или тормозных силах, приложенных на колеса правой и левой сторон, действующих в продольном направлении, возникает поворачивающий момент, приводящий к заносу. Непосредственной причиной заноса при торможении являются неодинаковые тормозные силы на колесах одной оси, неодинаковое сцепление колес правой или левой стороны с дорогой или неправильное размещение груза относительно продольной оси автомобиля. Причиной заноса автомобиля на повороте может быть также торможение его, так как при этом к поперечной силе добавляется продольная сила и их сумма может превысить силу сцепления, препятствующую заносу (см. рисунок).
Чтобы предотвратить начавшийся занос автомобиля, необходимо: прекратить торможение, не выключая сцепление (на автомобилях с МКПП); повернуть колеса в сторону заноса.
Эти приемы выполняют сразу же, как только начался занос. После прекращения заноса нужно выровнять колеса, чтобы занос не начался в другом направлении.
Чаще всего занос получается при резком торможении на мокрой или обледенелой дороге, особенно быстро нарастает занос на большой скорости, поэтому при скользкой или обледенелой дороге и на поворотах нужно уменьшать скорость, не применяя торможение.
Проходимость автомобиля
Проходимостью автомобиля называется его способность двигаться по плохим дорогам и в условиях бездорожья, а также преодолевать различные препятствия, встречающиеся на пути. Проходимость определяется:
- способностью преодолевать сопротивление качению, используя тяговые силы на колесах;
- габаритными размерами транспортного средства;
- способностью автомобиля преодолевать препятствия, встречающиеся на дороге.
Основным фактором, характеризующим проходимость, является соотношение между наибольшей тяговой силой, используемой на ведущих колесах, и силой сопротивления движению. В большинстве случаев проходимость автомобиля ограничивается недостаточной силой сцепления колес с дорогой и в связи с этим невозможностью использовать максимальную тяговую силу. Для оценки проходимости автомобиля по грунту пользуются коэффициентом сцепного веса, определяемым делением веса, приходящегося на ведущие колеса, на общий вес автомобиля. Наибольшую проходимость имеют автомобили, у которых все колеса являются ведущими. В случае применения прицепов, увеличивающих общий вес, но не изменяющих сцепной вес, проходимость резко снижается.
На величину сцепления ведущих колес с дорогой значительное влияние оказывает удельное давление шин на дорогу и рисунок протектора. Удельное давление определяется давлением веса, приходящегося на колесо, на площадь отпечатка шины. На рыхлых грунтах проходимость автомобиля будет лучше, если удельное давление будет меньше. На твердых и скользких дорогах проходимость улучшается при большем удельном давлении. Шина с крупным рисунком протектора на мягких грунтах будет иметь отпечаток большей площади и имеет меньшее удельное давление, а на твердых грунтах отпечаток этой шины будет меньшей площади и удельное давление увеличивается.
Развиваемый двигателем автомобиля крутящий момент Ме передается на ведущие колеса. В передаче крутящего момента от двигателя к ведущим колесам участвуют сцепление, коробка передач, карданная передача, главная передача, дифференциал и полуоси. С полуосей ведущего моста крутящий момент передается на ведущие колеса. Крутящий момент Мк на ведущих колесах зависит от крутящего момента Ме двигателя, передаточных чисел в трансмиссии и механического к. п. д. трансмиссии n м
где iK — передаточное число коробки передач; i 0 — передаточное число главной передачи. Крутящий момент Мк (рис. 2) вызывает в точке контакта колеса с дорогой силу трения Хк (сила противодействия дороги вращению ведущих колес), называемую касательной или тангенциальной реакцией.
Рис. 2. Схема сил, действующих на ведущее колесо автомобиля
Сила трения — сумма касательных реакций Хк обоих ведущих колес — равна той тяговой (или толкающей) силе, которая передается раме автомобиля, заставляя его двигаться вперед.
Тяговая сила Рк равна подведенному к ведущим колесам крутящему моменту Мк, деленному на радиус качения колеса r к :
или, учитывая выражение (5),
Кроме момента Мк и силы Рк (реакции Хк), на ведущее колесо автомобиля действует сила тяжести G k , приходящаяся на колесо и вызывающая со стороны дороги вертикальную (нормальную) реакцию Zk.
При повороте автомобиля, при движении его по дороге с поперечным уклоном и действии на него бокового ветра колесо воспринимает также поперечную силу Y , в результате чего возникает боковая реакция Y k дороги.
Крутящий момент двигателя, подведенный через механизмы трансмиссии к ведущим колесам автомобиля , вызывает их вращение. В месте соприкосновения колеса с дорогой от крутящего момента возникает окружная сила , а со стороны дороги — касательная реакция (см. рис. 72), равная по величине окружной силе, но направленная в противоположную сторону. Суммарная касательная реакция ведущих колес передается на задний мост и вызывает движение всего автомобиля, поэтому называется тяговой силой.
Величина тяговой силы тем больше, чем больше крутящий момент двигателя и передаточные числа коробки передач и главной передачи. Но величина тяговой силы не может превысить силу тепления ведущих колес с дорогой.
Если тяговая сила превысит силу сцепления, то ведущие колеса будут пробуксовывать.
Сила сцепления равна произведению коэффициента сцепления на сцепной вес. Для тягового автомобиля сцепной вес равен чесу, приходящемуся на ведущие колеса автомобиля. При торможении сцепной вес автомобиля равен его весу, приходящемуся на затормаживаемые колеса.
Коэффициент сцепления зависит от типа и состояния покрытия дороги, от конструкции и состояния шины (давление воздуха, рисунок протектора), от нагрузки и скорости движения автомобиля.
Величина коэффициента сцепления снижается при мокрой и влажной поверхностях дороги, особенно с увеличением скорости движения и при изношенных шинах.
Например, для сухой дороги с асфальтобетонным покрытием коэффициент сцепления равен 0,7—0,8, а для мокрой — 0,35 — 0,45. При обледенелой дороге коэффициент сцепления снижается до 0,1—0,2.
Сила тяжести , или вес, автомобиля приложена в центре тяжести. У современных легковых автомобилей центр тяжести располагается на высоте 0,45—0,6 м от поверхности дороги и примерно посередине автомобиля. Поэтому полный вес легкового автомобиля распределяется по его осям примерно поровну, т. е. сцепной вес равен 50% полного веса. Высота расположения центра тяжести у грузовых автомобилей 0,65—1,0 м. У полностью груженых грузовых автомобилей сцепной вес составляет 60— 75% полного веса. У автомобилей со всеми ведущими осями сцепной вес равен полному весу автомобиля.
При движении автомобиля указанные соотношения изменяются, так как происходит продольное перераспределение полного веса автомобиля между его осями: при передаче ведущими колесами тяговой силы больше нагружаются задние колеса, а при торможении автомобиля — передние колеса.
Кроме того, перераспределение полного веса автомобиля между передними и задним и колесами имеет место при движении на подъем и под уклон.
Перераспределение нагрузки, изменяя величину сцепного веса, влияет на сцепление колес с дорогой и устойчивость автомобиля.
Силы сопротивления движению автомобиля
Тяговая сила на ведущих колесах обеспечивает преодоление внешних сил, возникающих при движении автомобиля.
При равномерном движении автомобиля по горизонтальной дороге такими силами являются: сила сопротивления качению и сила сопротивления воздуха.
При движении автомобиля в гору ( рис. 138 ) возникает сила сопротивления подъему, а при разгоне автомобиля — сила сопротивления разгону (сила инерции).
Рис. 138. Схема сил, действующих на автомобиль при равномерном движении на подъеме
Сила сопротивления качению возникает вследствие деформации шин и поверхности дороги. Она равна произведению полного веса автомобиля на коэффициент сопротивления качению.
Коэффициент сопротивления качению зависит от типа и состояния покрытия дороги, конструкции шин, их износа и давления воздуха в них, скорости движения автомобиля.
Например, для дороги с асфальтобетонным покрытием коэффициент сопротивления качению равен 0,014—0,020, для сухой грунтовой дороги — 0,025—0,035.
На твердых дорожных покрытиях коэффициент сопротивления качению резко увеличивается при снижении давления воздуха в шинах.
Коэффициент сопротивления качению возрастает с ростом скорости движения, а также с увеличением как крутящего, так и тормозного момента.
Сила сопротивления воздуха зависит от коэффициента сопротивления воздуха, лобовой площади и скорости движения автомобиля.
Коэффициент сопротивления воздуха определяется типом автомобиля и формой его кузова, а лобовая площадь — колеей колес (расстоянием между центрами шин) и высотой автомобиля.
Сила сопротивления воздуха возрастает пропорционально квадрату скорости движения автомобиля (если скорость возрастает в 2 раза, сопротивление воздуха увеличивается в 4 раза).
Сила сопротивления воздуха возрастает пропорционально квадрату скорости движения автомобиля (если скорость возрастает в 2 раза, сопротивление воздуха увеличивается в 4 раза).
Сила сопротивления подъему тем больше, чем больше вес автомобиля и крутизна подъема дороги, которая оценивается углом подъема в градусах пли величиной уклона, выраженной в процентах. При движении автомобиля под уклон сила сопротивления подъему, наоборот, ускоряет движение автомобиля.
На автомобильных дорогах с асфальтобетонным покрытием продольный уклон обычно не превышает 6%. Если коэффициент сопротивления качению принять равным 0,02, то общее сопротивление дороги составит 8% от полного веса автомобиля.
Сила сопротивления разгону зависит от массы автомобиля, его ускорения (прироста скорости в единицу времени) и массы вращающихся частей (маховик, колеса), на ускорение которых также затрачивается тяговая сила.
При разгоне автомобиля сила сопротивления разгону направлена в сторону, обратную движению. При торможении автомобиля и замедлении его движения сила инерции направлена в сторону движения автомобиля.
Читайте также: