Как сделать прерыватель для катушки тесла
Материал посвящён, как любителям мощных искровых разрядов, так и искателям свободной энергии, которые используют для своих экспериментов трансформатор Тесла (ТТ). А рассматривать мы будем сердце этого трансформатора — электронный прерыватель, с помощью которого и достигаются необходимые напряжения и мощности. Такой прерыватель впервые был описан Теслой в патенте №787,412 и работал при помощи двух механических барабанов. С момента его опубликования прошло более 100 лет; за это время изменились технологии и весь технологический уклад. Поэтому мы перейдём от механики к современной электронике, применим последние схемотехнические решения в виде ФАПЧ, и посмотрим, что из этого получится :)
Устройство выполнено на четырёх цифровых микросхемах серии 74HCXX, двух драйверах выходного сигнала и двух стабилизаторах напряжения. Прерыватель может работать с различными ТТ в рабочем диапазоне: 250 кГц .. 1 МГц (для других резонансных частот нужно будет изменить некоторые частото и времязадающие элементы). ФАПЧ отслеживает все изменения параметров ТТ и автоматически под них подстраивает прерыватель. Схема вырабатывает пачки импульсов и синхронизированный с ними низкочатотный сигнал (для второго ТТ), который может сдвигаться относительно пачки на любую фазу. Кроме того, в пачке регулируется число импульсов и их скважность.
- DD1 — 74HC7046
- DD2, DD3 — 74HC393 (1564ИЕ19)
- DD4 — 74HC74 (1564ТМ2)
- DA1 — LM7805 (КР142ЕН5А)
- DA2 — LM7812 (КР142ЕН8Б)
- DA3 — IR2109 (IR2104, IR2108)
- DA4 — TC4420
- VD1, VD2, VD16 — UF4007 (UF4006)
- VD3 — любой яркий светодиод на 1.5 .. 2V
- VD4-VD15 — 1N4148 (любой маломощный ультрафаст)
- SA2 — DS-06B, SWD1-6 (любой DIP-переключатель на 6 секций)
- SA3 — DS-04B, SWD1-4 (любой DIP-переключатель на 4 секции)
Счётчик DD3 отвечает за число импульсов в пачке. С помощью различных комбинаций переключателя SA3 мы можем получить от 1-го до 15-ти импульсов в пачке. Для экспериментов может быть интересен режим, когда все переключатели разомкнуты. В этом случае, на выходе X2 импульсы будут отсутствовать. Времязадающая цепочка C8R11R12 совместно с триггером DD4.2 задаёт скважность импульсов в пачке, а его выход подключён к драйверу выходного сигнала DA4. На его выходе (X2) мы получаем пачки импульсов, с частотой внутри пачки — F1 и частотой между пачками — F2.
Триггер DD4.1 синхронизирует работу этих счётчиков сбрасывая запрет на поступление импульсов от ГУН к DD3 в самом начале пачки.
За исключением DD1 все цифровые микросхемы могут быть заменены на аналогичные серии КР1564 (см. выше). Вместо 74HC7046 можно применить 74HC4046, но тогда в схеме будет отсутствовать детектор захвата фазы. В этом случае цепочку индикатора детектора — R7, VD3, и сопровождающий конденсатор C6 нужно будет убрать. Драйвер выходного сигнала на TC4420 можно заменить на TC4429, но тогда вход этого драйвера (2-ю ножку), через резистор R14 нужно будет подсоеденить к инверсному выходу триггера DD4.2 (к ножке 8). Драйвер полумоста IR2109 меняется на аналогичные IR2104 или IR2108. В этом случае 3-ю ножку этих микросхем нужно соединить с +12V.
На схеме не показаны выводы питания микросхем. Они стандартные. Для 16-ти выводных корпусов: 8 — минус питания (общий), 16 — плюс, для 14-ти выводных: 7 — минус питания (общий), 14 — плюс. Все минусы нужно соединить и подключить к общему проводу и к Gnd стабилизатора DA1. Все плюсовые выводы — к его Out (или +5V). Также, 5 вывод микросхемы DD1 (на схеме не показан) необходимо соединить с минусом питания. Аналогично, 4 и 10 выводы микросхемы DD4 нужно присоединить к плюсу.
Подключите две ёмкости по 0.1 мкФ прямо на выводы драйвера DA4: 1-4 и 8-5. Такую же ёмкость подключите и к выводам питания DD1.
Выводы частотозадающих цепочек желательно сделать покороче. Это касается выводов 6, 7, 11 и 12 микросхемы DD1.
Вариант печатной платы приведен ниже:
Вариантов подключения ТТ может быть очень много, поэтому ниже приведём пример лишь одного из них. В качестве ключа VT1 хорошо работают IRFP360, IRFP460, FCH47N60. Для полумоста VT2-VT3 подойдут и более низковольтные, например, IRFP260. Защитный диод VD5 — любой мощный высоковольтный ультрафаст, например, FR607. А вот к диоду VD6, который служит для увеличения добротности ТТ1, нужно подойти более тщательно. Хорошо себя зарекомендовали HFA30PB60, но также хорошо работают несколько параллельно соединённых SF56.
Особое внимание стоит обратить на токовый трансформатор Tr, который отвечает за синхронизацию ФАПЧ. Для этого он должен преобразовать пучность тока, образующуюся на нижнем конце ТТ1, в напряжение, которое затем подаётся на вход X1 прерывателя.
Мотается трансформатор в произвольном порядке; здесь важен принцип — получить максимальное напряжение на его вторичной обмотке **. Он представляет собой ферритовое кольцо, на которое нужно намотать как можно больше витков, но так, чтобы внутри него осталось место для провода с ТТ1. Это кольцо должно просто надеваться на провод идущий с ТТ1 на землю. Например, у меня хорошо работало кольцо диаметром 10мм, высотой 8мм, с числом витков — 50. Марка феррита здесь не имеет значения.
Других данных, например, по намотке ТТ, мы здесь приводить не будем, т.к. в зависимости от задач они могут иметь совершенно разные значения.
Описанный прерыватель хорошо подходит для искателей свободной энергии. Но применение схемы может быть и другим. Например, для так называмых «поющих Тесел» используется только первый ТТ, а аудиовход можно подать на 9-ю ножку DD1 через последовательно соединённые резистор 10..20кОм и конденсатор 100n.
Ещё один вариант управления двумя трансформаторами можно посмотреть здесь. В этой схеме, в качестве ТТ1, можно применить низкочастотный трансформатор, например, ТВС.
Нельзя сказать, что изготовление катушки Тесла своими руками – простая задача. Необходимо знать ее устройство, принцип действия. Подбор материалов также важен, как и правильность расчетов. Однако, даже не имея образования инженера-электротехника, собрать прибор можно, если действовать согласно инструкции, приведенной ниже. Перед началом работ ознакомьтесь с теоретической частью, чтобы понимать, что и зачем вы делаете. В остальном процедура не составит труда.
Описание прибора
Предполагалось, что если разместить два устройства на удалении друг от друга, электричество от первой катушки можно передать на другую. Единственное условие – обе должны иметь идентичные технические параметры. Более того, амбициозность Тесла позволяла ему надеяться, что таким образом можно создать вечный двигатель. И если бы у него все получилось, люди смогли бы отказаться от использования АЭС, ТЭС и ГЭС, а проблема экологии разрешилась сама собой. Тем не менее, продолжения разработка не получила. Причина тому до сих пор неизвестна.
Принцип работы
Большинство ошибок, допускаемых любителями при сборке, связано с непониманием принципа работы устройства. Стараясь имитировать, считая прибор простым трансформатором, они забывают о необходимости ясно представлять, как на самом деле она должна действовать КТ. Предусмотрено две обмотки. Одна именуется первичной, другая вторичной. К первой (разрядник) подводятся провода, идущие к внешнему источнику питания. Вокруг создается электромагнитное поле. Когда колебательный контур наберет достаточно мощности, заряд по воздуху передается на вторую обмотку.
Частично переданная энергия преобразуется в напряжение. Причем есть закономерная взаимосвязь между этой величиной и временем, за которое образуется колебательный контур. Показатели прямо пропорциональны. Наличие двух колебательных контуров и является принципиальным отличием катушки Тесла от простого трансформатора. Причем результат работы первой заключается в появлении видимых стримеров – разрядов молнии искусственного происхождения. В результате происходит ионизация водорода, содержащегося в воздухе, как и во время сильной грозы.
Устройство катушки
Составляющих минимум. Для сборки помимо первичной и вторичной обмотки потребуется тороид, защитное кольцо, диэлектрический короб и терминал. Чтобы лучше разобраться, как сделать катушку Тесла, необходимо подготовить все необходимое. А для большего понимания процесса рассмотрим каждый элемент катушки отдельно:
- Первичная обмотка крепится внизу. Заземление обязательно. Также нужно предусмотреть разъемы для крепления проводов от источника питания.
- Вторичная обмотка. Изготавливают из медной проволоки, покрытой эмалью. Примерное количество витков – 800. Важно, чтобы обмотка не расплеталась.
- Тороид. Задача данного элемента – снизить рабочие показатели резонансной частоты. Цель – увеличить характеристики рабочего поля.
- Изолятор. Его еще называют защитным кольцом. Это разомкнутый медный контур, устанавливаемый для случаев, когда длина вторичной обмотки меньше чем у стримера.
- Заземление. Здесь дело не только в безопасности. Отсутствие «земли» приводит к тому, что заряды уходят в воздух, а не образуют замкнутые кольца.
Первичная обмотка изготавливается из проволоки большего сечения. Металл должен иметь малое сопротивление.
Расчет катушки
Тем, кто собирает трансформатор Тесла своими руками в домашних условиях, рассчитывать ничего не придется. Ниже в описании будут приведены все рекомендации с учетом параметров каждого из элементов. Но если работы ведутся в промышленных условиях, инженеры тщательно просчитывать множество параметров. Главное, что нужно знать – главное правильно рассчитать число витков обмоток. Есть взаимосвязь между количеством оборотов первичное и вторичной катушки.
Невозможно создать рабочее устройство, не зная индуктивности каждой из них и емкости контуров. Также просчитывается рабочая частота трансформатора и емкость конденсатора. Для любознательных читателей есть возможность сделать это своим умом. Формула и схема есть на сайте. А ниже приведена пошаговая инструкция с указанием конкретных параметров, и достаточно просто следовать алгоритму действий. Но перед этим подготовьте все необходимое с теми же характеристиками, которые указаны в описании процесса сборки.
Самостоятельное изготовление катушки Тесла по схеме
При монтаже трансформатора Тесла схема реализуется следующим образом:
- Берем ПВХ-трубу, и отрезаем кусок длиной 300 миллиметров.
- Наматываем на трубку медную проволоку. Если она не имеет эмалированного покрытия, после окончания работы обмотку покрывают лаком. Витки плотно прижаты друг к ругу, а концы продеты сквозь отверстия в трубе и выведены на 20 мм. каждый. Контакты делают сверху.
- Основанием послужит конструкция из ДСП. Диэлектрическая платформа должна быть устойчивой. Поэтому лучше сделать ее шире, чем диаметр элементов, размещаемых на опоре.
- Первичная обмотка – это обычно три с половиной витка. Материал – медная трубка. Важно прочно закрепить деталь на опоре. Используя трубку малого диаметра можно делать больше витков. Диаметр контура должен быть больше, чем у первичной катушки приблизительно на 30 мм.
- Тороиды бывают разные. Одни используют всю тот же медный профиль круглого сечения. Другие мастера берут алюминиевую гофру. В последнем случае для крепления используют железную перекладину, монтируемую в местах вывода контактов вторичного контура.
- Один конец первичной цепи заземляют. Если такой возможности нет, устанавливают защитное кольцо из материала, не проводящего электричество. Можно использовать фрагмент пластиковой трубы.
На завершающем этапе транзистор соединяют согласно схеме. Конструкция оснащается радиатором или кулером. Теперь можно подключать элемент питания. Обычно используют обычную крону.
Подбор материалов и деталей
Чтобы работа катушки Николя Тесла была эффективной, необходимо побеспокоиться о качестве примененных материалов. Проволока и медная трубка должны быть цельными. Счаливание, пайка приведут к тому, что устройство будет работать некорректно. Наличие эмалированного покрытия на проводе крайне желательно. Если он используется вторично, скорее всего оно повреждено. Заранее приобретите лак, который нанесите на вторичную обмотку. Основание может быть изготовлено не только из ДСП, а штатив не только из ПВХ. Главное, чтобы они не проводили электричество.
Если говорить конкретней, то выбор материалов и узлов предполагает следующие условия:
- Источник питания должен выдавать от 12 до 19 Вольт. Подходит автомобильный или мотоциклетный аккумулятор. Можно использовать зарядку от ноутбука. Также пользуются понижающим трансформатором, если он оснащен диодным мостом для преобразования переменного тока в постоянный.
- Площадь сечения проволоки, используемой для сборки вторичной катушки, – от 0,1 до 0,3 квадратных миллиметров. Количество оборотов от 700 до тысячи.
- Терминал – это дополнительная емкость на вторичном контуре. Если стримеры отсутствуют, необходимости в нем не возникает. Тогда выводят конец контура на 0,5-5,0 см. вверх.
Вместо лака можно использовать краску. Желательно, чтобы лакокрасочное покрытие было жаростойким. Помните, что устройство склонно к перегреванию. Оголенные провода – причина появления неконтролируемых зарядов, способных убить человека, а приборы, находящиеся в комнате, и подключенные к электросети, попросту сгорят.
Сборка катушки Николя Тесла по инструкции
Сразу изготовьте все необходимое. Намотайте проволоку на трубу, покройте лаком, дайте просохнуть. Изготовьте первичную обмотку, диэлектрическое основание, защитное кольцо. Затем приступайте к монтажу. Установите первичную катушку на основу. Наденьте и закрепите первичный контур. Смонтируйте остальные элементы. Подсоединять источник питания лучше через выключатель. Причем делается это в последнюю очередь, когда катушка Теска полностью собрана. Пользуйтесь принципиальной схемой.
Давно хотел собрать достойную катушку Теслы и вот, наконец, дошли руки. После сборок мелких катушек решил замахнуться на новую схему, более серьезную и сложную в настройке и работе. Перейдем от слов к делу. Полная схема выглядит так:
Работает по принципу автогенератора. Прерыватель пинает драйвер UCC27425 и начинается процесс. Драйвер подает импульс на GDT (Gate Drive Transformator – дословно: трансформатор, управляющий затворами) с GDT идут 2 вторичные обмотки включенные в противофазе. Такое включение обеспечивает попеременное открытие транзисторов. Во время открытия транзистор прокачивает ток через себя и конденсатор 4,7 мкФ. В этот момент на катушке образуется разряд, и сигнал идет по ОС в драйвер. Драйвер меняет направление тока в GDT и транзисторы меняются (который был открытым - закрывается, а второй открывается). И этот процесс повторяется до тех пор, пока идет сигнал с прерывателя.
GDT лучше всего мотать на импортном кольце - Epcos N80. Обмотки мотаются в соотношении 1:1:1 или 1:2:2. В среднем порядка 7-8 витков, при желании можно рассчитать. Рассмотрим RD цепочку в затворах силовых транзисторов. Эта цепочка обеспечивает Dead Time (мертвое время). Это время когда оба транзистора закрыты. То есть один транзистор уже закрылся, а второй еще не успел открыться. Принцип такой: через резистор транзистор плавно открывается и через диод быстро разряжается. На осциллограмме выглядит примерно так:
Если не обеспечить dead time то может получиться так, что оба транзистора будут открыты и тогда обеспечен взрыв силовой.
Идем дальше. ОС (обратная связь) выполнена в данном случае в виде ТТ (трансформатора тока). ТТ наматывается на ферритовом кольце марки Epcos N80 не менее 50 витков. Через кольцо продергивается нижний конец вторичной обмотки, который заземляется. Таким образом высокий ток со вторичной обмотки превращается в достаточный потенциал на ТТ. Далее ток с ТТ идет на конденсатор (сглаживает помехи), диоды шоттки (пропускают только один полупериод) и светодиод (выполняет роль стабилитрона и визуализирует генерацию). Чтобы была генерация необходимо также соблюдать фразировку трансформатора. Если нет генерации или очень слабая - нужно просто перевернуть ТТ.
Рассмотрим отдельно прерыватель. С прерывателем конечно я попотел. Собрал штук 5 разных. Одни пучит от ВЧ тока, другие не работают как надо. Далее расскажу про все прерыватели, которые делал. Начну пожалуй с самого первого – на TL494. Схема стандартная. Возможна независимая регулировка частоты и скважности. Схема ниже может генерировать от 0 до 800-900 Гц, если поставить вместо 1 мкФ конденсатор 4,7 мкФ. Скважность от 0 и до 50. То что нужно! Однако есть одно НО. Этот ШИМ контроллер очень чувствителен к ВЧ току и различным полям от катушки. В общем при подключении к катушке, прерыватель просто не работал, либо все по 0 либо CW режим. Экранирование частично помогло, но не решило проблему полностью.
Генератор прямоугольных импульсов - схема
Следущий прерыватель был собран на UC3843 очень часто встречается в ИИП, особенно АТХ, оттуда, собственно, его и взял. Схема тоже неплохая и не уступает TL494 по параметрам. Здесь возможна регулировка частоты от 0 до 1кГц и скважность от 0 до 100%. Меня это тоже устраивало. Но опять эти наводки с катушки все испортили. Здесь даже экранирование нисколько не помогло. Пришлось отказаться, хотя собрал добротно на плате.
Схема прерывателя на UC3843
Надумал вернуться к дубовым и надежным, но малофункциональным 555. Решил начать с burst interrupter. Суть прерывателя заключается в том, что он прерывает сам себя. Одна микросхема (U1) задает частоту, другая (2) длительность, а третья (U3) время работы первых двух. Все бы ничего, если бы не маленькая длительность импульса с U2. Этот прерыватель заточен под DRSSTC и может работать с SSTC но мне это не понравилось- разряды тоненькие, но пушистые. Далее было несколько попыток увеличить длительность, но они не увенчались успехом.
Схемы генераторов на 555
Тогда решил изменить принципиально схему и сделать независимую длительность на конденсаторе, диоде и резисторе. Возможно многие посчитают эту схему абсурдной и глупой, но это работает. Принцип такой: сигнал на драйвер идет до тех пор пока конденсатор не зарядится (с этим думаю никто не поспорит). NE555 генерирует сигнал, он идет через резистор и конденсатор, при этом если сопротивление резистора 0 Ом, то идет только через конденсатор и длительность максимальна (на сколько хватает емкости) не зависимо от скважности генератора. Резистор ограничивает время заряда, т.е. чем больше сопротивление, тем меньшей времени будет идти импульс. На драйвер идет сигнал меньшей длительностью, но тоже частоты. Разряжается конденсатор быстро через резистор (который на массу идет 1к) и диод.
Плюсы и минусы
Плюсы : независимая от частоты регулировка скважности, SSTC никогда не уйдет в CW режим, если подгорит прерыватель.
Минусы : скважность нельзя увеличивать "бесконечно много", как например на UC3843, она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора). Ток через конденсатор идет плавно.
На последнее не знаю как драйвер реагирует (плавную зарядку). С одной стороны драйвер также плавно может открывать транзисторы и они будут сильнее греться. С другой стороны UCC27425 - цифровая микросхема. Для нее существует только лог. 0 и лог. 1. Значит пока напряжение выше порогового - UCC работает, как только опустилось ниже минимального - не работает. В этом случае все работает в штатном режиме, и транзисторы открываются полностью.
Перейдем от теории к практике
Собирал генератор Тесла в корпус от АТХ. Конденсатор по питанию 1000 мкф 400в. Диодный мост из того же АТХ на 8А 600В. Перед мостом поставил резистор 10 Вт 4,7 Ом. Это обеспечивает плавный заряд конденсатора. Для питания драйвера поставил трансформатор 220-12В и еще стабилизатор с конденсатором 1800 мкФ.
Диодные мосты прикрутил на радиатор для удобства и для отвода тепла, хотя они почти не греются.
Прерыватель собрал почти навесом, взял кусок текстолита и канцелярским ножом вырезал дорожки.
Силовая была собрана на небольшом радиаторе с вентилятором, позже выяснилось, что этого радиатора вполне достаточно для охлаждения. Драйвер смонтировал над силовой через толстый кусок картона. Ниже фото почти собранной конструкции генератора Тесла, но находящейся на проверке, измерял температуру силовой при различных режимах (видно обычный комнатный термометр, прилепленный к силовой на термопласту).
Тороид катушки собран из гофрированной пластиковой трубы диаметром 50 мм и обклеенным алюминиевым скотчем. Сама вторичная обмотка намотана на 110 мм трубе высотой 20 см проводом 0,22 мм около 1000 витков. Первичная обмотка содержит аж 12 витков, сделал с запасом, дабы уменьшить ток через силовую часть. Делал с 6 витками в начале, результат почти одинаков, но думаю не стОит рисковать транзисторами ради пары лишних сантиметров разряда. Каркасом первички служит обычный цветочный горшок. С начала думал что не будет пробивать если вторичку обмотать скотчем, а первичку поверх скотча. Но увы, пробивало. В горшке конечно тоже пробивало, но здесь скотч помог решить проблему. В общем готовая конструкция выглядит так:
Ну и несколько фоток с разрядом
Теперь вроде бы все.
Ещё несколько советов: не пытайтесь сразу воткнуть в сеть катушку, не факт что она сразу заработает. Постоянно следите за температурой силовой, при перегреве может бабахнуть. Не мотайте слишком высокочастотные вторички, транзисторы 50b60 могут работать максимум на 150 кГц по даташиту, на самом деле немного больше. Проверяйте прерыватели, от них зависит жизнь катушки. Найдите максимальную частоту и скважность, при которой температура силовой стабильная длительное время. Слишком большой тороид может тоже вывести из строя силовую.
Сегодня мы поговорим о Качере Бровина на полевом транзисторе. Изюминкой данного агрегата будет возможность регулирования высоковольтных разрядов, исходящих от терминала.
Параметры:
Потребление 3.4 ампера
Напряжение питания 220-250 вольт
Мощность 800 ватт
Принцип работы
По схеме видно что устройство состоит из трех частей: блок питания, блок управления(прерыватель) и сам качер. Блок управления используется для регулировки частоты и скважности импульсов которые поступают на Т1 (мосфет), который в такт частоты то открывается то закрывается открывая переход между стоком-истоком. Тем самым по открытому переходу начинает течь ток замыкая цепь качера на блок питания, и получается импульс. За этот короткий промежуток времени пробегает искра на терминале. Опишу как оно все работает по простому: на блоке питания появилось напряжение (ток пошел в 2 направления на прерыватель и на Т1), включился прерыватель, подал импульс на затвор Т1, затвор открыл переход, через качер потек ток и цепь замкнулась.
Что чем заменить и как сделать чтобы работало?
Блок управления (прерыватель).
Прерыватель можно заменить любым генератором прямоугольных импульсов, но в данной статье он один так что рассмотрим его по подробнее. Все номиналы деталей кроме микросхем можно изменять на 10-30% но при этом схема будет работать по другому, рекомендую частоту генератора делать до 150 Гц.
По этой формуле определяется частота:
.
Питается все устройство от сети 220 вольт, для защиты ставится предохранитель на 5 ампер. Собственно качер питается от 310 вольт (220 вольт выпрямленное), диодный мост рекомендую брать на ток не менее 10 ампер и напряжение не меньше 500 вольт. Прерыватель питается отдельно через развязывающий трансформатор 220/12 вольт через диодный мост 1 ампер 50 вольт и шунтируется конденсатором.
В качере детали можно отклонять на 10-20% от их номинала. Полевой транзистор можно заменить на любой аналогичный или более мощный что вам и советую. Контурный конденсатор подстраиваете сами, само оптимально 0.5-1 мкФ более и не нужно для импульсного режима.
Первичная обмотка качера делается проводом в 2 квадрата, количество витков от 4 до 10. Вторичная обмотка мотается качественным ПЛШО 0.25 мм или любым другим, количество витков от 500 до 1000 (больше смысла нет), советую по окончанию намотки покрыть все лаком или эпоксидной смолой.
Дроссель L1 имеет сопротивление 15-40 Ом находится он в лампах ЛДС, можно заменить резистором с аналогичным сопротивлением и мощностью не менее 100 Ватт.
Фото качера
Готовый к эксплуатации.
Блок управления с кнопкой питания.
На днях восстановил свою ламповую катушку Тесла на ГК-71, порядком переделав всю схему. Выкинут гридлик (и сильно уменьшена обмотка ОС), шифтер в аноде лампы заменён на двухполупериодный удвоитель, и в катод лампы поставлено стакатто на 555-м таймере.Теперь можно регулировать разряд, получая либо очень громкий и ветвистый куст, либо очень злые и жирные одиночные импульсы. Метки: Ламповые девайсы, Катушки Тесла
QCW DRSSTC
Музыкальная SSTC
Я писал ранее про способы использования трансформатора Тесла для извлечения музыки и звуков, и две основные разновидности способа модуляции плазменного разряда (для импульсных катушек и для непрерывных соответственно): монофонический частотный и полноспектровый амплитудный. Музыкальные катушки Тесла, сделанные по первому принципу (в основном это DRSSTC), принимают на вход MIDI-сигнал, и издают трещащие пронзительные звуки, напоминающие мелодии со старых мобильников; звуковые трансформаторы Тесла второго типа работают как ионофоны, т. е. просто усиливают поступающий на вход сигнал с плеера или другого источника звука, […]
Парная музыкальная DRSSTC (DR-2.5)
Пара одинаковых транзисторных катушек, построенных по топовой технологии современного тесластроения, поддерживающие воспроизведение музыки в формате MIDI, управление с компьютера и синтезатора, и являющаяся одной из наиболее крупных и мощных в РФ и СНГ (и третьей вообще существующей в упомянутых регионах). Потребляемая средняя мощность каждой катушки (здесь и далее речь идёт об одной любой катушке из пары, если не указано обратное) от 0.5 до 6-8 кВт, 220В 1ф, в зависимости от режима работы, импульсная мощность в контуре превышает 5 МВт. Разряд […]
Полумостовая SSTC 2.0
Огромное преимущество транзисторных трансформаторов Тесла, выгодно отличающее их от искровых: их достаточно легко можно заставить петь, т.е. издавать звуки плазмой их разряда (ламповые тоже способны на это, но усилий требуется значительно больше, и удачных прецедентов сборки маловато). Сам принцип аудиомодуляции плазмы известен довольно давно; в СССР даже были концертного типа установки, модулировавшие факельный разряд звуком, устанавливавшиеся иногда (как мне рассказывали) в летних кинотеатрах. Есть даже современные профессиональные аудиосистемы, использующие электрическую дугу для издавания звука (ионофоны, плазмафоны и т. п.). Поскольку […]
Полномостовая SSTC
Классическая транзисторная катушка Тесла без двойного резонанса. Этот трансформатор Тесла представляет собой расширенную и улучшенную версию полумостовой катушки. Та же самая топология, что и у неё (автогенератор), с некоторыми существенными отличиями, сильно улучшающими качество работы и общую стабильность и надёжность конструкции. 1. Сигнал обратной связи берётся больше не с нестабильной антеннки, а через Метки отсутствуют.
Текущие проекты
Настоящие самодельные плазмашары
Полумостовая SSTC
Читайте также: