Как посчитать объем ксенона
Настоящий стандарт распространяется на ксенон, получаемый из криптоноксеноновой смеси способом низкотемпературной ректификации или другими способами и применяемый в производстве источников света специальных видов и в других отраслях промышленности.
Настоящий стандарт устанавливает требования к ксенону, изготовляемому для нужд народного хозяйства и экспорта.
Атомная масса (по международным атомным масса 1985 г.) - 131,80.
(Измененная редакция, Изм. N 3).
1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
1.1. Ксенон должен быть изготовлен в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.
1.2. По физико-химическим показателям ксенон должен соответствовать нормам, указанным в табл.1.
Норма для марки высокой чистоты
ОКП 21 1473 0200
1. Объемная доля ксенона, %, не менее
2. Объемная доля криптона, %, не более
3. Объемная доля азота, %, не более
4. Объемная доля кислорода, %, не более
5. Объемная доля метана, %, не более
6. Объемная доля двуокиси углерода, %, не более
7. Объемная доля водяного пара, %, не более
что соответствует температуре насыщения ксенона водяными парами при давлении 101,3 кПа (760 мм рт.ст.), °С, не выше
1. (Исключено, Изм. N 1).
2. Объемную долю криптона, азота, кислорода, метана, двуокиси углерода и водяного пара можно выражать в миллионных долях (млн
2.1. Ксенон принимают партиями. За партию принимают каждый баллон.
Каждый баллон, наполненный ксеноном, должен сопровождаться документом о качестве.
Документ о качестве должен содержать:
наименование предприятия-изготовителя и его товарный знак;
количество газа в баллоне (приложение 1);
массу баллона с вентилем до наполнения ксеноном;
результат проведенных анализов или подтверждение о соответствии продукта требованиям настоящего стандарта;
обозначение настоящего стандарта.
(Измененная редакция, Изм. N 1, 3).
2.2. Для проверки качества ксенона пробы отбирают от каждого баллона.
2.3. При получении неудовлетворительных результатов анализа хотя бы по одному из показателей должен проводиться повторный анализ по этому показателю на двух вновь отобранных из того же баллона пробах. Результаты повторных анализов являются окончательными.
3. МЕТОДЫ АНАЛИЗА
3.1.1. Пробу ксенона отбирают из наполненного баллона при давлении не ниже 4,0 МПа (приблизительно 40 кгс/см
3.2. Определение объемной доли ксенона
3.2.1. Объемную долю ксенона в процентах вычисляют по разности между 100 и суммой объемных долей примесей по формуле
где
- объемная доля двуокиси углерода, %;
- объемная доля водяного пара, %.
3.3. Определение объемной доли криптона и азота
3.3.1. Аппаратура, материалы и реактивы
печь муфельная электрическая, обеспечивающая нагрев до 500 °С;
набор сит "Физприбор".
Гелий газообразный очищенный с объемной долей азота не более 0,0005%.
Цеолит синтетический NaX или СаХ, фракция с частицами размером 0,3-0,4 мм.
Смеси градуировочные криптона и азота с ксеноном в диапазоне объемных долей:
от 0,001 до 0,02% криптона;
от 0,001 до 0,01% азота.
Не менее трех смесей каждого вида.
(Измененная редакция, Изм. N 1, 3).
3.3.2. Подготовка к анализу
3.3.2.1. Подготовка газохроматографической колонки
Таблетки цеолитов синтетических NaX или СаХ предварительно измельчают в фарфоровой ступке, отсеивают фракцию 0,3-0,4 мм, прокаливают ее в муфельной печи при 280 °С в токе аргона или другого сухого инертного газа в течение 6 ч, охлаждают в эксикаторе и быстро наполняют колонку. Укрепив колонку в хроматографе, дополнительно обезвоживают адсорбент нагреванием при рабочей температуре в токе газа-носителя в течение 24 ч.
Разделяющую способность цеолита необходимо проверить: на хроматограмме пробы ксенона должно быть полное разделение пиков криптона и азота; при отсутствии полного разделения адсорбент заменяют.
(Измененная редакция, Изм. N 3).
3.3.2.2. Градуировка хроматографа
Объемную долю криптона и азота определяют методом абсолютной градуировки, используя для этого градуировочные смеси, которые вводят в хроматограф с помощью дозатора. По хроматограммам градуировочных смесей строят градуировочные графики зависимости высоты или площади пиков криптона и азота в миллиметрах или квадратных миллиметрах, приведенных к чувствительности регистратора (масштабу) M1, от объемной доли криптона и азота в градуировочной смеси в процентах. Градуировочный график строят по средним значениям высоты или площади пиков определяемых компонентов, рассчитанным по результатам не менее двух параллельных определений. Градуировку повторяют один раз в три месяца. Один раз в сутки проверяют градуировочную характеристику хроматографа по одной градуировочной смеси для каждой примеси.
При линейной градуировочной характеристике хроматографа по результатам градуировки вычисляют градуировочные коэффициенты (см или ,
где
- доза градуировочной смеси, см - чувствительность регистратора при записи пика определяемого компонента.
3.3.3. Проведение анализа
Пробу ксенона вводят в хроматограф с помощью дозатора. Температура газохроматографической колонки, расход газа-носителя (гелия) и ток питания детектора должны быть индентичны принятым при градуировке прибора. Диапазон шкалы регистратора выбирают таким, чтобы пики определяемых компонентов были максимальными в пределах диаграммной ленты регистратора.
3.3.4. Обработка результатов
Объемную долю криптона в процентах определяют по градуировочным графикам по высоте или площади пиков криптона и азота, приведенных к чувствительности регистратора M1, или вычисляют по формулам:
или ,
- градуировочный коэффициент, вычисленный по высоте пика определяемого компонента, см, исключаются.
За результат анализа принимают среднее арифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает допускаемое расхождение, равное 15%.
3.4-3.4.3. (Исключены, Изм. N 3).
3.5-3.5.4. (Исключены, Изм. N 3).
3.6-3.6.4. (Исключены, Изм. N 1).
3.6а. Определение объемной доли метана и двуокиси углерода
3.6а.1. Аппаратура, материалы и реактивы
Хроматограф с пламенно-ионизационным детектором.
Реактор-трубка из нержавеющей стали диаметром от 3 до 10 мм, длиной 200-300 мм, наполненная катализатором, помещенная в печь, рассчитанную на нагревание до температуры 500 °С.
Вспомогательное оборудование для хроматографического анализа по п.3.3.1.
Азот газообразный по ГОСТ 9293, особой чистоты, дополнительно очищенный от двуокиси углерода и углеводородов до объемной доли не более 0,00005% по каждой примеси.
Гелий газообразный очищенный с объемной долей двуокиси углерода и углеводородов не более 0,00005% по каждой примеси.
Водород технический по ГОСТ 3022, марки А или марки Б, дополнительно очищенный от двуокиси углерода и углеводородов до объемной доли не более 0,00005% по каждой примеси.
Воздух сжатый по ГОСТ 17433, класс загрязненности не выше 2-го.
Метан газообразный чистый.
3.6а.2. Подготовка к анализу
3.6а.2.1. Для наполнения газохроматографической колонки высушивают наполнители (полисорб-1, порапак
3.6а.2-3.6а.2.1. (Введены дополнительно, Изм. N 1).
3.6а.2.2. Градуировка хроматографа
Градуировку хроматографической установки (черт.2а) производят методом абсолютной градуировки, используя для этого градуировочные смеси. В реакторе, присоединенном с помощью тройника к газохроматографической колонке (на выходе газа), двуокись углерода гидрируется водородом при 450-500 °С до метана; пик метана фиксируется пламенно-ионизационным детектором.
Черт.2а. Градуировка хроматографической установки
1 - баллон с анализируемым газом; 2 - баллон с газом-носителем; 3 - редуктор баллона;
4 - вентиль тонкой регулировки; 5 - дозатор; 6 - газохроматографическая колонка; 7 - реактор;
8 - детектор пламенно-ионизационный; 9 - измерительный прибор
* Черт.1, 2, 3. (Исключены, Изм. N 3).
3.6а.3. Проведение анализа
Пробу ксенона вводят в хроматограф с помощью дозатора. Температура газохроматографической колонки и реактора должны быть идентичны принятым при градуировке прибора. Дозу анализируемого газа и чувствительность регистратора выбирают такими, чтобы пики определяемых примесей были максимальными в пределах диаграммной ленты регистратора.
(Введен дополнительно, Изм. N 1).
3.6а.4. Обработка результатов
Объемную долю метана и двуокиси углерода в процентах определяют по градуировочному графику по высоте пиков метана, присутствующего в ксеноне и образующегося при гидрировании двуокиси углерода, приведенных к чувствительности регистратора M1, или вычисляют по формуле, приведенной в п.3.3.4.
За результат анализа принимают среднее арифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает допускаемое расхождение, равное 15%.
3.7. Определение объемной доли криптона, азота, кислорода, метана и двуокиси углерода
3.7.1. Аппаратура, материалы и реактивы
Хроматограф с высокочувствительным детектором - гелиевым ионизационным, аргоновым разрядным или детектором по теплопроводности.
Вспомогательное оборудование для хроматографического анализа по п.3.3.1.
Гелий газообразный с объемной долей гелия не менее 99,995%.
Полисорб-1 или порапак
3.6а.4-3.7.1. (Измененная редакция, Изм. N 1, 3).
3.7.2. Подготовка к анализу
Хроматографические колонки промывают последовательно ацетоном и спиртом и сушат в течение 4 ч при 120 °С в токе гелия.
Отсеивают фракцию цеолитов синтетических размером 0,25-0,35 мм, освобождают ее от пыли отдувкой гелием в течение 4 ч, сушат при 300 °С в течение 6 ч под вакуумом, затем прокаливают при 460 °С в течение 24 ч в токе гелия при расходе 60 см
3.7.3. Проведение анализа
Пробу анализируемого газа вводят в хроматограф с помощью дозатора. Записывают хроматограмму в условиях, идентичных принятым при градуировке. На колонке, наполненной цеолитом синтетическим, разделяются кислород, азот, криптон, ксенон, метан; на колонке, наполненной полисорбом-1, - двуокись углерода, ксенон, метан.
3.7.4. Обработка результатов
Объемную долю криптона, азота, кислорода, метана и двуокиси углерода определяют по градуировочным графикам по высоте или площади пиков указанных компонентов на хроматограмме анализируемого газа, приведенных к чувствительности регистратора M1.
За результат анализа принимают среднее арифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает допускаемое расхождение, равное 15%.
3.8. Определение объемной доли водяного пара
Влагомеры газов кулонометрические, рассчитанные на измерение микроконцентраций водяного пара, с относительной погрешностью измерения не выше 10% в области измерений от 0 до 20 млн и не выше 5% при более высоких концентрациях.
3.8.2. Проведение анализа
Кулонометрический метод основан на непрерывном количественном извлечении водяного пара из испытуемого газа гигроскопичным веществом и одновременном электролитическом разложении извлекаемой воды на водород и кислород. Ток электролиза является мерой концентрации водяного пара.
Прибор соединяют с точкой отбора трубкой из нержавеющей стали. Расход газа - (50±1) см . Ток электролиза измеряют микроамперметром.
Температура баллона с анализируемым газом должна быть не ниже 15 °С. Анализ проводят по инструкции, прилагаемой к прибору.
3.8.3. Обработка результатов
3.7.4-3.8.3. (Измененная редакция, Изм. N 3).
3.9. При определении объемной доли криптона, азота, кислорода, метана и двуокиси углерода допускается применение других методик, обеспечивающих метрологические характеристики, не хуже приведенных в пп.3.3, 3.6а, 3.7.
(Введен дополнительно, Изм. N 3).
4. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ
баллоны, наполняемые ксеноном, должны быть снабжены мембранными вентилями типа КВ-1М или КВБ-53 с латунными или стальными заглушками;
5.1. Изготовитель гарантирует соответствие качества ксенона требованиям настоящего стандарта при соблюдении условий хранения и транспортирования.
5.2. Гарантийный срок хранения - 5 лет со дня изготовления продукта.
Разд.4-5. (Измененная редакция, Изм. N 3).
6. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ
6.1. Ксенон нетоксичен и невзрывоопасен.
6.2. Ксенон тяжелее воздуха примерно в четыре раза и может накапливаться в слабопроветриваемых помещениях у пола и в приямках. Накопление инертного газа - ксенона в помещении может вызвать явления, обусловленные кислородной недостаточностью. В местах возможного накопления ксенона необходимо контролировать объемную долю кислорода, которая не должна быть ниже 19%.
ПРИЛОЖЕНИЕ 1 (справочное). РАСЧЕТ КОЛИЧЕСТВА КСЕНОНА В БАЛЛОНЕ
Количество ксенона в баллоне определяют взвешиванием баллона до и после наполнения с погрешностью не более ±0,05% для баллонов малой вместимости и ±0,1% для баллонов средней вместимости с последующим пересчетом массового количества газа в литры при нормальных условиях (20 °С и 101,3 кПа) по формуле
Ксенон — элемент 18-й группы (по устаревшей классификации — элемент главной подгруппы VIII группы), пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 54. Обозначается символом Xe (лат. Xenon ). Простое вещество ксенон — благородный одноатомный газ без цвета, вкуса и запаха.
Содержание
- 1 История
- 1.1 Происхождение названия
- 2.1 В Солнечной системе
- 2.2 Земная кора
- 4.1 Физические свойства
- 4.2 Химические свойства
- 4.3 Изотопы
История
Открыт в 1898 году британскими учёными Уильямом Рамзаем и Морисом Траверсом, которые подвергли медленному испарению жидкий воздух и спектроскопическим методом исследовали его наиболее труднолетучие фракции. Ксенон был обнаружен как небольшая примесь к криптону. За открытие инертных газов (в частности ксенона) и определение их места в периодической таблице Менделеева Рамзай получил в 1904 году Нобелевскую премию по химии.
Происхождение названия
Рамзай предложил в качестве названия элемента древнегреческое слово ξένον , которое является формой среднего рода единственного числа от прилагательного ξένος «чужой, странный». Название связано с тем, что ксенон был обнаружен как примесь к криптону, и с тем, что его доля в атмосферном воздухе чрезвычайно мала.
Распространённость
Ксенон — весьма редкий элемент. При нормальных условиях в кубометре воздуха содержится 0,086—0,087 см 3 ксенона.
В Солнечной системе
Ксенон относительно редок в атмосфере Солнца, на Земле, в составе астероидов и комет. Концентрация ксенона в атмосфере Марса аналогична земной: 0,08 миллионной доли , хотя содержание изотопа 129 Xe на Марсе выше, чем на Земле или Солнце. Поскольку данный изотоп образуется в процессе радиоактивного распада, полученные данные могут свидетельствовать о потере Марсом первичной атмосферы, возможно, в течение первых 100 миллионов лет после формирования планеты. В атмосфере Юпитера, напротив, концентрация ксенона необычно высока — почти в два раза выше, чем в фотосфере Солнца.
Земная кора
Ксенон содержится в земной атмосфере в крайне незначительных количествах, 0,087 ± 0,001 миллионной доли по объёму (мкл/л), или 1 часть на 11,5 млн. Он также встречается в газах, выделяемых водами некоторых минеральных источников. Некоторые радиоактивные изотопы ксенона, например 133 Xe и 135 Xe, получаются в результате нейтронного облучения ядерного топлива в реакторах.
Определение
Качественно ксенон обнаруживают с помощью эмиссионной спектроскопии (характеристические линии с длиной волны 467,13 нм и 462,43 нм ). Количественно его определяют масс-спектрометрически, хроматографически, а также методами абсорбционного анализа.
Свойства
Физические свойства
При нормальном давлении температура плавления 161,40 К (−111,75 °C), температура кипения 165,051 К (−108,099 °C). Молярная энтальпия плавления 2,3 кДж/моль , молярная энтальпия испарения 12,7 кДж/моль , стандартная молярная энтропия 169,57 Дж/(моль·К) .
Плотность в газообразном состоянии при стандартных условиях (0 °C, 100 кПа ) 5,894 г/л (кг/м 3 ), в 4,9 раза тяжелее воздуха. Плотность жидкого ксенона при температуре кипения 2,942 г/см 3 . Плотность твёрдого ксенона 2,7 г/см 3 (при 133 К ), он образует кристаллы кубической сингонии (гранецентрированная решётка), пространственная группа Fm3m, параметры ячейки a = 0,6197 нм , Z = 4 .
Критическая температура ксенона 289,74 К (16,59 °C), критическое давление 5,84 МПа , критическая плотность 1,099 г/см 3 .
Тройная точка: температура 161,36 К (−111,79 °C), давление 81,7 кПа , плотность 3,540 г/см 3 .
В электрическом разряде светится синим цветом (462 и 467 нм). Жидкий ксенон является сцинтиллятором.
Слабо растворим в воде (0,242 л/кг при 0 °C, 0,097 л/кг при 25 °C).
При стандартных условиях (273 К, 100 кПа): теплопроводность 5,4 мВт/(м·К) , динамическая вязкость 21 мкПа·с , коэффициент самодиффузии 4,8·10 −6 м 2 /с , коэффициент сжимаемости 0,9950, молярная теплоёмкость при постоянном давлении 20,79 Дж/(моль·К).
Ксенон диамагнитен, его магнитная восприимчивость −4,3·10 −5 . Поляризуемость 4,0·10 −3 нм 3 . Энергия ионизации 12,1298 эВ .
Химические свойства
Ксенон стал первым инертным газом, для которого были получены настоящие химические соединения. Примерами соединений могут быть дифторид ксенона, тетрафторид ксенона, гексафторид ксенона, триоксид ксенона, ксеноновая кислота и другие.
Первое соединение ксенона было получено Нилом Барлеттом реакцией ксенона с гексафторидом платины в 1962 году. В течение двух лет после этого события было получено уже несколько десятков соединений, в том числе фториды, которые являются исходными веществами для синтеза всех остальных производных ксенона.
В настоящее время описаны фториды ксенона и их различные комплексы, оксиды, оксифториды ксенона, малоустойчивые ковалентные производные кислот, соединения со связями Xe-N, ксенонорганические соединения. Относительно недавно был получен комплекс на основе золота, в котором ксенон является лигандом. Существование ранее описанных относительно стабильных хлоридов ксенона не подтвердилось (позже были описаны эксимерные хлориды с ксеноном).
- Реакции со фтором:
Изотопы
Известны изотопы ксенона с массовыми числами от 108 до 147 (количество протонов 54, нейтронов от 54 до 93), и 12 ядерных изомеров.
9 изотопов встречаются в природе. Из них стабильными являются семь: 126 Xe, 128 Xe, 129 Xe, 130 Xe, 131 Xe, 132 Xe, 134 Xe. Еще два изотопа ( 124 Xe и 136 Xe) имеют огромные периоды полураспада, много больше возраста Вселенной.
Остальные изотопы искусственные, самые долгоживущие — 127 Xe (период полураспада 36,345 суток) и 133 Xe (5,2475 суток), период полураспада остальных изотопов не превышает 20 часов. Среди ядерных изомеров наиболее стабильны 131 Xe m с периодом полураспада 11,84 суток, 129 Xe m (8,88 суток) и 133 Xe m (2,19 суток).
Изотоп ксенона с массовым числом 135 (период полураспада 9,14 часа) имеет максимальное сечение захвата тепловых нейтронов среди всех известных веществ — примерно 3 миллиона барн для энергии 0,069 эВ, его накопление в ядерных реакторах в результате цепочки β-распадов ядер теллура-135 и йода-135 приводит к эффекту так называемого отравления ксеноном (см. также Иодная яма).
Получение
Ксенон получают как побочный продукт производства жидкого кислорода на металлургических предприятиях.
Из-за своей малой распространённости ксенон гораздо дороже более лёгких инертных газов. В 2009 году цена ксенона составляла около 20 евро за литр газообразного вещества при стандартном давлении.
ВСЕ О ВЫБОРЕ КСЕНОНА.
Господа
Вижу много частых вопросов про ксенон для Примок, да и сам в свое время потратил чуть не неделю на выбор и понимание того, что мне надо
Потому попробовал собрать информацию в один пост – думаю пригодится
Информация собрана с нашего форума и с других источниковЦоколи ламп на P11
Headlamp (Low Ближний) : 12V — 55W (H1)
Headlamp (High Дальний) : 12V — 55W (H1)Цоколи ламп на P12
Headlamp (Low Ближний) : 12V — 55W (H7)
Headlamp (High Дальний) : 12V — 55W (H7)
Front fog lamp (ПТФ) : 12V — 55W (H11)Цоколи ламп на P12 для праворульных
Headlamp (Low Ближний) : 12V — 55W (НВ4)
Headlamp (High Дальний) : 12V — 55W (НВ3)Про ксенон (Температура свечения )
Так какую же температуру выбрать ?
Немного вступления
Цветовая температура измеряется в градусах Кельвина и отражает цвет создаваемый источником света.
К сожалению в народе распространено ошибочное мнение, что чем выше цветовая температура, тем мощнее лампа. Цветовая температура это всего лишь модель, которая говорит о том, какой должна быть температура нагретого идеального тела, чтобы оно светилось тем или иным цветом. Так солнце дает нам белый (в нашем понимании) свет, температура на поверхности солнца 5500К, поэтому можно говорить, что лампа, дающая такой же свет по спектру как и солнце имеет цветовую температуру 5500К.
Наиболее часто встречающиеся цветовые температуры ламп:
3500K (Желтый) — подходит для противотуманок как основное освещение не пригоден
4300К (Бело-желтый ) — самый яркий свет, именно эта температура ставится на заводские машины в оригинале
5000К (Белый цвет) — белый цвет свечения ксенона – Самый подходящий выбор ! (именно в отношении красиво / максимальное освещение)
6000К (Бело-голубой цвет) холодный белый с легким голубым
7000K голубой, яркость значительно ниже ездить с таким светом тяжело
8000К (насыщенный голубой цвет) синий легкий фиолетовый, яркость еще хуже
То есть чем выше цветовая температура, тем ближе цвет лампы к фиолетовому, а чем ниже к желтому.
Максимальная яркость достигается только на температуре 4300К и с ростом или уменьшением температуры яркость падет.
Однако 4300К многим не нравится из-за цвета — это яркий бело-желтый ксенон.
Поэтому большинство предпочитает температуру 5000К яркий холодный белый свет. Яркость ниже незначительно зато красиво.Температура выше 6000К у самого яркого ксенона уже мало пригодна для практического применения так как голубой(7000К) и синий(8000К) цвет по яркости не намного лучше обычных галогеновых ламп.
Нужно ли мне это
До 40% автомобильных аварий происходят из-за плохой видимости на дорогах. В ненастную погоду количество аварий значительно увеличивается.
Дождь, туман, смог, все эти природные явления — частые спутники водителей. Свет галогеновой лампы в дожде или тумане порождает явление так называемой световой стены. Когда вместо дорожного полотна вы видите капли дождя или светящийся столб тумана.
Ксенон – высококогерентный (все спектры свечения находятся в узком диапазоне) источник света. Чем выше когерентность света, тем меньше на него влияет окружающая среда. Ксенон не образует световой стены.
Вот для сравнения, как выглядит освещение HID и галоген
Покупка Ксенона — что брать?
В продолжение темы Ксенона – сам прошел через это 8)
И потому данный текст мое ИМХО – основанное на моих изысканиях и моем конечном решенииПроизводителей сегодня огромное количество – но можно попробовать выделить самых распространенных и без явного левака
По большому счету разные и производители и цены различаются только несколькими параметра
1) Срок службы блока и лампы
2) Срок в течении которого лампа не теряет свой цвет
Все остальное в большей степени только ценой отличается
Вот выборка производитель – цена и % отказовBerus (Корея) — ксенон
7000р – отказы <1%
HELLA 3 (Германия) — ксенон9500р – отказы 2-3%
HELLA 4.1 (Германия) — ксенон9500р — отказы <2%
IPF (Япония) — ксенон22900р – отказы <1%
IL Trade (Корея) — ксенон3300р – отказы <1%
MTF-Light (Корея) — ксенон8500р – отказы <1%
Sho-me (Корея) — ксенон6000р — отказы <5%
Блоки розжига
Тут могу привести только инфо о чем читал
Hella
Это очень надежные блоки. Работают при напряжении от девяти до четырнадцати вольт.Berus
Наравне с Acumen, Berus выпускает блоки с довольно большим рабочим диапазоном: от восьми до тридцати двух вольт. Однако у Однако у блоков Berus есть существенный недостаток. В этих блоках используются довольно редкие разъемы. С такими разъемами можно поставить только лампочки Беруса, Если для вас проблематично найти таковые лампы, то не волнуйтесь. Практически в любом сервис центре вам поменяют разъемы на более распространенные. Но в этом случае вы лишаетесь гарантии на данный блок и при неполадке не сможете иго обменять или починить по гарантии.Sho-me
Никаких особенных качеств не выявили. Но эти блоки довольно популярны, так как они были первыми, кто заполнил рынок дешевыми блоками розжига. Но дешевый, не значит плохой.IL Trade
Автосервис послегарантийного обслуживания
отличается лучшим соотношением цена-качество. Опыт продаж ксенона — 4 года. Отказы <0.5-1 процента. Повышенная стабильность световых характеристик ламп. Решение проблемы "обманки".г. Новосибирск, Академгородок,
бульвар Молодежи, д. 36. корпус Б
Карта проезда- Главная |
- Установка дополнительного оборудования |
- Ксенон
Как работает ксенон?
Ксеноновая лампа представляет собой стеклянную колбу в которую закачана под большим давлением (около 30 атм. в нерабочем состоянии и 120 атм. в разогретом) смесь инертных газов (основу которой составляет тот самый ксенон) и солей металлов. В колбе находятся два электрода. Для розжига дуги между ними требуется высоковольтные импульсы напряжения (до 25000 В), затем работа лампы поддерживается при напряжении в 85 В. Дуговой разряд между электродами инициирует яркое свечение газовой смеси.
Яркость источника света характеризуется цветовой температурой. Например, у Солнца цветовая температура 5000 К, у ксеноновых ламп - 4300 К, а у галогеновых всего лишь 2800 К. Спектр свечения ксеноновых ламп ближе к спектру свечения Солнца, т. е., дневному свету. Поэтому, свет ксеноновых фар имеет слегка голубоватый оттенок, а обычных галогеновых - желтоватый.
Основным плюсом ксеноновых фар перед галогеновыми является более мощное освещение при низком потреблении энергии. Такое свойство очень важно для обеспечения безопасности на дороге. Чем дальше и отчетливее водитель видит дорогу - тем меньше риск возникновения ДТП. Свет от ксеноновых ламп по спектру ближе к дневному, поэтому позволяет водителям лучше оценивать обстановку на дороге.Появляется больше времени для реакции, что очень важно при поездках ночью, когда организм человека устал.
Свет ксеноновых ламп лучше "пробивает" туман и дождь, освещая дорогу, а не капли воды в воздухе. Видимость в таких условиях намного выше, чем при использовании "галогенок". Свет "ксенона" не ослепляет водителя, в отличии от света обычных ламп, - так как имеет более высокую частоту, и лучше рассеивается.
Другой плюс ксеноновых ламп - их долговечность. Средний ресурс таких "светил" составляет до 3000 часов против 500 часов галогеновых ламп. То есть, если вы используете фары в среднем по 2 часа в сутки каждый день в году, срок службы ксеноновых ламп составит до 3-4-х лет, "галогенок" же вам хватит максимум на полгода.
Газоразрядные лампы на основе ксенона имеют меньшую потребляемую мощность - 35 Вт, галогеновые же - 55 Вт и выше. Но при этом сила света обычных ламп почти в два раза ниже - 1550 люмен против 3000 ксеноновых.
Наверняка, каждый водитель знает, как трудно оттирается грязь на фарах после длительной поездки. Происходит это потому, что лампа (и стекло) фары нагреваются, подсушивая дорожную грязь, попавшую на стекло. При потреблении мощности в 35 Вт ксеноновые лампы переводят в тепло лишь 10%, а галогеновые около 35-40% - при потреблении в 55 Вт. Поэтому при использовании ксеноновых ламп, стекло фары не будет перегреваться и лопаться при попадании на него воды, а грязь будет легче отмываться.
Повреждение стеклянной колбы;
Разгерметизация внешнего уплотнения или повышение хрупкости трубки разряда;Что такое цветовая температура?
Цветовая температура ксеноновой лампочки равная 6000 кельвинов вовсе не означает, что Ваша лампочка нагревается на поверхности до такой температуры (6000 кельвинов = 5727 градусов по цельсию). Данная величина означает, что распределение энергии в видимом спектре излучения лампочки будет соответствовать распределению энергии в видимом спектре черного тела нагретого до 6000 кельвинов.
Представим себе абсолютно чёрное тело, то есть тело, которое не отражает никакие световые лучи. Для примитивного эксперимента пусть это будет спираль из вольфрама в электрической лампочке. Соединим эту несчастную лампочку с электрической цепью через реостат (изменяемое сопротивление), выгоним всех из ванной комнаты, выключим освещение, подадим ток и будем наблюдать за цветом спирали, постепенно понижая сопротивление реостата.
В один прекрасный момент наше абсолютно чёрное тело начнёт светиться еле заметным красным цветом. Если замерить в этот момент его температуру, то окажется, что она будет примерно равна 900 градусам по Цельсию.
Поскольку все излучения происходят от скорости движения электронов, которая равна нулю при нуле градусов Кельвина (-273С), то в дальнейшем забудем про шкалу Цельсия, и будем пользоваться шкалой Кельвина. Таким образом, начало видимого излучения абсолютно чёрного тела наблюдается уже при 1200К, и соответствует красной границе спектра. То есть, попросту говоря, красному цвету соответствует цветовая температура 1200К. Продолжая нагревать нашу спираль, замеряя при этом температуру, мы увидим, что при 2000К её цвет станет оранжевым, а затем, при 3000К - жёлтым. При 3500К наша спираль перегорит, так как будет достигнута температура плавления вольфрама.Однако если бы этого не произошло, то мы увидели бы, что при достижении температуры 5500К цвет излучения был бы белым, становясь при 6000К голубоватым, и при дальнейшем нагревании вплоть до 18000К всё более голубым, что соответствует фиолетовой границе спектра. Эти цифры и назвали "цветовой температурой" излучения. Каждому цвету соответствует его цветовая температура. Психологически трудно привыкнуть к тому, что цветовая температура пламени свечи (1200К) в десять раз ниже (холоднее) цветовой температуры морозного зимнего неба (12000К). Тем не менее это так, цветовая температура отличается от обычной температуры.
800 К — начало темно-красного свечения раскаленных тел;
2000 К — свет пламени свечи;
2360 К — лампа накаливания вакуумная;
2800—2854 К — газонаполненные (газополные) лампы накаливания с вольфрамовой спиралью;
3200 К — типичные киносъемочные лампы;
5500 К — дневной свет, прямой солнечный;
6500 К — стандартный источник дневного белого света, он близок к среднедневному солнечному свету;
7500 К — дневной свет, с большой долей рассеянного от неба;
10000 К — цвет источника с «бесконечной температурой» Ксеноновые лампы имеют температуру от 4050К и выше.Максимальная яркость достигается только на температуре 4300К и с ростом или уменьшением температуры яркость падет. Однако 4300К многим не нравится из-за цвета - это яркий бело-желтый свет.Поэтому большинство предпочитает температуру 6000К яркий холодный белый свет. Яркость ниже незначительно зато красиво.
Температура выше 6000К уже мало пригодна для практического применения так как голубой(7000К) и синий(8000К) цвет по яркости не намного лучше обычных галогеновых ламп.
На графике показана зависимость мощности светового потока от цветовой температуры.
Мощность светового потока - количественная величина, показывающая, насколько интенсивен весь поток света. Мощность светового потока измеряется в люменах.
Что влияет на срок эксплуатации ксеноновых ламп?
Частое включение и выключение( при каждом новом включении частицы электродов разряжаются);
Включение горячих ламп ( происходит сгорание цветодающих примесей в лампах, последствие: изменение цвета в красноватые или зеленоватые оттенки);
Некачественные приборы для зажигания;
Неправильное место положения лампы;
Повреждение стеклянной колбы;
Разгерметизация внешнего уплотнения или повышение хрупкости трубки разряда;Меры предосторожности при обращении с ксеноновой лампой.
Поскольку система ксенон включает в себя устройства, являющиеся источником высокого напряжения, установка этих устройств сопровождается определенными опасностями. В случае необходимости установки ксенона или замены ее неисправных компонентов пользуйтесь услугами ремонтных мастерских, обладающих соответствующей квалификацией, которыми обладают специалисты автоцентра «Бэст Мастер» Не пытайтесь устанавливать систему .ксенон самостоятельно.
1.Не производить проверку работоспособности ксеноновых ламп методом включения вне корпуса осветительного прибора (фары головного света). Давление в колбе лампы около 30 атмосфер в нерабочем состоянии и около 120 атмосфер в разогретом, треснувшая лампа может нанести телесные увечья;
2.Смертельно опасное напряжение розжига ксеноновой лампы является также опсным. Не прикасайтесь к ксеноновым лампам, балластам и проводам перед и после включения и выхода на рабочий режим. В момент запуска балласт системы генерирует напряжение до 25000В и может вызвать пробой не в лампе, которая является нагрузкой, а пробить на тело, расположенное ближе к массе автомобиля чем ксеноновая лампа.
3.Включайте и выключайте фары только при необходимости. Частые включения \выключения отрицательно сказываются на сроке службы ламп и являются причиной более быстрого испарения металла электродов лампы, что в свою очередь приведет к выходу из строя балласта.
4.Если Вы обнаружили повреждения в оборудовании или его неправильную работу:
Немедленно прекратите использование оборудования и обратитесь в установочный центр. Использование поврежденного или неисправного оборудования может привести к поражению током или пожару.5.Когда свет внезапно погас.
Остановитесь в безопасном месте, выключите свет и через некоторое время повторно включите. Если это действие не исправило ситуацию, выключите свет на переключателе с повторным включением через 15 минут. Если фары включились нормально, то это означает что произошел случайный сбой, вызвавший срабатывание защиты в балласте.6.Регулировка света фар.
Яркость ксеноновых фар вдвое превышает яркость галогенных. По этой причине неправильно отрегулированные фары могут привести к ослеплению других участников движения с возникновением опасных аварийных ситуаций. Установите правильное распределение световых пучков в специализированной мастерской.Популярность ксеноновых газоразрядных лампочек для автомобилей обусловлена их лучшей эффективностью по сравнению с другими источниками освещения. Подключить ксенон возможно как в автосервисе, так и самостоятельно.
Как выбрать хороший комплект ксенона?
Подбор подходящего ксенонового источника освещения для машины должен опираться на два фактора: известность и надёжность фирмы-производителя и необходимую яркость ламп.
Из чего должен состоять комплект ксенона?
Комплектация газоразрядных лампочек для головного света или противотуманных фар включает в себя:
- источники освещения, рассчитанные на определенную мощность и обладающие конкретной маркировкой;
- устройство розжига;
- комплект проводов и элементов для подключения и фиксации ламп.
Блок розжига представляет собой модуль, предназначенный для подачи определенной величины напряжения, требующегося для активации, на световые источники. Более дорогие блоки обладают усложненной конструкцией, что позволяет им контролировать большее количество процессов. Если устройство высококачественное, оно сможет обеспечить длительную и бесперебойную работу световых элементов. Это обусловлено тем, что при розжиге ламп соблюдаются основные технические параметры в необходимом диапазоне.
Как подключить ксенон
Ксеноновые лампы для автомобильных фар работают по иному принципу, нежели обычные галогеновые. В них отсутствует нить накала. Свечение возникает не вследствие её нагрева, а за счёт горения электрической дуги. Для её возникновения необходимо изменить характеристики напряжения бортовой сети автомобиля, поэтому схема подключения ксенона предполагает внесение некоторых изменений в штатную проводку автомобиля.
Инертный газ, которым под высоким давление (около 25 АТМ) наполнена колба лампы, предотвращает выгорание её электродов. Благодаря чему срок службы осветительного прибора увеличивается до 3000 часов (против 600 часов у «галогенки»). Электрическая дуга также обеспечивает более высокую интенсивность светового потока, чем свечение нагретой спирали. В силу этих двух преимуществ некоторые автолюбители заинтересованы в замене ксеноновыми лампами обычных галогеновых.
Как выбрать ксеноновые лампы
Лампы выбираются по нескольким составляющим критериям.
HID-лампы выпускаются в соответствии со стандартами. Для замены «галогенок» H7, H11 или любых других необходимо приобретать изделия с такой же маркировкой.
В галогеновых лампах с цоколями H4, HB5, H13 для дальнего и ближнего света используются разные нити накаливания. Аналогичные им газоразрядные называются биксеноновыми. В них смена режимов работы происходит за счёт изменения положений колбы или отражающей шторки посредством электромагнитов.
По температуре свечения и потребляемой мощности
На ксеноновых лампах указывается так называемая цветовая или спектрофотометрическая температура (в градусах по Кельвину). По её значению можно заранее определить, насколько комфортной будет езда в тёмное время суток. При естественном дневном освещении значение цветовой температуры составляет от 6000К.
О том, как будет выглядеть свет фар с лампами различной цветовой температуры, можно составить впечатление по следующему изображению.
При выборе ксенона для противотуманных фар лучше отдавать предпочтение лампам с температурой 4000 – 4300К. Чем ближе спектр излучения к жёлтому, тем меньше эффект световой стены перед автомобилем, возникающий в тумане. Для фар ближнего и дальнего света ближе к естественному освещению ксеноновые лампы с температурой 4300 – 6000К.
Различаются лампы и по потребляемой мощности – она может быть 35 и 50 Вт. Как правило, водители отдают предпочтение лампам 35 Вт – они меньше «нагружают» бортовую сеть авто и не так сильно нагревают фары.
Наиболее популярные производители
Для розжига электрической дуги требуется подать на электроды напряжение около 25 000 Вольт. Для поддержания горения достаточно 50-80 Вольт. Чтобы обеспечить соблюдение этих условий работы, необходим блок розжига ксенона. При первоначальной установке ксенона требуется приобретать весь комплект – лампы, блок розжига и провода. Комплект должен сопровождаться инструкцией со схемой подключения. В дальнейшем отдельные комплектующие можно покупать порознь – по мере выхода их из строя.
Такие известные производители светотехнической продукции, как Hella, Osram и Philips не выпускают комплектов для самостоятельной установки ксенона. В продаже можно найти только лампы их производства или китайские подделки.
Среди прочих у российских автолюбителей пользуются спросом комплекты следующих марок:
- MTF-Light Slim Line.
- Optima.
- Sho me.
Каждый из этих производителей выпускает ксенон, что называется, в ассортименте – с различными лампами и модификациями блоков розжига.
Порядок установки
Далее – немного о том, как подключить ксенон своими руками.
Подготовка
Объём подготовительных работ зависит от компоновки автомобиля. Иногда к лампам противотуманных фар удаётся подобраться лишь при снятом переднем бампере. Но важнее всего – удачно разместить блоки розжига. При этом желательно максимально сократить длину проводов от них к фарам. Следует учитывать то, что излишне «спрятав» блоки, вы тем самым ограничите доступ к ним. Это вызовет затруднения при поиске и устранении неисправностей.
Для подведения проводов к лампам, скорее всего, придётся просверлить отверстия в колпаках фар, закрывающих лючки. В наборе для подключения предусмотрены специальные резиновые уплотнители и сверло следует выбирать в соответствии с их размерами. В тех случаях, когда колпаки в фарах сделаны из резины, достаточно сделать в них отверстия.
Выбор способа крепления блоков розжига не имеет принципиального значения. Их можно зафиксировать на деталях кузова при помощи скоб, входящих в комплект или просто приклеив на двухсторонний скотч.
Варианты схем подключения
Самый простой способ подключения HID-лампы выглядит так.
Принцип работы прост: при включении переключателя света напряжение подаётся на блок розжига, в нём генерируется высокое напряжение, которое и подаётся на электроды газоразрядной лампы. Положительные и отрицательные провода перепутать при подключении не получится – их разъёмы несовместимы друг с другом.
Ввиду того, что напряжение бортовой сети может быть изрядно «просажено» в момент розжига дуги, предпочтительнее осуществлять подключение ксенона через реле.
Как видите, тоже ничего сложного. На обмотку обычного реле света (контакты 85 и 86) подаётся напряжение, которое в штатной схеме подводилось к контактам «галогенки». В результате замыкаются контакты 87 и 30 реле, которые используются в качестве выключателя, «врезанного» в плюсовой провод, идущий непосредственно от аккумулятора. Таким образом исключаются потери напряжения, подаваемого на блок розжига, и облегчается «запуск» ксеноновой лампы – цепь становится практически автономной. Такой способ идеально подходит не только для того, чтобы подключить ксенон в противотуманки, но и для переделки основных фар.
С биксеноном ситуация несколько сложнее. Самый простой вариант улучшить срабатывание переключения ламп при смене режимов «дальний/ближний» — установить между «плюсовыми» выводами диод, исключающий «залипание» управляющего электромагнита.
Полная схема подключения биксенона Н4.
Несмотря на то, что HID-лампы имеют существенные преимущества по сравнению с галогеновыми, следует учитывать возможные неблагоприятные последствия самостоятельной их установки:
- Конструкция некоторых фар исключает возможность правильной настройки светового пучка с «неродными» лампами. Поэтому «колхозный» ксенон зачастую ослепляет других водителей.
- Внесение изменений в конструкцию фар головного света запрещается Правилами.
При самостоятельной доработке противотуманных фар таких проблем у вас не возникнет. Правильная их настройка значительно улучшит видимость во время тумана.
Читайте также: