Если колесо вращается так что его угловая координата задана уравнением
Рассмотрим твердое тело, которое вращается вокруг неподвижной оси. Тогда отдельные точки этого тела будут описывать окружности разных радиусов, центры которых лежат на оси вращения. Пусть некоторая точка движется по окружности радиуса R (рис. 6). Ее положение через промежуток времени Dr зададим углом Dj. Элементарные (бесконечно малые) повороты можно рассматривать как векторы (они обозначаются или ). Модуль вектора равен углу поворота, а его направление совпадает с направлением поступательного движения острия винта, головка которого вращается в направлении движения точки по окружности, т. е. подчиняется правилу правого винта (рис. 6). Векторы, направления которых связываются с направлением вращения, называются псевдовекторами или аксиальными векторами. Эти векторы не имеют определенных точек приложения: они могут откладываться из любой точки оси вращения.
Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:
Вектор направлен вдоль оси вращения по правилу правого винта, т. е. так же, как и вектор (рис. 7). Размерность угловой скорости , а ее единица — радиан в секунду (рад/с).
Линейная скорость точки (см. рис. 6)
В векторном виде формулу для линейной скорости можно написать как векторное произведение:
При этом модуль векторного произведения, по определению, равен еаКяп(шК) а направление совпадает с направлением поступательного движения правого винта при его вращении от к R.
Если w =const, то вращение равномерное и его можно характеризовать периодом вращения Т — временем, за которое точка совершает один полный оборот, т. е поворачивается на угол 2p. Так как промежутку времени Dt = Т соответствует Dj = 2p, то w = 2p/Т,откуда
Число полных оборотов, совершаемых телом при равномерном его движении пс окоужности, в единицу времени называется частотой вращения:
Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени:
Тангенциальная составляющая ускорения
Нормальная составляющая ускорения
При вращении тела вокруг неподвижной оси вектор углового ускорения направлю вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор сонаправлен вектору (рис. 8), при замедлен ном — противонаправлен ему (рис. 9).
Таким образом, связь между линейными (длина пути s, пройденного точкой по дуге окружности радиуса R, линейная скорость v, тангенциальное ускорение аt, нормальное ускорение аn) и угловыми величинами (угол поворота j, угловая скорость w, угловое ускорение e) выражается следующими формулами:
В случае равнопеременного движения точки по окружности (e—const)
где w0 — начальная угловая скорость.
Задачи
1.1.Зависимость пройденного телом пути от времени задается уравнением s=A+Bt+Ct 2 +Dt 3 (С=0,1 м/с 2 , D=0,03 м/с 3 ). Определить: 1) время после начала движения, через которое ускорение а тела будет равно 2 м/с 2 ;
2) среднее ускорение тела за этот промежуток времени. [1) 10 с; 2) 1,1 м/с 2 ]
1.2. Пренебрегая сопротивлением воздуха, определить угол, под которым тело брошено к горизонту, если максимальная высота подъема тела равна 1/4 дальности его полета. [45°]
1.3.Колесо радиусом R = 0,1 м вращается так, что зависимость угловой скорости от времени задается уравнением w= 2At + 5Bt 4 (А = 2 рад/с 2 и В = 1 рад/с 5 ). Определить полное ускорение точек обода колеса через t = 1 с после начала вращения и число оборотов, сделанных колесом за это время. [а=8,5 м/с 2 ; N = 0,48]
1.4.Нормальное ускорение точки, движущейся по окружности радиусом г=4 м, задается уравнением an=A+Bt+Ct 2 (A = 1 м/с 2 , B = 6 м/с 2 , С = 3 м/с 2 ). Определить: 1) тангенциальное ускорение точки; 2) путь, пройденный точкой за время t1=5 с после начала движения; 3) полное ускорение для момента времени t2=1 с. [1) 6 м/с 2 ; 2) 85 м; 3) 6,32 м/с 2 ]
1.5.Частота вращения колеса при равнозамедленном движении за t = 1 мин уменьшилась от 300 до 180 мин -1 . Определить: 1) угловое ускорение колеса; 2) число полных оборотов, сделанных колесом за это время. [1) 0,21 рад/с 2 ; 2) 240]
1.6.Диск радиусом R=10 см вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением j=A+3t+Ct 2 +Dt 3 (B = 1 рад/с, С = 1 рад/с 2 , D = 1 рад/с 3 ). Определить для точек на ободе колеса к концу второй секунды после начала движения: 1) тангенциальное ускорение %; 2) нормальное ускорение аn; 3) полное ускорение а. [1) 1,4 м/с 2 ; 2) 28,9 м/с 2 ; 3) 28,9 м/с 2 ]
одному из двух одинаковых металлических шариков сообщили заряд –10q, другому – заряд –2q. затем шарики соединили проводником. какими станут заряды шариков после соединения и почему?
3) одинаковыми и равными –6q
пояснение-- закон равновесия заряда
2.1-кол=4*а. 5кол=5*4*0.2=4 м
3.расстояние между ближайшими точками звуковой волны, отличающимися по фазе на 90о, составляет четверть длины волны. частота колебаний:
v-частотa звуковых колебаний
u-скорость звука в стали v = 5000 м/с
l- расстояние между ближайшими точками звуковой волны = 1,54 м
Другие вопросы по Физике
Хоккейная шайба скользит по льду 6м, если ей сообщили начальнусю скорость 3м/с. сколько метров она будет скользить по льду, если ей сообщить начальную скорость 6м/с.
Цент колеса катится согласно уравнениям Определить угловое ускорение
колеса.
Определить угловое ускорение колеса
Колесо радиусом 6,1 см вращается с постоянным угловым ускорением. Через 0,5 с после начала движения.
Определить угловое ускорение колеса
Добрый вечер всем, помогите пожалуйста ришт следующих задач! 1) Колеса автомашины.
Определить угловое ускорение и момент инерции колеса.
Здравствуйте, помогите с решением задачи. К ободу колеса в форме диска радиусом R=0,4м и массой.
определить угловое ускорение ротора
Ротор электродвигателя, имеющий частоту вращения n=955 об/мин, после выключения остановился через.
Что тут объяснять? Находи вторую производную от перемещения.
Координата по оси ОY и есть радиус колеса. Делишь линейное ускорение на радиус и получаешь угловое
ускорение.
Теперь ускорения равно
Тут как Вы сказали, что R=0.5 а находим
Maikl2020, - напрягайте воображение! Это очень важно. Иначе смысла в занятиях нет никакого.
Вот представьте, что колесо прикатили к оси Y по оси X до упора в ось Y. Оно упрётся на высоте 0,5 игрековин (едениц игрек). Причём придвинуть его к оси Y ближе чем на 0,5 иксовин до нуля, получится разве только если сломать колесо или оси погнуть.
Это в предположении что масштаб x/y = 1. То есть ось x такая же иксатая, как y игрекатая.
Прочитай условие задачи. Что ты постоянно путаешь, что дано и что надо найти.
Если забываешь, то перечитывай условие каждый раз.
Диск вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением φ = Аt2 (A = 0,5 рад/с2). Определить к концу второй секунды после начала движения: 1) угловую скорость диска; 2) угловое ускорение диска; 3) для точки, находящейся на расстоянии 80 см от оси вращения, тангенциальное aτ, нормальное an и полное ускорение а.
Дополнительные материалы
Похожие задачи
Решебник Трофимова Т.И. (1999) - Задача 1. 37
Точка движется по окружности радиусом R = 15 см с постоянным тангенсальным ускорением aτ. К концу четвертого оборота после начала движения линейная скорость точки v1 = 15 см/с. Определить нормальное ускорение an2 точки через t2 = 16 c после начала движения.
Читайте также: